Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Food Funct ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38833212

RESUMEN

Although only Saccharomyces boulardii has been studied for ulcerative colitis (UC), probiotic yeasts have immense therapeutic potential. Herein, we evaluated the kefir yeast Kluyveromyces marxianus A4 (Km A4) and its anti-inflammatory effect with sulfasalazine in BALB/c mice with dextran sulfate sodium (DSS)-induced colitis. Oral administration continued for 7 days after the mice were randomly divided into seven groups: control (CON, normal mice administered with saline), DSS-induced colitis mice administered saline (DSS), and DSS-induced colitis mice administered sulfasalazine only (S), Km A4 only (A4), Km A4 plus sulfasalazine (A4 + S), S. boulardii ATCC MYA-796 (Sb MYA-796) only (Sb), and Sb MYA-796 plus sulfasalazine (Sb + S). The ß-glucan content of Km A4 was significantly higher than that of Sb MYA-796 (P < 0.05). Body weight gain (BWG) significantly correlated with colon length, cyclooxygenase-2 (Cox-2) levels, and Bacteroides abundance (P < 0.05). In colitis-induced mice, the A4 + S group had the lowest histological score (6.00) compared to the DSS group (12.67), indicating the anti-inflammatory effects of this combination. The A4 + S group showed significantly downregulated expression of interleukin (Il)-6, tumor necrosis factor-α (Tnf-α), and Cox-2 and upregulated expression of Il-10 and occludin (Ocln) compared to the DSS group. Mice treated with A4 + S had enhanced Bacteroides abundance in their gut microbiota compared with the DSS group (P < 0.05). Bacteroides were significantly correlated with all colitis biomarkers (BWG, colon length, Il-6, Tnf-α, Il-10, Cox-2, and Ocln; P < 0.05). The anti-inflammatory effects of Km A4 could be attributed to high ß-glucan content and gut microbiota modulation. Thus, treatment with Km A4 and sulfasalazine could alleviate UC.

2.
Molecules ; 29(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38542920

RESUMEN

Gas hydrates, a type of inclusion compound capable of trapping gas molecules within a lattice structure composed of water molecules, are gaining attention as an environmentally benign gas storage or separation platform. In general, the formation of gas hydrates from water requires high-pressure and low-temperature conditions, resulting in significant energy consumption. In this study, tetrabutylammonium fluoride (TBAF) was utilized as a thermodynamic promoter forming a semi-clathrate-type hydrate, enabling gas capture or separation at room temperature. Those TBAF hydrate systems were explored to check their capability of CO2 separation from flue gas, the mixture of CO2 and N2 gases. The formation rates and gas storage capacities of TBAF hydrates were systematically investigated under various concentrations of CO2, and they presented selective CO2 capture behavior during the hydrate formation process. The maximum gas storage capacities were achieved at 2.36 and 2.38 mmol/mol for TBAF·29.7 H2O and TBAF·32.8 H2O hydrate, respectively, after the complete enclathration of the feed gas of CO2 (80%) + N2 (20%). This study provides sufficient data to support the feasibility of TBAF hydrate systems to be applied to CO2 separation from CO2/N2 gas mixtures based on their CO2 selectivity.

3.
Int J Biol Macromol ; 266(Pt 2): 130910, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38547953

RESUMEN

In this study, we developed hydrogels using polyvinyl alcohol (PVA), vanillin (V), and a fungus-derived carboxymethyl chitosan (FC) using a freeze-thaw-based method. These hydrogels were strengthened by bonding, including Schiff's base bonding between V and FC and hydrogen bonding between PVA, FC, and V. The physiological properties of these PFCV hydrogels were characterized by FTIR, TGA, compressive mechanical testing, and rheology and water contact angle measurements. FTIR spectra confirmed the effective integration of FC and V into the PVA network. TGA results showed that FC and V enhanced the thermal stability of PFCV hydrogels. Mechanical tests showed increasing the amount of V reduced mechanical properties but did not alter the elastic character of hydrogels. SEM images displayed a well-interconnected porous structure with excellent swelling capacity. In addition, we examined biological properties using cell-based in vitro studies and performed antibacterial assessments to assess suitability for potential wound dressing applications. Prestoblue™ and live/dead cell analysis strongly supported skin fibroblast attachment and viability, DPPH assays indicated substantial antioxidant activity, and PFCV hydrogels showed enhanced antibacterial effects against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). In summary, incorporating V and FC into PVA hydrogels appears to be attractive for wound dressing applications.


Asunto(s)
Antibacterianos , Vendajes , Benzaldehídos , Quitosano , Quitosano/análogos & derivados , Hidrogeles , Alcohol Polivinílico , Quitosano/química , Quitosano/farmacología , Alcohol Polivinílico/química , Benzaldehídos/química , Benzaldehídos/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Escherichia coli/efectos de los fármacos , Congelación , Staphylococcus aureus/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/química , Humanos , Cicatrización de Heridas/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Reología
4.
Anim Microbiome ; 6(1): 14, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504362

RESUMEN

BACKGROUND: The poultry industry encounters a number of factors that affect growth performance and productivity; nutrition is essential for sustaining physiological status and protecting against stressors such as heat, density, and disease. The addition of vitamins, minerals, and amino acids to the diet can help restore productivity and support the body's defense mechanisms against stress. Methionine (Met) is indispensable for poultry's energy metabolism, physiology, performance, and feed utilization capacity. Through this study, we aimed to examine the physiological effects of methionine supplementation on poultry as well as alterations of intestinal microbiome. METHODS: We utilized the DL- and L- form of methionine on Caenorhabditis elegans and the FIMM (Fermentor for intestine microbiota model) in-vitro digesting system. A genomic-analysis of the transcriptome confirmed that methionine supplementation can modulate growth-related physiological metabolic pathways and immune responses in the host poultry. The C. elegans model was used to assess the general health benefits of a methionine supplement for the host. RESULTS: Regardless of the type or concentration of methionine, supplementation with methionine significantly increased the lifespan of C. elegans. Feed grade L-Methionine 95%, exhibited the highest lifespan performance in C. elegans. Methionine supplementation increased the expression of tight junction genes in the primary intestinal cells of both broiler and laying hens, which is directly related to immunity. Feed grade L-Methionine 95% performed similarly or even better than DL-Methionine or L-Methionine treatments with upper doses in terms of enhancing intestinal integrity. In vitro microbial cultures of healthy broilers and laying hens fed methionine revealed changes in intestinal microflora, including increased Clostridium, Bacteroides, and Oscillospira compositions. When laying hens were given feed grade L-Methionine 95% and 100%, pathogenic Campylobacter at the genus level was decreased, while commensal bacteria were increased. CONCLUSIONS: Supplementation of feed grade L-Methionine, particularly L-Methionine 95%, was more beneficial to the host poultry than supplementing other source of methionine for maintaining intestinal integrity and healthy microbiome.

5.
Heliyon ; 10(1): e23345, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38187352

RESUMEN

The enduring influence of early life stress (ELS) on brain and cognitive development has been widely acknowledged, yet the precise mechanisms underlying this association remain elusive. We hypothesize that ELS might disrupt the genome-wide influence on brain morphology and connectivity development, consequently exerting a detrimental impact on children's cognitive ability. We analyzed the multimodal data of DNA genotypes, brain imaging (structural and diffusion MRI), and neurocognitive battery (NIH Toolbox) of 4276 children (ages 9-10 years, European ancestry) from the Adolescent Brain Cognitive Development (ABCD) study. The genome-wide influence on cognitive function was estimated using the polygenic score (GPS). By using brain morphometry and tractography, we identified the brain correlates of the cognition GPSs. Statistical analyses revealed relationships for the gene-brain-cognition pathway. The brain structural variance significantly mediated the genetic influence on cognition (indirect effect = 0.016, PFDR < 0.001). Of note, this gene-brain relationship was significantly modulated by abuse, resulting in diminished cognitive capacity (Index of Moderated Mediation = -0.007; 95 % CI = -0.012 âˆ¼ -0.002). Our results support a novel gene-brain-cognition model likely elucidating the long-lasting negative impact of ELS on children's cognitive development.

6.
J Cancer ; 15(3): 659-670, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38213733

RESUMEN

Oral squamous cell carcinoma (OSCC) is a prevalent oral and maxillofacial cancer with high mortality as OSCC cells readily invade tissues and metastasize to cervical lymph nodes. Although imatinib exhibits potential anticancer and remarkable clinical activities that therapeutically affect several cancer types, its specific impact on OSCC has yet to be fully explored. Therefore, this study investigated the potential anticancer effect of imatinib on OSCC cells and the underlying mechanisms. The Cell Counting Kit-8 was used to determine the impact of imatinib on cell viability. Then, morphological cell proliferation analysis was conducted to examine how imatinib impacted OSCC cell growth. Moreover, OSCC cell migration was determined through wound-healing assays, and colony formation abilities were investigated through the soft agar assay. Lastly, the effect of imatinib on OSCC cell apoptosis was verified with flow cytometry, and its inhibitory mechanism was confirmed through Western blot. Our results demonstrate that imatinib effectively inhibited OSCC cell proliferation and significantly curtailed OSCC cell viability in a time- and concentration-dependent manner. Furthermore, imatinib suppressed migration and colony formation while promoting OSCC cell apoptosis by enhancing p53, Bax, and PARP expression levels and reducing Bcl-2 expression. Imatinib also inhibited the PI3K/AKT/mTOR signaling pathway and induced OSCC cell apoptosis, demonstrating the potential of imatinib as a treatment for oral cancer.

7.
Food Chem ; 439: 138082, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38070234

RESUMEN

This study investigated an innovative approach to discriminate the geographical origins of Asian red pepper powders by analyzing one-dimensional 1H NMR spectra through a deep learning-based convolution neural network (CNN). 1H NMR spectra were collected from 300 samples originating from China, Korea, and Vietnam and used as input data. Principal component analysis - linear discriminant analysis and support vector machine models were employed for comparison. Bayesian optimization was used for hyperparameter optimization, and cross-validation was performed to prevent overfitting. As a result, all three models discriminated the origins of the test samples with over 95 % accuracy. Specifically, the CNN models achieved a 100 % accuracy rate. Gradient-weighted class activation mapping analysis verified that the CNN models recognized the origins of the samples based on variations in metabolite distributions. This research demonstrated the potential of deep learning-based classification of 1H NMR spectra as an accurate and reliable approach for determining the geographical origins of various foods.


Asunto(s)
Capsicum , Aprendizaje Profundo , Polvos , Teorema de Bayes , Redes Neurales de la Computación , Espectroscopía de Resonancia Magnética
8.
Int J Biol Macromol ; 256(Pt 2): 128364, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38000603

RESUMEN

Addressing major bone injuries is a challenge in bone regeneration, necessitating innovative 3D hydrogel-based therapeutic approaches to enhance scaffold properties for better bioactivity. Bacterial cellulose (BC) is an excellent scaffold for bone tissue engineering due to its biocompatibility, high porosity, substantial surface area, and remarkable mechanical strength. However, its practical application is limited due to a lack of inherent osteogenic activity and biomineralization ability. In this study, we synthesized bone-like apatite in biocompatible BC hydrogel by introducing phosphate groups. Hydrogels were prepared using fibrous BC, acrylamide (AM), and bis [2-methacryloyloxy] ethyl phosphate (BMEP) as a crosslinker through free radical polymerization (P-BC-PAM). P-BC-PAM hydrogels exhibited outstanding compressive mechanical properties, highly interconnected porous structures, good swelling, and biodegradable properties. BMEP content significantly influenced the physicochemical and biological properties of the hydrogels. Increasing BMEP content enhanced the fibrous structure, porosity from 85.1 % to 89.5 %, and compressive mechanical strength. The optimized hydrogel (2.0P-BC-PAM) displayed maximum compressive stress, toughness, and elastic modulus at 75 % strain: 221 ± 0.08 kPa, 24,674.2 ± 978 kPa, and 11 ± 0.47 kPa, respectively. P-BC-PAM hydrogels underwent biomineralization in simulated body fluid (SBF) for 14 days, forming bone-like apatite with a Ca/P ratio of 1.75, similar to hydroxyapatite. Confirmed by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and field-emission scanning electron microscopy (FE-SEM), this suggests their potential as scaffolds for bone tissue engineering. MC3T3-E1 osteoblast cells effectively attached and proliferated on P-BC-PAM. In summary, this study contributes insights into developing phosphate-functionalized BC-based hydrogels with potential applications in bone tissue engineering.


Asunto(s)
Apatitas , Ingeniería de Tejidos , Ingeniería de Tejidos/métodos , Apatitas/química , Celulosa/química , Hidrogeles/farmacología , Hidrogeles/química , Durapatita/química , Andamios del Tejido/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Porosidad , Espectroscopía Infrarroja por Transformada de Fourier
9.
Subst Use Misuse ; 59(1): 79-89, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37936270

RESUMEN

BACKGROUND AND OBJECTIVES: Use of psychotropic substances in childhood has been associated with both impulsivity and other manifestations of poor executive function as well as escalation over time to use of progressively stronger substances. However, how this relationship may start in earlier childhood has not been well explored. Here, we investigated the neurobehavioral correlates of daily caffeinated soda consumption in preadolescent children and examined whether caffeinated soda intake is associated with a higher risk of subsequent alcohol initiation. METHODS: Using Adolescent Brain Cognitive Development study data (N = 2,092), we first investigated cross-sectional relationships between frequent caffeinated soda intake and well-known risk factors of substance misuse: impaired working memory, high impulsivity, and aberrant reward processing. We then examined whether caffeinated soda intake at baseline predicts more alcohol sipping at 12 months follow-up using a machine learning algorithm. RESULTS: Daily consumption of caffeinated soda was cross-sectionally associated with neurobehavioral risk factors for substance misuse such as higher impulsivity scores and lower working memory performance. Furthermore, caffeinated soda intake predicted a 2.04 times greater likelihood of alcohol sipping after 12 months, even after controlling for rates of baseline alcohol sipping rates. CONCLUSIONS: These findings suggest that previous linkages between caffeine and substance use in adolescence also extend to younger initiation, and may stem from core neurocognitive features thought conducive to substance initiation.


Asunto(s)
Bebidas , Bebidas Gaseosas , Adolescente , Humanos , Niño , Bebidas/efectos adversos , Cafeína , Factores de Riesgo
10.
11.
BMC Plant Biol ; 23(1): 485, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37817118

RESUMEN

BACKGROUND: Chromosome number and genome size changes via dysploidy and polyploidy accompany plant diversification and speciation. Such changes often impact also morphological characters. An excellent system to address the questions of how extensive and structured chromosomal changes within one species complex affect the phenotype is the monocot species complex of Barnardia japonica. This taxon contains two well established and distinct diploid cytotypes differing in base chromosome numbers (AA: x = 8, BB: x = 9) and their allopolyploid derivatives on several ploidy levels (from 3x to 6x). This extensive and structured genomic variation, however, is not mirrored by gross morphological differentiation. RESULTS: The current study aims to analyze the correlations between the changes of chromosome numbers and genome sizes with palynological and leaf micromorphological characters in diploids and selected allopolyploids of the B. japonica complex. The chromosome numbers varied from 2n = 16 and 18 (2n = 25 with the presence of supernumerary B chromosomes), and from 2n = 26 to 51 in polyploids on four different ploidy levels (3x, 4x, 5x, and 6x). Despite additive chromosome numbers compared to diploid parental cytotypes, all polyploid cytotypes have experienced genome downsizing. Analyses of leaf micromorphological characters did not reveal any diagnostic traits that could be specifically assigned to individual cytotypes. The variation of pollen grain sizes correlated positively with ploidy levels. CONCLUSIONS: This study clearly demonstrates that karyotype and genome size differentiation does not have to be correlated with morphological differentiation of cytotypes.


Asunto(s)
Asparagaceae , Asparagaceae/genética , Cromosomas de las Plantas/genética , Poliploidía , Ploidias , Diploidia , Genoma de Planta
12.
Sci Adv ; 9(40): eadi5261, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37792929

RESUMEN

Entanglement is a crucial quantum resource with broad applications in quantum information science. For harnessing entanglement in practice, it is a prerequisite to certify the entanglement of a given quantum state. However, the certification process itself destroys the entanglement, thereby precluding further exploitation of the entanglement. Resolving this conflict, here, we present a protocol that certifies the entanglement of a quantum state without complete destruction and then probabilistically recovers the original entanglement to provide useful entanglement for further quantum applications. We experimentally demonstrate this protocol in a photonic quantum system and highlight its usefulness for selecting high-quality entanglement from a realistic entanglement source. Moreover, our study reveals various trade-off relations among the physical quantities involved in the protocol. Our results show how entanglement certification can be made compatible with subsequent quantum applications and be beneficial to sort entanglement for better performance in quantum technologies.

13.
ACS Nano ; 17(20): 20473-20491, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37793020

RESUMEN

When the skin is exposed to ultraviolet radiation (UV), it leads to the degradation of the extracellular matrix (ECM) and results in inflammation. Subsequently, melanocytes are triggered to induce tyrosinase-mediated melanin synthesis, protecting the skin. Here, we introduce a proactive approach to protect the skin from photodamage via the topical delivery of Streptomyces avermitilis-derived tyrosinase (SaTy) using single-walled carbon nanotube (SWNT). Utilizing a reverse electrodialysis (RED) battery, we facilitated the delivery of SaTy-SWNT complexes up to depths of approximately 300 µm, as analyzed by using confocal Raman microscopy. When applied to ex vivo porcine skin and in vivo albino mouse skin, SaTy-SWNT synthesized melanin, resulting in 4-fold greater UV/vis absorption at 475 nm than in mice without SaTy-SWNT. The synthesized melanin efficiently absorbed UV light and alleviated skin inflammation. In addition, the densification of dermal collagen, achieved through SaTy-mediated cross-linking, reduced photoinduced wrinkles by 66.3% in the affected area. Our findings suggest that SWNT-mediated topical protein delivery holds promise in tissue engineering applications.


Asunto(s)
Monofenol Monooxigenasa , Nanotubos de Carbono , Porcinos , Animales , Ratones , Monofenol Monooxigenasa/metabolismo , Rayos Ultravioleta , Melaninas , Inflamación
14.
Foods ; 12(17)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37685110

RESUMEN

With the current advancement in mass spectrometry (MS)-based lipidomics, the knowledge of lipidomes and their diverse roles has greatly increased, enabling a deeper understanding of the action of bioactive lipid molecules in plant- and animal-based foods. This review provides in-depth information on the practical use of MS techniques in lipidomics, including lipid extraction, adduct formation, MS analysis, data processing, statistical analysis, and bioinformatics. Moreover, this contribution demonstrates the effectiveness of MS-based lipidomics for identifying and quantifying diverse lipid species, especially triacylglycerols and phospholipids, in foods. Further, it summarizes the wide applications of MS-based lipidomics in food science, such as for assessing food processing methods, detecting food adulteration, and measuring lipid oxidation in foods. Thus, MS-based lipidomics may be a useful method for identifying the action of individual lipid species in foods.

15.
Int J Antimicrob Agents ; 62(5): 106973, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37741586

RESUMEN

Potentially significant drug candidates often face elimination from consideration due to the lack of an effective method for systemic delivery. The poor solubility of these candidates has posed a major obstacle for their development as oral pills or injectables. Niclosamide, a host-directed antiviral, is a good example. In this study, a nanoformulation technology that allows for the non-covalent formulation of niclosamide with cholic acids was developed. This formulation enables efficient systemic delivery through endocytosis and enterohepatic circulation of bile-acid-coated nanoparticles. The oral bioavailability of niclosamide-delivery nanoparticles (NDNs) was significantly enhanced to 38.3%, representing an eight-fold increase compared with pure niclosamide. Consequently, the plasma concentration of niclosamide for the NDN formulation reached 1179.6 ng/mL, which is 11 times higher than the therapeutic plasma level. This substantial increase in plasma level contributed to the complete resolution of clinical symptoms in animals infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). This nanoformulation not only provides an orally deliverable antiviral drug for SARS-CoV-2 with improved pharmaceutical bioavailability, but also offers a solution to the systemic delivery challenges faced by potentially significant drug candidates.


Asunto(s)
Colatos , Niclosamida , Animales , SARS-CoV-2 , Solubilidad , Antivirales
16.
ACS Appl Mater Interfaces ; 15(32): 38986-38995, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37530444

RESUMEN

The surface-templated evaporation-driven (S-TED) method that uses liquid-repellent surfaces has attracted considerable attention for its use in fabricating supraparticles of defined shape, size, and porosity. However, challenges in achieving mass production have impeded the widespread adoption of the S-TED method. To overcome this limit, we introduce an evaporation-driven "multiple supraparticle" synthesis by drying arrays of self-lubricating colloidal dispersion microdrops. To facilitate this synthetic method, a hydrophilic micropattern is prepared on a hydrophobic substrate as a template. During the removal of the substrate out of a dispersion, liquid drops are trapped and generate a microdrop array. To produce supraparticles, the contact lines of the trapped drops must be able to recede freely during evaporation. However, hydrophilic micropatterns induce strong contact line pinning for microdrops that hinders supraparticle formation. Herein, we solve this contradiction by employing an Ouzo-like colloidal dispersion, where we can control the wettability of the drop trapping domain. The self-lubrication effect provided by the Ouzo-like solution enables smooth movement of the drops' contact lines during evaporation, thereby resulting in the successful fabrication of supraparticle arrays even within the trapping domain. This strategy offers a promising and scalable approach for large-scale evaporation-driven supraparticle synthesis with a potential for extension to various primary colloidal particles, further broadening its applicability.

17.
Sensors (Basel) ; 23(12)2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37420874

RESUMEN

In actual industrial sites, verifying the framework for cable manipulation is crucial. Therefore, it is necessary to simulate the deformation of the cable to predict its behavior accurately. By simulating the behavior in advance, it is possible to reduce the time and cost required for work. Although finite element analysis is used in various fields, the results may differ from the actual behavior depending on the method of defining the analysis model and analysis conditions. This paper aims to select appropriate indicators that can effectively cope with finite element analysis and experiments during cable winding work. We perform finite element analysis of the behavior of flexible cables and compare the analysis results with results from experiments. Despite some differences between the experimental and analysis outcomes, an indicator was developed through trial and error to align the two cases. Errors occurred during the experiments depending on the analysis and experimental conditions. To address this, weights were derived through optimization to update the cable analysis results. Additionally, deep learning was utilized to update the errors caused by material properties using the weights. This allowed for finite element analysis even when the exact physical properties of the material were unknown, ultimately improving the analysis performance.

18.
J Cancer ; 14(10): 1875-1887, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37476191

RESUMEN

Background: Oral cancer is one of the most prevalent malignant tumors worldwide. Silibinin has been reported to exert therapeutic effects in various cancer models. However, its mechanism of action in oral cancer remains unclear. We aimed to examine the molecular processes underlying the effects of silibinin in oral cancer in vitro and in vivo as well as its potential anticancer effects. Next, we investigated the molecular processes underlying both in vitro and in vivo outcomes of silibinin treatment on oral cancer. Methods: To investigate the effects of silibinin on the growth of oral cancer cells, cell proliferation and anchorage-independent colony formation tests were conducted on YD10B and Ca9-22 oral cancer cells. The effects of silibinin on the migration and invasion of oral cancer cells were evaluated using transwell assays. Flow cytometry was used to examine apoptosis, cell cycle distribution, and accumulation of reactive oxygen species (ROS). The molecular mechanism underlying the anticancer effects of silibinin was explored using immunoblotting. The in vivo effects of silibinin were evaluated using a Ca9-22 xenograft mouse model. Results: Silibinin effectively suppressed YD10B and Ca9-22 cell proliferation and colony formation in a dose-dependent manner. Moreover, it induced cell cycle arrest in the G0/G1 phase, apoptosis, and ROS generation in these cells. Furthermore, silibinin inhibited the migration and invasion abilities of YD10B and Ca9-22 cells by regulating the expression of proteins involved in the epithelial-mesenchymal transition. Western blotting revealed that silibinin downregulated SOD1 and SOD2 and triggered the JNK/c-Jun pathway in oral cancer cells. Silibinin significantly inhibited xenograft tumor growth in nude mice, with no obvious toxicity. Conclusions: Silibinin considerably reduced the development of oral cancer cells by inducing apoptosis, G0/G1 arrest, ROS generation, and activation of the JNK/c-Jun pathway. Importantly, silibinin effectively suppressed xenograft tumor growth in nude mice. Our findings indicate that silibinin may be a promising option for the prevention or treatment of oral cancer.

19.
PLoS One ; 18(6): e0286632, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37267307

RESUMEN

Previous literature suggests that a balance between Pavlovian and instrumental decision-making systems is critical for optimal decision-making. Pavlovian bias (i.e., approach toward reward-predictive stimuli and avoid punishment-predictive stimuli) often contrasts with the instrumental response. Although recent neuroimaging studies have identified brain regions that may be related to Pavlovian bias, including the dorsolateral prefrontal cortex (dlPFC), it is unclear whether a causal relationship exists. Therefore, we investigated whether upregulation of the dlPFC using transcranial current direct stimulation (tDCS) would reduce Pavlovian bias. In this double-blind study, participants were assigned to the anodal or the sham group; they received stimulation over the right dlPFC for 3 successive days. On the last day, participants performed a reinforcement learning task known as the orthogonalized go/no-go task; this was used to assess each participant's degree of Pavlovian bias in reward and punishment domains. We used computational modeling and hierarchical Bayesian analysis to estimate model parameters reflecting latent cognitive processes, including Pavlovian bias, go bias, and choice randomness. Several computational models were compared; the model with separate Pavlovian bias parameters for reward and punishment domains demonstrated the best model fit. When using a behavioral index of Pavlovian bias, the anodal group showed significantly lower Pavlovian bias in the punishment domain, but not in the reward domain, compared with the sham group. In addition, computational modeling showed that Pavlovian bias parameter in the punishment domain was lower in the anodal group than in the sham group, which is consistent with the behavioral findings. The anodal group also showed a lower go bias and choice randomness, compared with the sham group. These findings suggest that anodal tDCS may lead to behavioral suppression or change in Pavlovian bias in the punishment domain, which will help to improve comprehension of the causal neural mechanism.


Asunto(s)
Corteza Prefontal Dorsolateral , Estimulación Transcraneal de Corriente Directa , Humanos , Corteza Prefrontal/fisiología , Castigo , Teorema de Bayes , Estimulación Transcraneal de Corriente Directa/métodos
20.
Int J Mol Sci ; 24(10)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37239855

RESUMEN

Oral cancer remains the leading cause of death worldwide. Rhein is a natural compound extracted from the traditional Chinese herbal medicine rhubarb, which has demonstrated therapeutic effects in various cancers. However, the specific effects of rhein on oral cancer are still unclear. This study aimed to investigate the potential anticancer activity and underlying mechanisms of rhein in oral cancer cells. The antigrowth effect of rhein in oral cancer cells was estimated by cell proliferation, soft agar colony formation, migration, and invasion assay. The cell cycle and apoptosis were detected by flow cytometry. The underlying mechanism of rhein in oral cancer cells was explored by immunoblotting. The in vivo anticancer effect was evaluated by oral cancer xenografts. Rhein significantly inhibited oral cancer cell growth by inducing apoptosis and S-phase cell cycle arrest. Rhein inhibited oral cancer cell migration and invasion through the regulation of epithelial-mesenchymal transition-related proteins. Rhein induced reactive oxygen species (ROS) accumulation in oral cancer cells to inhibit the AKT/mTOR signaling pathway. Rhein exerted anticancer activity in vitro and in vivo by inducing oral cancer cell apoptosis and ROS via the AKT/mTOR signaling pathway in oral cancer. Rhein is a potential therapeutic drug for oral cancer treatment.


Asunto(s)
Neoplasias de la Boca , Proteínas Proto-Oncogénicas c-akt , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Apoptosis , Proliferación Celular , Neoplasias de la Boca/tratamiento farmacológico , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...