Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Org Chem ; 86(20): 13997-14003, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33720713

RESUMEN

Mechanochemistry, the interface between the chemical and the mechanical worlds, includes the relationship between the chemical and mechanical properties of solids. In this work, fragmentation of organic molecular crystals during ultrasonic irradiation of slurries has been quantitatively investigated. This has particular relevance to nucleation processes during sonocrystallization, which is increasingly used in the processing and formulation of numerous pharmaceutical agents (PAs). We have discovered that the rates of sonofragmentation are very strongly correlated with the strength of the materials (as measured by Vickers hardness and Young's modulus). This is a mechanochemical extension of the Bell-Evans-Polanyi Principle or Hammond's Postulate: the kinetics (i.e., rates) of solid fracture correlate with thermodynamic properties of solids (e.g., Young's modulus). The mechanism of the particle breakage is consistent with a direct interaction between the shockwaves or localized microjets created by the ultrasound (through acoustic cavitation) and the solid particles in the slurry. Comparisons of the sonofragmentation patterns of ionic and molecular crystals showed that ionic crystals are more sensitive to sonofragmentation than molecular crystals for a given Young's modulus. The rates of sonofragmentation are proposed to correlate with the types and densities of imperfections in the crystals.


Asunto(s)
Cristalización , Ultrasonido , Dureza , Cinética , Ondas Ultrasónicas , Ultrasonido/métodos
2.
Chemistry ; 23(12): 2778-2782, 2017 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-27984664

RESUMEN

Mechanochemistry deals with the interface between the chemical and the mechanical worlds and explores the physical and chemical changes in materials caused by an input of mechanical energy. As such, the chemical and physical effects of ultrasound, i.e., sonochemistry, are forms of mechanochemistry. In this paper, the fragmentation of ionic crystals during ultrasonic irradiation of slurries has been quantitatively investigated: the rate of fragmentation depends strongly on the strength of the materials (as measured by Vickers hardness or by Young's modulus). This is a mechanochemical extension of the Bell-Evans-Polanyi Principle or Hammond's Postulate: activation energies for solid fracture correlate with binding energies of solids. Sonofragmentation is unaffected by slurry loading or liquid vapor pressure, but is suppressed by increasing liquid viscosity. The mechanism of the particle breakage is consistent with a direct interaction between the shockwaves created by the ultrasound (through acoustic cavitation) and the solid particles in the slurry. Fragmentation is proposed to occur from defects in the solids induced by compression-expansion, bending, or torsional distortions of the crystals.

3.
Small ; 8(7): 1038-48, 2012 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-22323425

RESUMEN

Strongly coupled nanocomposites of layered titanate and reduced graphene oxide (RGO) are synthesized by electrostatically derived self-assembly between negatively charged RGO nanosheets and positively charged TiO(2) nanosols, which is then followed by a phase transition of the anatase TiO(2) component into layered titanate. The resulting nanocomposite consists of thin 2D nanoplates of lepidocrocite-type layered titanate immobilized on the surface of RGO nanosheets. The composite formation with RGO nanosheets is effective not only in promoting the phase transition of anatase TiO(2) nanosols, but also in improving the thermal stability of the layered titanate, indicating the role of RGO nanosheets as an agent for directing and stabilizing layered structures. The layered-titanate-RGO nanocomposites exhibit remarkably expanded surface area with the formation of micropores and mesopores. The composite formation with RGO nanosheets gives rise to the disappearance of the reflectance edge of layered titanate in the diffuse reflectance UV-vis spectra, indicating a strong electronic coupling between the RGO and layered titanate. The strong electronic correlation between the two components is further evidenced by the visible-light-induced generation of photocurrents after the hybridization with RGO. The layered-titanate-RGO nanocomposite shows a higher activity for the photodegradation of organic molecules than uncomposited layered titanate, underscoring the usefulness of graphene hybridization in improving the photocatalyst performance of layered titanate. The experimental findings presented here clearly demonstrate that the self-assembly of metal oxide nanoparticles with RGO 2D nanosheets is quite effective not only in synthesizing porous metal-oxide-graphene nanocomposites with improved photo-induced functionality, but also in achieving strong electronic coupling between RGO and metal oxides.


Asunto(s)
Grafito/química , Nanocompuestos/química , Nanotecnología/métodos , Fotoquímica/métodos , Catálisis , Porosidad
4.
J Am Chem Soc ; 133(38): 14998-5007, 2011 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-21861530

RESUMEN

Mesoporous layer-by-layer ordered nanohybrids highly active for visible light-induced O(2) generation are synthesized by self-assembly between oppositely charged 2D nanosheets of Zn-Cr-layered double hydroxide (Zn-Cr-LDH) and layered titanium oxide. The layer-by-layer ordering of two kinds of 2D nanosheets is evidenced by powder X-ray diffraction and cross-sectional high resolution-transmission electron microscopy. Upon the interstratification process, the original in-plane atomic arrangements and electronic structures of the component nanosheets remain intact. The obtained heterolayered nanohybrids show a strong absorption of visible light and a remarkably depressed photoluminescence signal, indicating an effective electronic coupling between the two component nanosheets. The self-assembly between 2D inorganic nanosheets leads to the formation of highly porous stacking structure, whose porosity is controllable by changing the ratio of layered titanate/Zn-Cr-LDH. The resultant heterolayered nanohybrids are fairly active for visible light-induced O(2) generation with a rate of ∼1.18 mmol h(-1) g(-1), which is higher than the O(2) production rate (∼0.67 mmol h(-1) g(-1)) by the pristine Zn-Cr-LDH material, that is, one of the most effective visible light photocatalysts for O(2) production, under the same experimental condition. This result highlights an excellent functionality of the Zn-Cr-LDH-layered titanate nanohybrids as efficient visible light active photocatalysts. Of prime interest is that the chemical stability of the Zn-Cr-LDH is significantly improved upon the hybridization, a result of the protection of the LDH lattice by highly stable titanate layer. The present findings clearly demonstrate that the layer-by-layer-ordered assembly between inorganic 2D nanosheets is quite effective not only in improving the photocatalytic activity of the component semiconductors but also in synthesizing novel porous LDH-based hybrid materials with improved chemical stability.


Asunto(s)
Cromo/química , Hidróxidos/química , Luz , Nanoestructuras/química , Óxidos/química , Zinc/química , Catálisis , Luminiscencia , Membranas Artificiales , Nanotecnología , Oxígeno/química , Tamaño de la Partícula , Procesos Fotoquímicos , Porosidad , Propiedades de Superficie , Titanio/química
5.
Chemistry ; 17(35): 9626-33, 2011 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-21780198

RESUMEN

Nanohybrids of CdS-polyoxotungstate with strongly coupled electronic structures and visible-light-active photofunctions can be synthesized by electrostatically derived self-assembly of very small CdS quantum dots, or QDs, (particle size ≈ 2.5 nm) and polyoxotungstate nanoclusters (cluster size ≈1 nm). The formation of CdS-polyoxotungstate nanohybrids is confirmed by high-resolution transmission electron microscopy, elemental mapping, and powder X-ray diffraction analysis. Due to the strong electronic coupling between two semiconductors, the CdS-polyoxotungstate nanohybrids show a narrow bandgap energy of around 1.9-2.7 eV, thus reflecting their ability to harvest visible light. Time-resolved photoluminescence experiments indicate that the self-assembly between nanosized CdS and polyoxotungstate is very effective in increasing the lifetime of holes and electrons, thus indicating an efficient electron transfer between two-component semiconductors. The hybridization results not only in a significant improvement in the photostability of CdS QD but also in the creation of visible-light-induced photochromism. Of particular importance is that the present nanohybrids show visible-light-driven photocatalytic activity to produce H(2) and O(2) , which is superior to those of the unhybridized CdS and polyoxotungstate. The self-assembly of nanometer-level semiconductor clusters can provide a powerful way of optimizing the photoinduced functionalities of each component (i.e., visible-induced photochromism and photocatalysis) by means of strong electronic coupling.


Asunto(s)
Compuestos de Cadmio/química , Nanoestructuras/química , Compuestos de Tungsteno/química , Catálisis , Electrónica , Luz , Nanotecnología , Fotoquímica , Puntos Cuánticos , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA