Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(17)2023 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-37686097

RESUMEN

Src is emerging as a promising target in triple-negative breast cancer (TNBC) treatment because it activates survival signaling linked to the epidermal growth factor receptor. In this study, the effect of calcium supply on Src degradation was investigated to confirm underlying mechanisms and anticancer effects targeting TNBC. MDA-MB-231 cells, the TNBC cell line, were used. Calcium supply was feasible through lactate calcium salt (CaLac), and the applicable calcium concentration was decided by changes in the viability with different doses of CaLac. Expression of signaling molecules mediated by calcium-dependent Src degradation was observed by Western blot analysis and immunocytochemistry, and the recovery of the signaling molecules was confirmed following calpeptin treatment. The anticancer effect was investigated in the xenograft animal model. Significant suppression of Src was induced by calcium supply, followed by a successive decrease in the expression of epithelial growth factor receptor, RAS, extracellular signal-regulated kinase, and nuclear factor kappa B. Then, the suppression of cyclooxygenase-2 contributed to a significant deactivation of the prostaglandin E2 receptors. These results suggest that calcium supply has the potential to reduce the risk of TNBC. However, as this study is at an early stage to determine clinical applicability, close consideration is needed.


Asunto(s)
Calcio , Neoplasias de la Mama Triple Negativas , Animales , Humanos , Calcio/farmacología , Calcio/uso terapéutico , Receptores ErbB , Transducción de Señal , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Familia-src Quinasas
2.
World J Gastroenterol ; 28(27): 3422-3434, 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-36158271

RESUMEN

BACKGROUND: The biochemical phenomenon defined as poly adenosine diphosphate (ADP)-ribosylation (PARylation) is essential for the progression of pancreatic cancer. However, the excessive accumulation of poly ADP-ribose (PAR) induces apoptosis-inducing factor (AIF) release from mitochondria and energy deprivation resulting in the caspase-independent death of cancer cells. AIM: To investigate whether sustained calcium supply could induce an anticancer effect on pancreatic cancer by PAR accumulation. METHODS: Two pancreatic cancer cell lines, AsPC-1 and CFPAC-1 were used for the study. Calcium influx and mitochondrial reactive oxygen species (ROS) were observed by fluorescence staining. Changes in enzyme levels, as well as PAR accumulation and energy metabolism, were measured using assay kits. AIF-dependent cell death was investigated followed by confirming in vivo anticancer effects by sustained calcium administration. RESULTS: Mitochondrial ROS levels were elevated with increasing calcium influx into pancreatic cancer cells. Then, excess PAR accumulation, decreased PAR glycohydrolase and ADP-ribosyl hydrolase 3 levels, and energy deprivation were observed. In vitro and in vivo antitumor effects were confirmed to accompany elevated AIF levels. CONCLUSION: This study visualized the potential anticancer effects of excessive PAR accumulation by sustained calcium supply on pancreatic cancer, however elucidating a clear mode of action remains a challenge, and it should be accompanied by further studies to assess its potential for clinical application.


Asunto(s)
Neoplasias Pancreáticas , Poli Adenosina Difosfato Ribosa , Adenosina Difosfato , Factor Inductor de la Apoptosis/metabolismo , Calcio/metabolismo , Caspasas/metabolismo , Glicósido Hidrolasas/metabolismo , Humanos , Mitocondrias/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Poli Adenosina Difosfato Ribosa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ribosa/metabolismo
3.
Cancers (Basel) ; 13(7)2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33806179

RESUMEN

Hypoxic cancer cells meet their growing energy requirements by upregulating glycolysis, resulting in increased glucose consumption and lactate production. Herein, we used a unique approach to change in anaerobic glycolysis of cancer cells by lactate calcium salt (CaLac). Human colorectal cancer (CRC) cells were used for the study. Intracellular calcium and lactate influx was confirmed following 2.5 mM CaLac treatment. The enzymatic activation of lactate dehydrogenase B (LDHB) and pyruvate dehydrogenase (PDH) through substrate reaction of CaLac was investigated. Changes in the intermediates of the tricarboxylic acid (TCA) cycle were confirmed. The cell viability assay, tube formation, and wound-healing assay were performed as well as the confirmation of the expression of hypoxia-inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF). In vivo antitumor effects were evaluated using heterotopic and metastatic xenograft animal models with 20 mg/kg CaLac administration. Intracellular calcium and lactate levels were increased following CaLac treatment in CRC cells under hypoxia. Then, enzymatic activation of LDHB and PDH were increased. Upon PDH knockdown, α-ketoglutarate levels were similar between CaLac-treated and untreated cells, indicating that TCA cycle restoration was dependent on CaLac-mediated LDHB and PDH reactivation. CaLac-mediated remodeling of cancer-specific anaerobic glycolysis induced destabilization of HIF-1α and a decrease in VEGF expression, leading to the inhibition of the migration of CRC cells. The significant inhibition of CRC growth and liver metastasis by CaLac administration was confirmed. Our study highlights the potential utility of CaLac supplementation in CRC patients who display reduced therapeutic responses to conventional modes owing to the hypoxic tumor microenvironment.

4.
Molecules ; 25(22)2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33202899

RESUMEN

Sorafenib has been recently used for the treatment of patients with advanced colorectal cancer (CRC) and is recognized for its therapeutic value. However, the continuous use of sorafenib may cause resistance in the treatment of cancer patients. In this study, we investigated whether sorafenib exerts an enhanced anticancer effect on CRC cells via the calcium-mediated deactivation of the focal adhesion kinase (FAK) signaling pathways. The appropriate dose of sorafenib and lactate calcium salt (CaLa) for a combination treatment were determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Then, cell cycle analysis was performed following treatment with 2.5 µM sorafenib and/or 2.5 mM CaLa. CRC cells were found to be in the G1 phase by sorafenib treatment, and they accumulated in the sub-G1 phase with CaLa treatment. Western blots and enzyme-linked immunosorbent assays were performed to analyze the elements of the recombinant activated factor (RAF) and focal adhesion kinase (FAK) signaling cascades. Sorafenib-inhibited RAF-dependent signaling in CRC cells, however, either did not affect the expression of Akt or increased it. As the upstream signaling of FAK was suppressed by CaLa, we observed that the expression of the sub-signaling phospho (p) AKT and p-mammalian target of rapamycin was also suppressed. Treatment with a combination of sorafenib and CaLa enhanced the antitumor activity of CRC cells. The % viability of CRC cells was significantly decreased compared to the single treatment with sorafenib or CaLa, and the accumulation of Sub G1 of CRC cells was clearly confirmed. The migration ability of CRC cells was significantly reduced. The findings of this study indicate that sorafenib will show further improved antitumor efficacy against CRC due to overcoming resistance through the use of CaLa.


Asunto(s)
Antineoplásicos/farmacología , Calcio/farmacología , Neoplasias Colorrectales/enzimología , Quinasa 1 de Adhesión Focal/metabolismo , Ácido Láctico/farmacología , Sorafenib/farmacología , Ciclo Celular , Línea Celular Tumoral , Supervivencia Celular , Neoplasias Colorrectales/tratamiento farmacológico , Relación Dosis-Respuesta a Droga , Células HCT116 , Células HT29 , Humanos , Transducción de Señal
5.
Anticancer Res ; 40(4): 1989-1996, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32234888

RESUMEN

BACKGROUND/AIM: The antitumor effect of sustained calcium supply on Src degradation was investigated in the context of hormone-dependent breast cancer, followed by elucidation of the underlying mechanisms. MATERIALS AND METHODS: Hormone-dependent T-47D breast cancer cells were used. Lactate calcium salt (LCS) was used as the source of sustained calcium supply, and the applicable concentration of LCS was determined by the colorimetric MTT assay. LCS-mediated deactivation of downstream signaling via Src degradation was identified by western blot and immunocytochemistry. RESULTS: Calcium-mediated degradation of Src decreased survival signaling via phosphoinositide 3-kinase and protein kinase B and resulted in significant inhibition of the clonogenic ability of hormone-dependent breast cancer cells. Tumor volume was significantly decreased in response to LCS injection in a heterotopic xenograft model, and immuno histochemistry revealed tumor necrosis. CONCLUSION: Sustained supply of calcium inhibited survival signaling via degradation of Src in hormone-dependent breast cancer cells.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias Hormono-Dependientes/tratamiento farmacológico , Proteolisis/efectos de los fármacos , Familia-src Quinasas/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Calcio/farmacología , Línea Celular Tumoral , Femenino , Humanos , Ácido Láctico/farmacología , Neoplasias Hormono-Dependientes/genética , Neoplasias Hormono-Dependientes/patología , Proteína Oncogénica v-akt/genética , Fosfatidilinositol 3-Quinasas/genética , Transducción de Señal/efectos de los fármacos , Familia-src Quinasas/antagonistas & inhibidores
6.
Front Cell Dev Biol ; 8: 571676, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33585438

RESUMEN

Chemosensitization of cancer cells with small molecules may improve the therapeutic index of antitumoral agents by making tumor cells sensitive to the drug regimen and thus overcome the treatment resistance and side effects of single therapy. Cell membrane lipid rafts are known to transduce various signaling events in cell proliferation. Sensitizing cancer cells may cause modulation of membrane lipid rafts which may potentially be used in improving anticancer drug response. Cedrol, a natural sesquiterpene alcohol, was used to treat human leukemia K562 and colon cancer HT-29 cell lines, and effects were observed. Cedrol decreased the cell viability by inducing apoptosis in both cell lines by activation of pro-apoptosis protein BID and inhibition of anti-apoptosis proteins Bcl-X L , Bcl-2, and XIAP. Cedrol activated the caspase-9-dependent mitochondrial intrinsic pathway of apoptosis. Furthermore, cedrol inhibited the levels of pAKT, pERK, and pmTOR proteins as well as nuclear and cytoplasmic levels of the p65 subunit of NF-κB. Cedrol caused redistribution of cholesterol and sphingomyelin contents from membrane lipid raft, which was confirmed by a combined additive effect with methyl-ß-cyclodextrin (lipid raft-disrupting agent). Lipid raft destabilization by cedrol led to the increased production of ceramides and inhibition of membrane-bound NADPH oxidase 2 enzyme activity. Cholesterol/sphingomyelin-redistributing abilities of cedrol appear as a novel mechanism of growth inhibition of cancer cells. Cedrol can be classified as a natural lipid raft-disrupting agent with possibilities to be used in general studies involving membrane lipid raft modifications.

7.
Life Sci ; 233: 116727, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31381895

RESUMEN

AIMS: Age-related macular degeneration (AMD) is a leading cause of irreversible blindness in elderly people. The pathogenesis of neovascular AMD is known but is closely related to inflammation and choroidal neovascularization (CNV). The aim of this study was to investigate the anti-inflammatory and anti-angiogenic effects of calcium on neovascular AMD. MAIN METHODS: Human retinal pigment epithelial cells (ARPE-19) were used to identify protein markers of inflammation induced by differentiated macrophages. Choroidal neovascularization (CNV) mouse model was established by rupturing the Bruch's membrane using laser photocoagulation in C57BL/6 mice. Mice were divided into the following groups: untreated control and calcium supplemented. The expression levels of toll-like receptor isotype (TLR) 4, nuclear factor kappa B (NF-κB), hypoxia-inducible factor-1α (Hif-1α), and vascular endothelial growth factor (VEGF) were investigated to check whether calcium supplementation results in suppression of inflammation and has an anti-angiogenic effect. CNV was evaluated by immunofluorescence staining on choroidal flat mounts. KEY FINDING: The inflammation-induced expression of TLR4, NF-κB, and Hif-1α was decreased in ARPE-19 cells after calcium supplementation. Inhibition of the transcriptional activation of ARPE-19 cells by Hif-1α suppression resulted in decreased VEGF expression. In the laser-induced CNV mouse model, calcium supplementation inhibited inflammatory mediators and neovascularization in the retinal tissue. SIGNIFICANCE: Supplementation with calcium seems to constrain inveterate symptoms of neovascular AMD by inhibiting inflammation and angiogenesis in the laser-induced CNV mouse model.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Calcio/farmacología , Neovascularización Coroidal/prevención & control , Mediadores de Inflamación/metabolismo , Inflamación/complicaciones , Epitelio Pigmentado de la Retina/efectos de los fármacos , Animales , Células Cultivadas , Neovascularización Coroidal/etiología , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/metabolismo
8.
Biomol Ther (Seoul) ; 27(2): 201-209, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30419633

RESUMEN

Mixed lineage leukemia proteins (MLL) are the key histone lysine methyltransferases that regulate expression of diverse genes. Aberrant activation of MLL promotes leukemia as well as solid tumors in humans, highlighting the urgent need for the development of an MLL inhibitor. We screened and isolated MLL1-binding ssRNAs using SELEX (Systemic Evolution of Ligands by Exponential enrichment) technology. When sequences in sub-libraries were obtained using next-generation sequencing (NGS), the most enriched aptamers-APT1 and APT2-represented about 30% and 26% of sub-library populations, respectively. Motif analysis of the top 50 sequences provided a highly conserved sequence: 5΄-A[A/C][C/G][G/U][U/A]ACAGAGGG[U/A]GG[A/C] GAGUGGGU-3΄. APT1, APT2, and APT5 embracing this motif generated secondary structures with similar topological characteristics. We found that APT1 and APT2 have a good binding activity and the analysis using mutated aptamer variants showed that the site information in the central region was critical for binding. In vitro enzyme activity assay showed that APT1 and APT2 had MLL1 inhibitory activity. Three-dimensional structure prediction of APT1-MLL1 complex indicates multiple weak interactions formed between MLL1 SET domain and APT1. Our study confirmed that NGS-assisted SELEX is an efficient tool for aptamer screening and that aptamers could be useful in diagnosis and treatment of MLL1-mediated diseases.

9.
Anticancer Res ; 38(8): 4667-4676, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30061234

RESUMEN

BACKGROUND/AIM: Capecitabine is a pro-drug of 5-fluorouracil (5-FU), and is an orally available chemotherapeutic used to treat colorectal cancer (CRC). Recently, research has focused on improving its efficacy at lower doses in order to minimize its well-known toxicities. In this study, we investigated the possibility of improving the antitumor effect of capecitabine against CRC by destabilizing focal adhesion kinase (FAK) signaling. MATERIALS AND METHODS: Optimal dosages for capecitabine and lactate calcium salt (LCS) were determined using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide MTT assay. The viability of CRC cells was investigated by MTT and clonogenic assays after single or combination treatment with capecitabine and LCS. Western blot analyses were used to determine changes in the expression of components of the FAK and AKT signaling cascade, and this information was used to elucidate the underlying mechanism. A xenograft model was established to evaluate the antitumor efficacy of the combination treatment, as well as its necrotic effect and organ toxicity. RESULTS: The addition of LCS to capecitabine treatment led to an increase in the proteolysis of the FAK signaling cascade components, including SRC proto-oncogene, non-receptor tyrosine kinase; AKT serine/threonine kinase 1; and nuclear factor-kappa B, resulting in a decrease in the viability and clonogenic ability of CRC cells. In vivo antitumor efficacy, including tumor necrosis, was significantly increased with the combination treatment relative to both single treatments, and no organ toxicity was found in any experimental group. CONCLUSION: The addition of LCS increased the anticancer efficacy of capecitabine at a lower dose than is currently used in human patients.


Asunto(s)
Capecitabina/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Compuestos de Calcio/metabolismo , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Fluorouracilo/farmacología , Células HCT116 , Células HT29 , Humanos , Lactatos/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
10.
Int J Mol Sci ; 19(4)2018 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-29641465

RESUMEN

Despite the development of numerous therapeutics targeting the epithelial growth factor receptor (EGFR) for non-small cell lung carcinoma (NSCLC), the application of these drugs is limited because of drug resistance. Here, we investigated the antitumor effect of calcium-mediated degradation of EGFR pathway-associated proteins on NSCLC. First, lactate calcium salt (LCS) was utilized for calcium supplementation. Src, α-tubulin and EGFR levels were measured after LSC treatment, and the proteins were visualized by immunocytochemistry. Calpeptin was used to confirm the calcium-mediated effect of LCS on NSCLC. Nuclear expression of c-Myc and cyclin D1 was determined to understand the underlying mechanism of signal inhibition following EGFR and Src destabilization. The colony formation assay and a xenograft animal model were used to confirm the in vitro and in vivo antitumor effects, respectively. LCS supplementation reduced Src and α-tubulin expression in NSCLC cells. EGFR was destabilized because of proteolysis of Src and α-tubulin. c-Myc and cyclin D1 expression levels were also reduced following the decrease in the transcriptional co-activation of EGFR and Src. Clonogenic ability and tumor growth were significantly inhibited by LSC treatment-induced EGFR destabilization. These results suggest that other than specifically targeting EGFR, proteolysis of associated molecules such as Src or α-tubulin may effectively exert an antitumor effect on NSCLC via EGFR destabilization. Therefore, LCS is expected to be a good candidate for developing novel anti-NSCLC therapeutics overcoming chemoresistance.


Asunto(s)
Antineoplásicos/farmacología , Compuestos de Calcio/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Receptores ErbB/metabolismo , Lactatos/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Proteolisis , Animales , Antineoplásicos/uso terapéutico , Compuestos de Calcio/uso terapéutico , Línea Celular Tumoral , Ciclina D1/metabolismo , Dipéptidos/metabolismo , Femenino , Humanos , Lactatos/uso terapéutico , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Estabilidad Proteica/efectos de los fármacos , Tubulina (Proteína)/metabolismo , Familia-src Quinasas/metabolismo
11.
Diagnostics (Basel) ; 8(2)2018 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-29641512

RESUMEN

Various methods are available for cancer screening, and the methods are performed depending on the origin site of cancer. Among these methods, biopsy followed by medical imaging is the most common. After cancer progression is determined, an optimal treatment-such as surgery, chemotherapy, and/or radiation therapy-is selected. A new assay has been developed that detects circulating tumor cells (CTCs). Tracking changes in CTCs may reveal important tumoral sensitivity information or resistance patterns to specific regimens and prompt changes in therapy on a personalized basis. Characterization of CTCs at the DNA, RNA, and protein levels is important for gaining insight for clinical applications. A small number of CTCs can be analyzed to obtain genome information such as the progression of cancer including metastasis, even in a single cluster. Although many clinical studies, particularly CTC enumeration and detection of specific oncogene expression, have increased the success rate of diagnosis and predicting prognosis, there is no consensus regarding the technical approaches and various aspects of the methodology, making it difficult to standardize optimal methods for CTC analysis. However, ongoing technological advances are currently being achieved and large-scale clinical studies are being conducted. Applying CTC analysis in the clinic would be very useful for advancing diagnosis, prognosis prediction, and therapeutics.

12.
Drug Deliv ; 24(1): 1262-1272, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28891336

RESUMEN

Since breast cancer is one of the most lethal malignancies, targeted strategies are urgently needed. In this study, we report the enhanced therapeutic efficacy of docetaxel (DTX) when combined with polyunsaturated fatty acids (PUFA) for effective treatment of multi-resistant breast cancers. Folic acid (FA)-conjugated PUFA-based lipid nanoparticles (FA-PLN/DTX) was developed. The physicochemical properties, in vitro uptake, in vitro cytotoxicity, and in vivo anticancer activity of FA-PLN/DTX were evaluated. FA-PLN/DTX could efficiently target and treat human breast tumor xenografts in vivo. They showed high payload carrying capacity with controlled release characteristics and selective endocytic uptake in folate receptor-overexpressing MCF-7 and MDA-MB-231 cells. PUFA synergistically improved the anticancer efficacy of DTX in both tested cancer cell lines by inducing a G2/M phase arrest and cell apoptosis. Combination of PUFA and DTX remarkably downregulated the expression levels of pro-apoptotic and anti-apoptotic markers, and blocked the phosphorylation of AKT signaling pathways. Compared to DTX alone, FA-PLN/DTX showed superior antitumor efficacy, with no signs of toxic effects in cancer xenograft animal models. We propose that PUFA could improve the therapeutic efficacy of anticancer agents in cancer therapy. Further studies are necessary to fully understand these findings and achieve clinical translation.


Asunto(s)
Nanoestructuras , Animales , Antineoplásicos , Línea Celular Tumoral , Docetaxel , Ácidos Grasos Insaturados , Humanos , Taxoides
13.
Cell Death Dis ; 8(6): e2843, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28569777

RESUMEN

HIF-1 is associated with poor prognoses and therapeutic resistance in cancer patients. We previously developed a novel hypoxia-inducible factor (HIF)-1 inhibitor, IDF-11774, a clinical candidate for cancer therapy. We also reported that IDF-1174 inhibited HSP70 chaperone activity and suppressed accumulation of HIF-1α. In this study, IDF-11774 inhibited the accumulation of HIF-1α in vitro and in vivo in colorectal carcinoma HCT116 cells under hypoxic conditions. Moreover, IDF-11774 treatment suppressed angiogenesis of cancer cells by reducing the expression of HIF-1 target genes, reduced glucose uptake, thereby sensitizing cells to growth under low glucose conditions, and decreased the extracellular acidification rate (ECAR) and oxygen consumption rate of cancer cells. Metabolic profiling of IDF-11774-treated cells revealed low levels of NAD+, NADP+, and lactate, as well as of intermediates in glycolysis and the tricarboxylic acid cycle. In addition, we observed elevated AMP and diminished ATP levels, resulting in a high AMP/ATP ratio. The level of AMP-activated protein kinase phosphorylation also increased, leading to inhibition of mTOR signaling in treated cells. In vivo xenograft assays demonstrated that IDF-11774 exhibited substantial anticancer efficacy in mouse models containing KRAS, PTEN, or VHL mutations, which often occur in malignant cancers. Collectively, our data indicate that IDF-11774 suppressed hypoxia-induced HIF-1α accumulation and repressed tumor growth by targeting energy production-related cancer metabolism.


Asunto(s)
Adamantano/análogos & derivados , Antineoplásicos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Regulación Neoplásica de la Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Neovascularización Patológica/prevención & control , Piperazinas/farmacología , Adamantano/farmacología , Animales , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , AMP Cíclico/metabolismo , Femenino , Glucosa/metabolismo , Glucólisis/efectos de los fármacos , Células HCT116 , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ácido Láctico/metabolismo , Ratones , Ratones Desnudos , NAD/metabolismo , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Anticancer Res ; 37(6): 2959-2964, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28551633

RESUMEN

BACKGROUND/AIM: 5-Fluorouracil (5-FU) over-use has led to an urgent need for alternative treatment regimens, such as a lower concentration of the drug because of its toxic effects. The aim of this study was to investigate the possibility of improving the antitumor effect of 5-FU without toxicity by targeting primary colorectal cancer (CRC) with sustained calcium supplementation. MATERIALS AND METHODS: The viability of CRC cells was determined after treatment of 5-FU, lactate calcium salt (CaLac), or the combination of te two. Western blot analysis for the focal adhesion kinase (FAK) signaling cascade was performed to investigate the underlying mechanism. A xenograft model was established to evaluate antitumor efficacy of each treatment, and the necrotic effect was also observed in tumor tissues. RESULTS: By the combined treatment, proteolysis of FAK signaling cascade, was mediated by sustained calcium supplementation resulting in further decrease in the clonogenicity of CRC cells. The in vivo anticancer efficacy including tumor necrosis was significantly increased by the combination treatment compared to single treatment of with 5-FU. CONCLUSION: Sustained calcium supplementation was able to enhance the potency of 5-FU targeting the primary CRC.


Asunto(s)
Antimetabolitos Antineoplásicos/uso terapéutico , Compuestos de Calcio/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Fluorouracilo/uso terapéutico , Lactatos/uso terapéutico , Animales , Antimetabolitos Antineoplásicos/farmacología , Compuestos de Calcio/farmacología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Fluorouracilo/farmacología , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Quinasa 1 de Adhesión Focal/metabolismo , Células HCT116 , Células HT29 , Humanos , Lactatos/farmacología , Ratones Endogámicos BALB C , Ratones Desnudos , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Nutr Cancer ; 69(4): 663-673, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28353361

RESUMEN

Methionine (Met) is involved in one-carbon de novo nucleotide synthesis and is an essential amino acid for cell survival. The impact of lactate calcium salt (CaLa) on the Met metabolism was investigated to evaluate the enhanced antitumor effect of methotrexate (MTX) on colorectal cancer (CRC) cells. Met dependency relating to homocysteine (Hcy) and betaine was investigated in human CRC cells (HCT-116 and HT-29) using a viability assay and liquid chromatography-mass spectrometry. Expression of betaine transporter-1 (BGT-1) following treatment with MTX alone or with CaLa was determined by Western blot. Enhanced antitumor effect due to malfunction of Met synthesis was confirmed. CRC cell viability decreased in Met-restricted medium, but was maintained after Hcy and betaine treatment while overcoming Met restriction. BGT-1 expression was downregulated following the treatment of dose-increased CaLa, whereas there was no effect on BGT-1 expression after MTX treatment. CaLa in combination with MTX induced reduced Met synthesis when CRC cell viability was reduced. The results indicated that CaLa-mediated BGT-1 downregulation inhibits Met synthesis by disrupting betaine homeostasis. CaLa raised the antitumor effect of MTX via secondary role in the inhibition of the de novo nucleotide synthesis. Combination therapy of MTX and CaLa could maximize the effectiveness of CRC treatment.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Metionina/metabolismo , Betaína/administración & dosificación , Betaína/metabolismo , Betaína/farmacología , Compuestos de Calcio/administración & dosificación , Compuestos de Calcio/farmacología , Proteínas Portadoras/metabolismo , Supervivencia Celular/efectos de los fármacos , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Proteínas Transportadoras de GABA en la Membrana Plasmática , Células HCT116/efectos de los fármacos , Células HT29/efectos de los fármacos , Humanos , Lactatos/administración & dosificación , Lactatos/farmacología , Metotrexato/administración & dosificación , Metotrexato/farmacología , Terapia Molecular Dirigida
16.
Bioorg Med Chem Lett ; 27(3): 496-500, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28043794

RESUMEN

Acute myeloid leukemia (AML) is a clonal disorder of hematopoietic progenitor cell. In AML, a mutation in FLT3 is commonly occurs and is associated with poor prognosis. We have previously reported that thieno[2,3-d]pyrimidine derivative compound 1 exhibited better antiproliferative activity against MV4-11 cells which harbor mutant FLT3 than AC220, which is a well-known FLT3 inhibitor, and has good microsomal stability. However, compound 1 had poor solubility. We then carried out further structural modification at the C2 and the C6 positions of thieno[2,3-d]pyrimidine scaffold. Compound 13b, which possesses a thiazole moiety at the C2 position, exhibited better antiproliferative activity than compound 1 and showed increased solubility and moderate microsomal stability. These results indicate that compound 13b could be a promising potential FLT inhibitor for AML chemotherapy.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Pirimidinas/síntesis química , Pirimidinas/química , Solubilidad , Relación Estructura-Actividad , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/metabolismo
17.
Anticancer Res ; 37(1): 103-114, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28011480

RESUMEN

AIM: To investigate the possibility of enhancing an anti-metastatic effect of 5-fluorouracil (5-FU) on colorectal cancer (CRC) cells by combining it with continuous calcium supplementation. MATERIALS AND METHODS: Optimal doses of 5-FU with/without lactate salt (CaLa) were determined via clonogenicity and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays using human CRC cells cultured on normal or low-attachment plates. Invasion and migration assays confirmed the enhanced anti-metastatic effect of combining 5-FU and CaLa. Western blot analysis for elements of the focal adhesion kinase (FAK) signaling cascade and epithelial-mesenchymal transition (EMT) markers was used to investigate the underlying mechanism. RESULTS: 5-FU (2.5 µM) had no antitumor activity against unanchored CRC cells, while it significantly suppressed anchorage-dependent cell proliferation. In contrast, treatment with CaLa (2.5 mM), alone and in combination with 5-FU, exerted antitumor activity against both anchored and unanchored CRC cells via calcium-mediated FAK proteolysis and inhibition of EMT markers, such as vimentin and SNAIL. CONCLUSION: Calcium supplementation represents a method of enhancing the potency of existing antitumor agents such as 5-FU, augmenting their clinical effectiveness.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Compuestos de Calcio/farmacología , Movimiento Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Fluorouracilo/farmacología , Quinasa 1 de Adhesión Focal/metabolismo , Lactatos/farmacología , Biomarcadores de Tumor/metabolismo , Muerte Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/enzimología , Neoplasias Colorrectales/patología , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Transición Epitelial-Mesenquimal/efectos de los fármacos , Células HCT116 , Células HT29 , Humanos , Invasividad Neoplásica , Metástasis de la Neoplasia , Proteolisis , Transducción de Señal/efectos de los fármacos , Factores de Tiempo
18.
Bioconjug Chem ; 27(8): 1911-20, 2016 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-27386732

RESUMEN

We developed a hypoxia-inducible factor-1 (HIF-1) inhibitor, IDF-11774, as a clinical candidate for cancer therapy. To understand the mechanism of action of IDF-11774, we attempted to isolate target proteins of IDF-11774 using bioconjugated probes. Multifunctional chemical probes containing sites for click conjugation and photoaffinity labeling were designed and synthesized. After fluorescence and photoaffinity labeling of proteins, two-dimensional electrophoresis (2DE) was performed to isolate specific molecular targets of IDF-11774. Heat shock protein (HSP) 70 was identified as a target protein of IDF-11774. We revealed that IDF-11774 inhibited HSP70 chaperone activity by binding to its allosteric pocket, rather than the ATP-binding site in its nucleotide-binding domain (NBD). Moreover, IDF-11774 reduced the oxygen consumption rate (OCR) and ATP production, thereby increasing intracellular oxygen tension. This result suggests that the inhibition of HSP70 chaperone activity by IDF-11774 suppresses HIF-1α refolding and stimulates HIF-1α degradation. Taken together, these findings indicate that IDF-11774-derived chemical probes successfully identified IDF-11774's target molecule, HSP70, and elucidated the mode of action of IDF-11774 in inhibiting HSP70 chaperone activity and stimulating HIF-1α degradation in cancer cells.


Asunto(s)
Adamantano/análogos & derivados , Alquinos/química , Ácido Benzoico/farmacología , Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP70 de Choque Térmico/química , Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Piperazinas/farmacología , Adamantano/farmacología , Adenosina Trifosfato/biosíntesis , Sitio Alostérico/efectos de los fármacos , Respiración de la Célula/efectos de los fármacos , Células HCT116 , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Modelos Moleculares , Conformación Proteica , Dominios Proteicos , Coloración y Etiquetado
19.
Acta Biomater ; 42: 220-231, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27395829

RESUMEN

UNLABELLED: Novel nanomaterials for the intracellular transport of therapeutic cargos have been actively sought to effectively breach cell-membrane barriers. In this study we developed novel self-micellizing anticancer lipid (SMAL)-based pro-apoptotic nanoparticles (NPs) that enhance the accumulation and chemotherapeutic efficacy of oxaliplatin (OL) in colorectal cancer cells (CRCs). We demonstrated that NPs with special affinity to caveolae could be designed and based on this specificity, NPs effectively differentiated between endothelial cells (tumor cells) and epithelial cells, without the need for a cell-specific targeting moiety. We demonstrated a remarkable uptake of OL-loaded SMAL NPs (SMAL-OL) in HCT116 and HT-29 cells via the caveolae-mediated endocytosis (CvME) pathway. The higher accumulation of SMAL-OL in the intracellular environment resulted in a significantly elevated anticancer effect compared to that of free OL. Cell cycle analysis proved G2/M phase arrest, along with substantial presence of cells in the sub-G1 phase. An immunoblot analysis indicated an upregulation of pro-apoptotic markers (Bax; caspase-3; caspase-9; and PARP1) and downregulation of Bcl-xl and the PI3K/AKT/mTOR complex, indicating a possible intrinsic apoptotic signaling pathway. Overall, the ability of SMAL NPs to confer preferential specificity towards the cell surface domain could offer an exciting means of targeted delivery without the need for receptor-ligand-type strategies. STATEMENT OF SIGNIFICANCE: In this work, we developed a novel self-micellizing anticancer lipid (SMAL)-based pro-apoptotic nanoparticles (NPs) that enhance the accumulation and chemotherapeutic efficacy of oxaliplatin (OL) in colorectal cancer cells. We demonstrated that NPs with special affinity to caveolae could be realized and based on this specificity, NPs effectively differentiated between endothelial cells (tumor cells) and epithelial cells, without the need for a cell-specific targeting moiety. In addition, oxaliplatin-loaded SMAL were efficiently endocytosed by the cancer cells and represent a significant breakthrough as an effective drug delivery system with promising potential in cancer therapy. We believe this work holds promising potential for the development of next generation of multifunctional nanocarriers for an exciting means of targeted delivery without the need for receptor-ligand-type strategies.


Asunto(s)
Antineoplásicos/uso terapéutico , Caveolas/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Lípidos/uso terapéutico , Micelas , Nanopartículas/química , Nanotecnología/métodos , Compuestos Organoplatinos/uso terapéutico , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Western Blotting , Caveolas/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/patología , Sinergismo Farmacológico , Endocitosis/efectos de los fármacos , Células HCT116 , Células HT29 , Humanos , Lípidos/farmacología , Nanopartículas/ultraestructura , Compuestos Organoplatinos/farmacología , Oxaliplatino , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfolípidos/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
20.
Arch Pharm Res ; 39(7): 878-86, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27215829

RESUMEN

In an effort to identify a microbial enzyme that can be useful as a fungicide and biodegradation agent of chitinous wastes, a chitinase (Chi242) was purified from the culture supernatant of Streptomyces anulatus CS242 utilizing powder of shrimp shell wastes as a sole carbon source. It was purified employing ammonium sulfate precipitation and gel permeation chromatography techniques. The molecular weight of the purified chitinase was ~38 kDa by SDS-PAGE. The N-terminal amino acid sequence (A-P-G-A-P-G-T-G-A-L) showed close similarity to those of other Streptomyes chitinases. The purified enzyme displayed optimal activity at pH 6.0 and 50 °C respectively. It showed substantial thermal stability for 2 h at 30-60 °C, and exhibited broad pH stability in the range 5.0-13.0 for 48 h at 4 °C. Scanning electron microscopy confirmed the ability of this enzyme to adsorb onto solid shrimp bio-waste and to degrade chitin microfibers. Chi242 could proficiently convert colloidal chitin to N-acetyl glucosamine (GlcNAc) and N-acetyl chitobiose (GlcNAc)2 signifying that this enzyme is suitable for bioconversion of chitin waste. In addition, it exerted an effective antifungal activity towards fungal pathogen signifying its role as a biocontrol agent. Thus, a single microbial cell of Streptomyces anulatus CS242 justified its dual role.


Asunto(s)
Antifúngicos/aislamiento & purificación , Antifúngicos/farmacología , Quitinasas/aislamiento & purificación , Quitinasas/farmacología , Streptomyces/enzimología , Antifúngicos/metabolismo , Aspergillus niger/efectos de los fármacos , Aspergillus niger/fisiología , Biodegradación Ambiental , Quitinasas/metabolismo , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Especificidad por Sustrato/efectos de los fármacos , Especificidad por Sustrato/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...