Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 66(23): 16168-16186, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38019706

RESUMEN

As a core chromatin-regulatory scaffolding protein, WDR5 mediates numerous protein-protein interactions (PPIs) with other partner oncoproteins. However, small-molecule inhibitors that block these PPIs exert limited cell-killing effects. Here, we report structure-activity relationship studies in pancreatic ductal adenocarcinoma (PDAC) cells that led to the discovery of several WDR5 proteolysis-targeting chimer (PROTAC) degraders, including 11 (MS132), a highly potent and selective von Hippel-Lindau (VHL)-recruiting WDR5 degrader, which displayed positive binding cooperativity between WDR5 and VHL, effectively inhibited proliferation in PDAC cells, and was bioavailable in mice and 25, a cereblon (CRBN)-recruiting WDR5 degrader, which selectively degraded WDR5 over the CRBN neo-substrate IKZF1. Furthermore, by conducting site-directed mutagenesis studies, we determined that WDR5 K296, but not K32, was involved in the PROTAC-induced WDR5 degradation. Collectively, these studies resulted in a highly effective WDR5 degrader, which could be a potential therapeutic for pancreatic cancer and several potentially useful tool compounds.


Asunto(s)
Neoplasias Pancreáticas , Quimera Dirigida a la Proteólisis , Animales , Ratones , Proteolisis , Relación Estructura-Actividad , Neoplasias Pancreáticas/tratamiento farmacológico , Ubiquitina-Proteína Ligasas/metabolismo
2.
Sci Transl Med ; 13(613): eabj1578, 2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34586829

RESUMEN

Interactions between WD40 repeat domain protein 5 (WDR5) and its various partners such as mixed lineage leukemia (MLL) and c-MYC are essential for sustaining oncogenesis in human cancers. However, inhibitors that block protein-protein interactions (PPIs) between WDR5 and its binding partners exhibit modest cancer cell killing effects and lack in vivo efficacy. Here, we present pharmacological degradation of WDR5 as a promising therapeutic strategy for treating WDR5-dependent tumors and report two high-resolution crystal structures of WDR5-degrader-E3 ligase ternary complexes. We identified an effective WDR5 degrader via structure-based design and demonstrated its in vitro and in vivo antitumor activities. On the basis of the crystal structure of an initial WDR5 degrader in complex with WDR5 and the E3 ligase von Hippel­Lindau (VHL), we designed a WDR5 degrader, MS67, and demonstrated the high cooperativity of MS67 binding to WDR5 and VHL by another ternary complex structure and biophysical characterization. MS67 potently and selectively depleted WDR5 and was more effective than WDR5 PPI inhibitors in suppressing transcription of WDR5-regulated genes, decreasing the chromatin-bound fraction of MLL complex components and c-MYC, and inhibiting the proliferation of cancer cells. In addition, MS67 suppressed malignant growth of MLL-rearranged acute myeloid leukemia patient cells in vitro and in vivo and was well tolerated in vivo. Collectively, our results demonstrate that structure-based design can be an effective strategy to identify highly active degraders and suggest that pharmacological degradation of WDR5 might be a promising treatment for WDR5-dependent cancers.


Asunto(s)
Leucemia Mieloide Aguda , Proteína de la Leucemia Mieloide-Linfoide , Animales , N-Metiltransferasa de Histona-Lisina , Humanos , Péptidos y Proteínas de Señalización Intracelular , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Ratones
3.
FEBS Lett ; 593(23): 3266-3287, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31557312

RESUMEN

Transcription factor (TF)-based reprogramming of somatic tissues holds great promise for regenerative medicine. Previously, we demonstrated that the TFs GATA2, GFI1B, and FOS convert mouse and human fibroblasts to hemogenic endothelial-like precursors that generate hematopoietic stem progenitor (HSPC)-like cells over time. This conversion is lacking in robustness both in yield and biological function. Herein, we show that inclusion of GFI1 to the reprogramming cocktail significantly expands the HSPC-like population. AFT024 coculture imparts functional potential to these cells and allows quantification of stem cell frequency. Altogether, we demonstrate an improved human hemogenic induction protocol that could provide a valuable human in vitro model of hematopoiesis for disease modeling and a platform for cell-based therapeutics. DATABASE: Gene expression data are available in the Gene Expression Omnibus (GEO) database under the accession number GSE130361.


Asunto(s)
Diferenciación Celular/genética , Reprogramación Celular/genética , Hemangioblastos/citología , Células Madre Hematopoyéticas/citología , Animales , Técnicas de Cocultivo/métodos , Fibroblastos/citología , Fibroblastos/metabolismo , Factor de Transcripción GATA2/genética , Regulación del Desarrollo de la Expresión Génica/genética , Hemangioblastos/metabolismo , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Humanos , Ratones , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Represoras/genética , Factores de Transcripción/genética
4.
Cell ; 167(5): 1296-1309.e10, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27839867

RESUMEN

The ability of cells to count and remember their divisions could underlie many alterations that occur during development, aging, and disease. We tracked the cumulative divisional history of slow-cycling hematopoietic stem cells (HSCs) throughout adult life. This revealed a fraction of rarely dividing HSCs that contained all the long-term HSC (LT-HSC) activity within the aging HSC compartment. During adult life, this population asynchronously completes four traceable symmetric self-renewal divisions to expand its size before entering a state of dormancy. We show that the mechanism of expansion involves progressively lengthening periods between cell divisions, with long-term regenerative potential lost upon a fifth division. Our data also show that age-related phenotypic changes within the HSC compartment are divisional history dependent. These results suggest that HSCs accumulate discrete memory stages over their divisional history and provide evidence for the role of cellular memory in HSC aging.


Asunto(s)
Envejecimiento/patología , Células de la Médula Ósea/citología , Células Madre Hematopoyéticas/citología , Animales , Trasplante de Médula Ósea , Ciclo Celular , División Celular , Ratones , Ratones Endogámicos C57BL , Glicoproteína IIb de Membrana Plaquetaria/metabolismo
5.
Cell ; 161(2): 240-54, 2015 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-25860607

RESUMEN

In vitro modeling of human disease has recently become feasible with induced pluripotent stem cell (iPSC) technology. Here, we established patient-derived iPSCs from a Li-Fraumeni syndrome (LFS) family and investigated the role of mutant p53 in the development of osteosarcoma (OS). LFS iPSC-derived osteoblasts (OBs) recapitulated OS features including defective osteoblastic differentiation as well as tumorigenic ability. Systematic analyses revealed that the expression of genes enriched in LFS-derived OBs strongly correlated with decreased time to tumor recurrence and poor patient survival. Furthermore, LFS OBs exhibited impaired upregulation of the imprinted gene H19 during osteogenesis. Restoration of H19 expression in LFS OBs facilitated osteoblastic differentiation and repressed tumorigenic potential. By integrating human imprinted gene network (IGN) into functional genomic analyses, we found that H19 mediates suppression of LFS-associated OS through the IGN component DECORIN (DCN). In summary, these findings demonstrate the feasibility of studying inherited human cancer syndromes with iPSCs.


Asunto(s)
Redes Reguladoras de Genes , Células Madre Pluripotentes Inducidas/citología , Síndrome de Li-Fraumeni/complicaciones , Osteosarcoma/etiología , Adolescente , Adulto , Animales , Niño , Decorina/metabolismo , Femenino , Humanos , Síndrome de Li-Fraumeni/genética , Síndrome de Li-Fraumeni/patología , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones , Modelos Biológicos , Trasplante de Neoplasias , Osteoblastos/citología , Osteoblastos/metabolismo , Osteogénesis , Osteosarcoma/genética , Osteosarcoma/patología , ARN Largo no Codificante/metabolismo , Trasplante Heterólogo , Proteína p53 Supresora de Tumor/metabolismo
6.
Stem Cells Dev ; 23(22): 2673-86, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25075441

RESUMEN

Patient-specific induced pluripotent stem cells (iPSCs) are considered a versatile resource in the field of biomedicine. As iPSCs are generated on an individual basis, iPSCs may be the optimal cellular material to use for disease modeling, drug discovery, and the development of patient-specific cellular therapies. Recently, to gain an in-depth understanding of human pathologies, patient-specific iPSCs have been used to model human diseases with some iPSC-derived cells recapitulating pathological phenotypes in vitro. However, complex multigenic diseases generally have not resulted in concise conclusions regarding the underlying mechanisms of disease, in large part due to genetic variations between disease-state and control iPSCs. To circumvent this, the use of genomic editing tools to generate perfect isogenic controls is gaining momentum. To date, DNA binding domain-based zinc finger nucleases and transcription activator-like effector nucleases have been utilized to create genetically defined conditions in patient-specific iPSCs, with some examples leading to the successful identification of novel mechanisms of disease. As the feasibility and utility of genomic editing tools in iPSCs improve, along with the introduction of the clustered regularly interspaced short palindromic repeat system, understanding the features and limitations of genomic editing tools and their applications to iPSC technology is critical to expending the field of human disease modeling.


Asunto(s)
Ingeniería Genética/métodos , Fenómenos Genéticos/genética , Genoma Humano/genética , Células Madre Pluripotentes Inducidas/metabolismo , Humanos
7.
Asian-Australas J Anim Sci ; 26(12): 1680-8, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25049758

RESUMEN

Many different approaches have been developed to improve the efficiency of animal cloning by somatic cell nuclear transfer (SCNT), one of which is to modify histone acetylation levels using histone deacetylase inhibitors (HDACi) such as trichostatin A (TSA). In the present study, we examined the effect of TSA on in vitro development of porcine embryos derived from SCNT. We found that TSA treatment (50 nM) for 24 h following oocyte activation improved blastocyst formation rates (to 22.0%) compared with 8.9% in the non-treatment group and total cell number of the blastocysts for determining embryo quality also increased significantly (88.9→114.4). Changes in histone acetylation levels as a result of TSA treatment were examined using indirect immunofluorescence and confocal microscopy scanning. Results showed that the histone acetylation level in TSA-treated embryos was higher than that in controls at both acetylated histone H3 lysine 9 (AcH3K9) and acetylated histone H4 lysine 12 (AcH4K12). Next, we compared the expression patterns of seven genes (OCT4, ID1; the pluripotent genes, H19, NNAT, PEG1; the imprinting genes, cytokeratin 8 and 18; the trophoblast marker genes). The SCNT blastocysts both with and without TSA treatment showed lower levels of OCT4, ID1, cytokeratin 8 and 18 than those of the in vivo blastocysts. In the case of the imprinting genes H19 and NNAT, except PEG1, the SCNT blastocysts both with and without TSA treatment showed higher levels than those of the in vivo blastocysts. Although the gene expression patterns between cloned blastocysts and their in vivo counterparts were different regardless of TSA treatment, it appears that several genes in NT blastocysts after TSA treatment showed a slight tendency toward expression patterns of in vivo blastocysts. Our results suggest that TSA treatment may improve preimplantation porcine embryo development following SCNT.

8.
J Reprod Dev ; 58(1): 132-9, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22134064

RESUMEN

To artificially activate embryos in somatic cell nuclear transfer (SCNT), chemical treatment with ionomycin has been used to induce transient levels of Ca(2+) and initiate reprogramming of embryos. Ca(2+) oscillation occurs naturally several times after fertilization (several times with 15- to 30-min intervals). This indicates how essential additional Ca(2+) influx is for successful reprogramming of embryos. Hence, in this report, the experimental design was aimed at improving the developmental efficiency of cloned embryos by repetitive Ca(2+) transients rather than the commonly used ionomycin treatment (4 min). To determine optimal Ca(2+) inflow conditions, we performed three different repetitive ionomycin (10 µM) treatments in reconstructed embryos: Group 1 (4-min ionomycin treatment, once), Group 2 (30-sec treatment, 4 times, 15-min intervals) and Group 3 (1-min treatment, 4 times, 15-min intervals). Pronuclear formation rates were checked to assess the effects of repetitive ionomycin treatment on reprogramming of cloned embryos. Cleavage rates were investigated on day 2, and the formation rates of blastocysts (BLs) were examined on day 7 to demonstrate the positive effect of repeated ionomycin treatment. In Group 3, a significant increase in BL formation was observed [47/200 (23.50%), 44/197 (22.33%) and 69/195 (35.38%) in Groups 1, 2 and 3, respectively]. Culturing embryos with different ionomycin treatments caused no significant difference among the groups in terms of the total cell number of BLs (164.3, 158.5 and 145.1, respectively). Additionally, expression of the anti-apoptotic Bcl-2 gene and MnSOD increased significantly in Group 3, whereas the expression of the pro-apoptotic Bax decreased statistically. In conclusion, the present study demonstrated that repeated ionomycin treatment is an improved activation method that can increase the developmental competence of SCNT embryos by decreasing the incidence of apoptosis.


Asunto(s)
Ionóforos de Calcio/farmacología , Embrión de Mamíferos/efectos de los fármacos , Ionomicina/farmacología , Técnicas de Transferencia Nuclear/veterinaria , Animales , Bovinos , Desarrollo Embrionario/efectos de los fármacos , Femenino , Proteínas Proto-Oncogénicas c-bcl-2/biosíntesis , Superóxido Dismutasa/biosíntesis , Proteína X Asociada a bcl-2/biosíntesis
9.
J Vet Med Sci ; 72(3): 333-7, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19996555

RESUMEN

Relaxin, a member of the insulin superfamily, has diverse functions in both reproductive and nonreproductive tissues. The aim of the present study was to evaluate the effects of recombinant relaxin on the in vitro maturation of porcine oocytes and their subsequent embryonic development following in vitro fertilization. Three concentrations of relaxin (1, 10, and 100 ng/ml) were used in the in vitro maturation (IVM) medium [TCM supplemented with 10% (v/v) porcine follicular fluid, 10 ng/ml of epidermal growth factor, 4 IU/ml of pregnant mare serum gonadotropin, and (only for the first 22 hr) 4 IU/ml of human chorionic gonadotropin]. Relaxin was used during the entire IVM period. Nuclear maturation of oocytes was examined under ultraviolet light following staining with bisbenzimide (Hoechst 33342) for 5 min and mounted on a glass slide. The glutathione (GSH) content in oocytes, an important indicator of cytoplasmic maturity, was measured using a micro-glutathione assay. Cryopreserved boar semen was used for in vitro fertilization. Embryos were cultured in modified NCSU-23 medium supplemented with 0.5 mM pyruvate and 5 mM lactate. Although nuclear maturation of oocytes did not vary, the GSH content in oocytes was significantly higher when cultured with 1 ng/ml (7.9 pmol/oocyte) and 10 ng/ml (8.47 pmol/oocyte) compared to a control group. However, no additional beneficial effect was observed when 100 ng/ml of relaxin was added to the IVM medium. A significantly higher rate of blastocyst formation was observed with 10 ng of relaxin (32.4%) compared to the control (14.4%) or 100 ng of relaxin (21.4%). No difference between 1 ng and 10 ng was observed in terms of the blastocyst production rate. The inner cell mass cell numbers in relaxin-treated groups were significantly higher than control, and trophectoderm cell number was the highest in the 10 ng relaxin group. Relaxin (10 ng/ml) can be supplemented in IVM medium to support the maturation of porcine oocytes.


Asunto(s)
Oocitos/fisiología , Relaxina/farmacología , Mataderos , Animales , Gonadotropina Coriónica/farmacología , Células del Cúmulo/efectos de los fármacos , Células del Cúmulo/fisiología , Desarrollo Embrionario/efectos de los fármacos , Desarrollo Embrionario/fisiología , Factor de Crecimiento Epidérmico/farmacología , Femenino , Fertilización In Vitro/métodos , Líquido Folicular/fisiología , Gonadotropinas Equinas/farmacología , Humanos , Oocitos/efectos de los fármacos , Ovario/efectos de los fármacos , Ovario/fisiología , Embarazo , Proteínas Recombinantes/farmacología , Porcinos
10.
Cloning Stem Cells ; 11(1): 123-30, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19226214

RESUMEN

The present study was undertaken to evaluate two activation methods for somatic cell nuclear transfer (SCNT), namely, fusion and simultaneous activation (FSA, fusion medium contains calcium), versus fusion followed by chemical activation (F+CA, fusion medium does not contain calcium), and to evaluate the effects of parity of recipient dogs on the success of SCNT. Oocytes retrieved from outbred dogs were reconstructed with adult somatic cells collected from an 11-year-old female dog named Missy. In the FSA method, oocytes were fused and activated at the same time using two DC pulses of 1.75 kV/cm for 15 microsec. In the F+CA method, oocytes were fused with two DC pulses of 1.75 kV/cm for 15 microsec, and then activated 1 h after fusion by 10 microM calcium ionophore for 4 m and cultured for 4 h in 1.9 mM 6-dimethylaminopurine for postactivation. Activation method had a significant impact on the production efficiency of cloned dogs. There was a significant difference in full-term pregnancy rate and percentage of live puppies between the two methods (6.3% and 38.5% for FSA and F+CA, respectively). In our study, four out of five live offspring produced by F+CA survived versus FSA, which did not result in any surviving puppies. Overall, as few as 14 dogs and 54 reconstructed embryos were needed to produce a cloned puppy. In addition, the parity of recipient bitches had no effect on the success of SCNT in canine species. Both the nullipara and multipara bitches produced live puppies following SCNT-ET.


Asunto(s)
Clonación de Organismos/veterinaria , Perros/genética , Técnicas de Transferencia Nuclear/veterinaria , Animales , Calcio/química , Clonación de Organismos/métodos , Genotipo , Repeticiones de Microsatélite/genética , Oocitos/fisiología
11.
Mol Reprod Dev ; 75(7): 1127-35, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18324672

RESUMEN

In the present study, we investigated the effect of melatonin on the preimplantation development of porcine parthenogenetic and somatic cell nuclear transfer (SCNT) embryos. Parthenogenetic embryos were cultured in mNCSU-23 supplemented with various concentrations of melatonin for 7 days. The results revealed that 100 pM was the optimal concentration, which resulted in significantly increased cleavage and blastocyst formation rates. Additionally, 100 pM melatonin provided the highest increase in total cell number of blastocysts. Therefore, the subsequent experiments were performed with 100 pM melatonin. ROS level in 2-8 cell stage embryos in the presence or absence of melatonin was evaluated. Embryos cultured with melatonin showed significantly decreased ROS. Blastocysts cultured with melatonin for 7 days were analyzed by the TUNEL assay. It was observed that melatonin not only increased (P < 0.05) the total cell number but also decreased (P < 0.05) the rate of apoptotic nuclei. Blastocysts cultured with melatonin were assessed for the expression of apoptosis-related genes Bcl-xl and Bax, and of pluripotency marker gene Oct-4 by real-time quantitative PCR. Analysis of data showed that the expression of Bcl-xl was higher (1.7-fold) compared to the control while the expression of Bax was significantly decreased relative to the control (0.7-fold) (P < 0.05). Moreover, the expression of Oct-4 was 1.7-fold higher than the control. These results indicated that melatonin had beneficial effects on the development of porcine parthenogenetic embryos. Based on the findings of parthenogenetic embryos, we investigated the effect of melatonin on the development of porcine SCNT embryos. The results also demonstrated increased cleavage and blastocyst formation rates, and the total cell numbers in blastocysts were significantly higher when the embryos were cultured with melatonin. Therefore, these data suggested that melatonin may have important implications for improving porcine preimplantation SCNT embryo development.


Asunto(s)
Apoptosis/efectos de los fármacos , Blastocisto/fisiología , Desarrollo Embrionario/efectos de los fármacos , Melatonina/farmacología , Partenogénesis/fisiología , Animales , Blastocisto/citología , Blastocisto/efectos de los fármacos , Femenino , Etiquetado Corte-Fin in Situ , Técnicas de Transferencia Nuclear , Partenogénesis/efectos de los fármacos , Reacción en Cadena de la Polimerasa , Embarazo , Porcinos
12.
Anim Reprod Sci ; 105(3-4): 438-50, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18276088

RESUMEN

The restricted supply of oocytes in the domestic dog limits the development of reproductive biotechnologies in this species. Inter-species somatic cell nuclear transfer could be an alternative for cloning animals whose oocytes are difficult to obtain. In this study, the possibility of cloning dog embryos using pig oocytes was investigated by evaluating nuclear remodeling. Chromatin remodeling, assessed by premature chromosome condensation, pseudo-pronuclei formation, DNA methylation and histone acetylation, along with the developmental ability was compared between intra- and inter-species cloned embryos. The incidence of premature chromosome condensation was significantly higher in intra-species cloned embryos relative to inter-species cloned embryos (87.2% vs. 61.7%; P<0.05), but comparable pseudo-pronuclei formation was observed in both (85.3% vs. 75.8%). None of the inter-species cloned embryos developed beyond the 8-cell stage while 18.3% of intra-species cloned embryos developed to the blastocyst stage. The relative level of both DNA methylation and histone acetylation was similar between intra- and inter-species cloned embryos at all times examined. These results suggest that although partial chromatin remodeling occurs, further investigation is needed to be able to use pig oocytes as recipient oocytes in dog cloning.


Asunto(s)
Ensamble y Desensamble de Cromatina/fisiología , Clonación de Organismos/veterinaria , Perros/embriología , Desarrollo Embrionario/fisiología , Histonas/metabolismo , Oocitos/fisiología , Porcinos/fisiología , Acetilación , Animales , Núcleo Celular/genética , Núcleo Celular/fisiología , Clonación de Organismos/métodos , Metilación de ADN , Femenino , Inmunohistoquímica/veterinaria , Cariotipificación/veterinaria , Técnicas de Transferencia Nuclear/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA