Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38615329

RESUMEN

Cell membranes are structures essential to the cell function and adaptation. Recent studies have targeted cell membranes to identify their protective and interactive properties. Leveraging these attributes of cellular membranes and their application to vaccine delivery is gaining increasing prominence. This study aimed to fuse synthetic polymeric nanoparticles with cell membranes to develop cell membrane hybrid polymersomes (HyPSomes) for enhanced vaccine delivery. We designed a platform to hybridize cell membranes with methoxy-poly(ethylene glycol)-block-polylactic acid nanoparticles by using the properties of both components. The formed HyPSomes were optimized by using dynamic light scattering, transmission electron microscopy, and Förster resonance energy transfer, and their stability was confirmed. The synthesized HyPSomes replicated the antigenic surface of the source cells and possessed the stability and efficacy of synthetic nanoparticles. These HyPSomes demonstrated enhanced cellular uptake and translation efficiency and facilitated endosome escape. HyPSomes showed outstanding capabilities for the delivery of foreign mRNAs to antigen-presenting cells. HyPSomes may serve as vaccine delivery systems by bridging the gap between synthetic and natural systems. These systems could be used in other contexts, e.g., diagnostics and drug delivery.

2.
RSC Adv ; 14(14): 9943-9966, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38528920

RESUMEN

This review examines the escalating issue of plastic pollution, specifically highlighting the detrimental effects on the environment and human health caused by microplastics and nanoplastics. The extensive use of synthetic polymers such as polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS) has raised significant environmental concerns because of their long-lasting and non-degradable characteristics. This review delves into the role of enzymatic and microbial strategies in breaking down these polymers, showcasing recent advancements in the field. The intricacies of enzymatic degradation are thoroughly examined, including the effectiveness of enzymes such as PETase and MHETase, as well as the contribution of microbial pathways in breaking down resilient polymers into more benign substances. The paper also discusses the impact of chemical composition on plastic degradation kinetics and emphasizes the need for an approach to managing the environmental impact of synthetic polymers. The review highlights the significance of comprehending the physical characteristics and long-term impacts of micro- and nanoplastics in different ecosystems. Furthermore, it points out the environmental and health consequences of these contaminants, such as their ability to cause cancer and interfere with the endocrine system. The paper emphasizes the need for advanced analytical methods and effective strategies for enzymatic degradation, as well as continued research and development in this area. This review highlights the crucial role of enzymatic and microbial strategies in addressing plastic pollution and proposes methods to create effective and environmentally friendly solutions.

3.
Adv Healthc Mater ; : e2303782, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38430208

RESUMEN

Exosomes are small extracellular vesicles that play a crucial role in intercellular communication and offer significant potential for a wide range of biomedical applications. However, conventional methods for exosome isolation have limitations in terms of purity, scalability, and preservation of exosome structural integrity. To address these challenges, an exosome isolation platform using chitosan oligosaccharide lactate conjugated 1-pyrenecarboxylic acid (COL-Py) based self-assembled magnetic nanoclusters (CMNCs), is presented. CMNCs are characterized to optimize their size, stability, and interaction dynamics with exosomes. The efficiency of CMNCs in isolating exosomes is systematically evaluated using various analytical methods to demonstrate their ability to capture exosomes based on amphiphilic lipid bilayers. CMNC-based exosome isolation consistently yields exosomes with structural integrity and purity similar to those obtained using traditional methods. The reusability of CMNCs over multiple exosome isolation cycles underscores their scalability and offers an efficient solution for biomedical applications. These results are supported by western blot analysis, which demonstrated the superiority of CMNC-based isolation in terms of purity compared to conventional methods. By providing a scalable and efficient exosome isolation process that preserves both structural integrity and purity, CMNCs can constitute a new platform that can contribute to the field of exosome studies.

4.
Discov Nano ; 19(1): 23, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38315307

RESUMEN

There is growing evidence that neonatal porcine islet-like cell clusters (NPCCs) isolated from piglets can be used to treat type 1 diabetes in humans. However, graft rejection is a common complication in humans owing to the prevalence of xenoantigens in porcine. Therefore, researchers have investigated various islet encapsulation techniques that could protect against these antigens. To this end, this study presents a robust nano-encapsulation method based on bifunctional polymersomes (PSomes), in which N-hydroxysuccinimide (NHS) and maleimide (Mal) groups conjugated to the PSomes terminal interact with the amine and thiol groups on the surface of NPCCs to induce dual targeting via two covalent bonds. The findings indicate that the ratio of NHS to Mal on PSomes is optimal for dual targeting. Moreover, triiodothyronine (T3) is known to promotes pancreatic islet maturation and differentiation of endocrine cells into beta cells. T3 encapsulated in PSomes is shown to increase the glucose sensitivity of NPCCs and enhance insulin secretion from NPCCs. Furthermore, improvements in the nano-encapsulation efficiency and insulin-secreting capability of NPCCs through dual targeting via dual-Psomes are demonstrated. In conclusion, the proposed nano-encapsulation technique could pave the way for significant advances in islet nano-encapsulation and the imprevement of NPCC immaturity via T3 release.

5.
Pharmaceutics ; 15(12)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38140121

RESUMEN

Messenger RNA (mRNA) therapies have emerged as potent and personalized alternatives to conventional DNA-based therapies. However, their therapeutic potential is frequently constrained by their molecular instability, susceptibility to degradation, and inefficient cellular delivery. This study presents the nanoparticle "ChargeSome" as a novel solution. ChargeSomes are designed to protect mRNAs from degradation by ribonucleases (RNases) and enable cell uptake, allowing mRNAs to reach the cytoplasm for protein expression via endosome escape. We evaluated the physicochemical properties of ChargeSomes using 1H nuclear magnetic resonance, Fourier-transform infrared, and dynamic light scattering. ChargeSomes formulated with a 9:1 ratio of mPEG-b-PLL to mPEG-b-PLL-SA demonstrated superior cell uptake and mRNA delivery efficiency. These ChargeSomes demonstrated minimal cytotoxicity in various in vitro structures, suggesting their potential safety for therapeutic applications. Inherent pH sensitivity enables precise mRNA release in acidic environments and structurally protects the encapsulated mRNA from external threats. Their design led to endosome rupture and efficient mRNA release into the cytoplasm by the proton sponge effect in acidic endosome environments. In conclusion, ChargeSomes have the potential to serve as effective secure mRNA delivery systems. Their combination of stability, protection, and delivery efficiency makes them promising tools for the advancement of mRNA-based therapeutics and vaccines.

6.
Sci Total Environ ; 880: 163290, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37030274

RESUMEN

Microplastics (MP) have been recently identified as emerging water contaminants in worldwide. Owing to its physicochemical properties, MP have been considered as a vector of other micropollutants and may affect their fate and ecological toxicity in the water environment. In this study, triclosan (TCS), which is a widely-used bactericide, and three frequently found types of MP (PS-MP, PE-MP, and PP-MP) were investigated. The adsorption behavior of TCS on MP was investigated by the effect of reaction time, initial concentration of TCS, and other water chemistry factors. Elovich model and Temkin model are the most fitted well with kinetics and adsorption isotherms, respectively. The maximum TCS adsorption capacities were calculated for PS-MP (9.36 mg/g), PP-MP (8.23 mg/g), and PE-MP (6.47 mg/g). PS-MP had higher affinity to TCS owing to hydrophobic and π-π interaction. The TCS adsorption on PS-MP was inhibited by decreasing concentrations of cations, and increasing concentration of anion, pH, and NOM concentration. At pH 10, only 0.22 mg/g of adsorption capacity was obtained because of the isoelectric point (3.75) of PS-MP and pKa (7.9) of TCS. And almost no TCS adsorption occurred at NOM concentration of 11.8 mg/L. Only PS-MP had no acute toxic effect on D. magna, whereas TCS showed acute toxicity (EC50,24h of TCS = 0.36 ± 0.4 mg/L). Although survival rate increased when TCS with PS-MP due to lower the TCS concentration in solution via adsorption, PS-MP was observed in intestine and body surface of D. magna. Our findings can contribute to understanding the combined potential effects of MP fragment and TCS to aquatic biota.


Asunto(s)
Triclosán , Contaminantes Químicos del Agua , Microplásticos/química , Triclosán/toxicidad , Triclosán/química , Plásticos/química , Adsorción , Antibacterianos , Contaminantes Químicos del Agua/análisis
7.
Nano Res ; 15(3): 2254-2262, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34567436

RESUMEN

A recurrent pandemic with unpredictable viral nature has implied the need for a rapid diagnostic technology to facilitate timely and appropriate countermeasures against viral infections. In this study, conductive polymer-based nanoparticles have been developed as a tool for rapid diagnosis of influenza A (H1N1) virus. The distinctive property of a conductive polymer that transduces stimulus to respond, enabled immediate optical signal processing for the specific recognition of H1N1 virus. Conductive poly(aniline-co-pyrrole)-encapsulated polymeric vesicles, functionalized with peptides, were fabricated for the specific recognition of H1N1 virus. The low solubility of conductive polymers was successfully improved by employing vesicles consisting of amphiphilic copolymers, facilitating the viral titer-dependent production of the optical response. The optical response of the detection system to the binding event with H1N1, a mechanical stimulation, was extensively analyzed and provided concordant information on viral titers of H1N1 virus in 15 min. The specificity toward the H1N1 virus was experimentally demonstrated via a negative optical response against the control group, H3N2. Therefore, the designed system that transduces the optical response to the target-specific binding can be a rapid tool for the diagnosis of H1N1. Electronic Supplementary Material: Supplementary material (Table S1 and Figs. S1-S8) is available in the online version of this article at 10.1007/s12274-021-3772-6.

8.
Pharmaceutics ; 13(10)2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34683863

RESUMEN

The coronavirus disease (COVID-19) pandemic poses serious global health concerns with the continued emergence of new variants. The periodic outbreak of novel emerging and re-emerging infectious pathogens has elevated concerns and challenges for the future. To develop mitigation strategies against infectious diseases, nano-based approaches are being increasingly applied in diagnostic systems, prophylactic vaccines, and therapeutics. This review presents the properties of various nanoplatforms and discusses their role in the development of sensors, vectors, delivery agents, intrinsic immunostimulants, and viral inhibitors. Advanced nanomedical applications for infectious diseases have been highlighted. Moreover, physicochemical properties that confer physiological advantages and contribute to the control and inhibition of infectious diseases have been discussed. Safety concerns limit the commercial production and clinical use of these technologies in humans; however, overcoming these limitations may enable the use of nanomaterials to resolve current infection control issues via application of nanomaterials as a platform for the diagnosis, prevention, and treatment of viral diseases.

9.
J Mater Chem B ; 9(47): 9658-9669, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34647566

RESUMEN

Specific interactions between viruses and host cells provide essential insights into material science-based strategies to combat emerging viral diseases. pH-triggered viral fusion is ubiquitous to multiple viral families and is important for understanding the viral infection cycle. Inspired by this process, virus detection has been achieved using nanomaterials with host-mimetic membranes, enabling interactions with amphiphilic hemagglutinin fusion peptides of viruses. Most research has been on designing functional nanoparticles with fusogenic capability for virus detection, and there has been little exploitation of the kinetic stability to alter the ability of nanoparticles to interact with viral membranes and improve their sensing performance. In this study, a homogeneous fluorescent assay using self-assembled polymeric nanoparticles (PNPs) with tunable responsiveness to external stimuli is developed for rapid and straightforward detection of an activated influenza A virus. Dissociation of PNPs induced by virus insertion can be readily controlled by varying the fraction of hydrophilic segments in copolymers constituting PNPs, giving rise to fluorescence signals within 30 min and detection of various influenza viruses, including H9N2, CA04(H1N1), H4N6, and H6N8. Therefore, the designs demonstrated in this study propose underlying approaches for utilizing engineered PNPs through modulation of their kinetic stability for direct and sensitive identification of infectious viruses.


Asunto(s)
Virus de la Influenza A/aislamiento & purificación , Nanopartículas/química , Péptidos/química , Polietilenglicoles/química , Proteínas Virales de Fusión/metabolismo , Animales , Carbocianinas/química , Pollos , Huevos/virología , Transferencia Resonante de Energía de Fluorescencia/métodos , Colorantes Fluorescentes/química , Virus de la Influenza A/metabolismo , Límite de Detección , Fusión de Membrana/efectos de los fármacos , Membranas Artificiales , Péptidos/síntesis química , Péptidos/metabolismo , Polietilenglicoles/síntesis química , Polietilenglicoles/metabolismo
10.
Nanoscale Res Lett ; 16(1): 53, 2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33788062

RESUMEN

Researches proving methods for nano-encapsulation of neonatal porcine islet-like cell clusters (NPCCs) using polymersomes (PSomes) formed using polymers of polyethylene glycol-block-poly lactide. Herein, our studies present efficient nano-encapsulation procedure with minimal damage and loss of NPCCs.We used N-hydroxysuccinimide (NHS) on the N-terminal of PSomes to induce binding of amine groups in the extracellular matrix surrounding NPCCs. F-10 culture medium with bovine serum albumin was used in the nano-encapsulation procedure to minimize damage and loss of NPCCs. Finally, we induced cross-linking between bifunctional PSomes (NHS-/NH2-PSomes). F-10 culture medium containing 0.25% BSA with pH of 7.3 minimized the damage and loss of NPCCs after nano-encapsulation as compared with using basic HBSS buffer (pH 8.0). Also, we induced the efficient nano-encapsulation through conjugation of PSomes using bifunctional PSomes (NHS-/NH2-PSomes).

11.
J Mater Chem B ; 9(14): 3131-3135, 2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33725071

RESUMEN

Herein, lipid-coated polyaniline (LiPAni) nanoparticles were fabricated to monitor the redox state of cancer cells. To confirm the characteristics of LiPAni, we firstly analyzed the size and chemical structures of the LiPAni nanoparticles. The absorbance properties of the LiPAni nanoparticles were observed to vary with the pH conditions. Furthermore, cell viability tests conducted with breast cancer cell lines showed that the cell viability of the cells with LiPAni nanoparticles was dramatically increased compared to those with the Tween80-coated polyaniline nanoparticles (TPAni) as a control. Subsequently, the colors of the LiPAni nanoparticles were observed and analyzed using spectroscopic methods. Finally, in order to investigate the more accurate sensing of the redox state using the color changes of the LiPAni nanoparticles with cancer cell lines, dark field microscopic images and scattering spectra were recorded at the single nanoparticle scale. For the TPAni nanoparticles, there was only a change in brightness and no change in color, but for the LiPAni nanoparticles, there was a change of color from yellow to pink in the dark field images.


Asunto(s)
Compuestos de Anilina/química , Neoplasias del Colon/diagnóstico por imagen , Colorimetría , Lípidos/química , Nanopartículas/química , Línea Celular Tumoral , Humanos , Imagen Óptica , Oxidación-Reducción
12.
Molecules ; 26(4)2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33546250

RESUMEN

As abnormal angiogenesis is associated with exacerbation of various diseases, precise control over angiogenesis is imperative. Vascular endothelial growth factor (VEGF), the most well-known angiogenic factor, binds to VEGF receptor (VEGFR), activates various signaling pathways, and mediates angiogenesis. Therefore, blocking the VEGF-induced angiogenic response-related signaling pathways may alleviate various disease symptoms through inhibition of angiogenesis. Ulmus davidiana is a safe natural product that has been traditionally consumed, but its effects on endothelial cells (ECs) and the underlying mechanism of action are unclear. In the present study, we focused on the effect of a 60% edible ethanolic extract of U. davidiana (U60E) on angiogenesis. U60E inhibited the VEGF-mediated proliferation, tube formation, and migration ability of ECs. Mechanistically, U60E inhibited endothelial nitric oxide synthase activation and nitric oxide production by blocking the protein kinase B signaling pathway activated by VEGF and consequently inhibiting proliferation, tube formation, and migration of ECs. These results suggest that U60E could be a potential and safe therapeutic agent capable of suppressing proangiogenic diseases by inhibiting VEGF-induced angiogenesis.


Asunto(s)
Inhibidores de la Angiogénesis , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Neovascularización Patológica/tratamiento farmacológico , Extractos Vegetales , Ulmus/química , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/farmacología , Etanol/química , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Factor A de Crecimiento Endotelial Vascular/farmacología
13.
J Mater Chem B ; 8(26): 5620-5626, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32538414

RESUMEN

Cellular uptake of antigens (Ags) by antigen-presenting cells (APCs) is vital for effective functioning of the immune system. Intramuscular or subcutaneous administration of vaccine Ags alone is not sufficient to elicit optimal immune responses. Thus, adjuvants are required to induce strong immunogenicity. Here, we developed nanoparticulate adjuvants that assemble into a bilayer spherical polymersome (PSome) to promote the cellular uptake of Ags by APCs. PSomes were synthesized by using a biodegradable and biocompatible block copolymer methoxy-poly(ethylene glycol)-b-poly(d,l-lactide) to encapsulate both hydrophilic and lipophilic biomacromolecules, such as ovalbumin (OVA) as a model Ag and monophosphoryl lipid A (MPLA) as an immunostimulant. After co-encapsulation of OVA and MPLA, the PSome synthetic vehicle exhibited the sustained release of OVA in cell environments and allowed efficient delivery of cargos into APCs. The administration of PSomes loaded with OVA and MPLA induced the production of interleukin-6 and tumor necrosis factor-alpha cytokines by macrophage activation in vitro and elicited effective Ag-specific antibody responses in vivo. These findings indicate that the nano-sized PSome may serve as a potent adjuvant for vaccine delivery systems to modulate enhanced immune responses.


Asunto(s)
Células Presentadoras de Antígenos/química , Lípido A/análogos & derivados , Nanopartículas/química , Ovalbúmina/química , Polímeros/química , Animales , Reacciones Antígeno-Anticuerpo , Células Presentadoras de Antígenos/inmunología , Femenino , Lípido A/química , Lípido A/inmunología , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Ovalbúmina/inmunología , Tamaño de la Partícula , Polímeros/síntesis química , Células RAW 264.7 , Propiedades de Superficie
14.
J Nanobiotechnology ; 18(1): 54, 2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32209114

RESUMEN

BACKGROUND: Influenza viruses (IVs) have become increasingly resistant to antiviral drugs that target neuraminidase and matrix protein 2 due to gene mutations that alter their drug-binding target protein regions. Consequently, almost all recent IV pandemics have exhibited resistance to commercial antiviral vaccines. To overcome this challenge, an antiviral target is needed that is effective regardless of genetic mutations. MAIN BODY: In particular, hemagglutinin (HA), a highly conserved surface protein across many IV strains, could be an effective antiviral target as it mediates binding of IVs with host cell receptors, which is crucial for membrane fusion. HA has 6 disulfide bonds that can easily bind with the surfaces of gold nanoparticles. Herein, we fabricated porous gold nanoparticles (PoGNPs) via a surfactant-free emulsion method that exhibited strong affinity for disulfide bonds due to gold-thiol interactions, and provided extensive surface area for these interactions. A remarkable decrease in viral infectivity was demonstrated by increased cell viability results after exposing MDCK cells to various IV strains (H1N1, H3N2, and H9N2) treated with PoGNP. Most of all, the viability of MDCK cells infected with all IV strains increased to 96.8% after PoGNP treatment of the viruses compared to 33.9% cell viability with non-treated viruses. Intracellular viral RNA quantification by real-time RT-PCR also confirmed that PoGNP successfully inhibited viral membrane fusion by blocking the viral entry process through conformational deformation of HA. CONCLUSION: We believe that the technique described herein can be further developed for PoGNP-utilized antiviral protection as well as metal nanoparticle-based therapy to treat viral infection. Additionally, facile detection of IAV can be achieved by developing PoGNP as a multiplatform for detection of the virus.


Asunto(s)
Antivirales/farmacología , Oro/farmacología , Virus de la Influenza A/efectos de los fármacos , Nanopartículas del Metal/química , Animales , Perros , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H9N2 del Virus de la Influenza A/genética , Virus de la Influenza A/genética , Células de Riñón Canino Madin Darby , Fusión de Membrana , Porosidad , ARN Viral/análisis , ARN Viral/genética , Internalización del Virus
15.
J Mater Chem B ; 8(12): 2476-2482, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32108845

RESUMEN

Although islet cell transplantation has emerged as a promising treatment for type 1 diabetes, it remains an unmet clinical application due to the need for immunosuppression to prevent islet elimination and autoimmunity. To solve these problems, we developed novel nanoencapsulation of neonatal porcine islet-like cell clusters (NPCCs) with cell-mimic polymersomes (PSomes) based on PEG-b-PLA (poly(ethylene glycol)-b-poly(dl-lactic acid)). To accomplish this, we first formulated NHS-, NH2-, COOH-, and m(methoxy)-PSomes. This coating utilizes interactions involving NPCC surfaces and PSomes that have covalent bonds, electrostatic interactions, and hydrogen bonds. We extended the range of applicability by comparing the binding affinity of electrostatic attraction and hydrogen bonding, as well as covalent bonds. Our protocol can be used as an efficient hydrogen bonding method because it reduces cell membrane damage as well as the use of covalent bonding methods. We verified the selective permeability of NHS-, NH2-, COOH-, and m-PSome-shielded NPCCs. Furthermore, we showed that a novel nanoencapsulation did not affect insulin secretion from NPCCs. This study offers engineering advances in islet encapsulation technologies to be used for cell-based transplantation therapies.


Asunto(s)
Islotes Pancreáticos/efectos de los fármacos , Lactatos/farmacología , Polietilenglicoles/farmacología , Sustancias Protectoras/farmacología , Animales , Animales Recién Nacidos , Enlace de Hidrógeno , Islotes Pancreáticos/inmunología , Trasplante de Islotes Pancreáticos , Lactatos/química , Ratones , Estructura Molecular , Tamaño de la Partícula , Polietilenglicoles/química , Sustancias Protectoras/química , Propiedades de Superficie , Porcinos
16.
ACS Appl Mater Interfaces ; 12(6): 6876-6884, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31950828

RESUMEN

Dengue virus (DENV) is a major infectious viral pathogen that affects millions of individuals worldwide every year, causing a potentially fatal syndrome, while no commercial antiviral drugs are yet available. To develop an antiviral against dengue fever, it is necessary to understand the relationship between DENV and host cells, which could provide a basis for viral dynamics and identification of inhibitory drug targets. In this study, we designed DiD-loaded and BODIPY-ceramide-encapsulated DENV-polymersome hybrid nanovesicles (DENVSomes) prepared by an extrusion method, which trigger red fluorescence in the endosome and green in the Golgi. DENVSome monitors the dynamics of host cell-virus interaction and tracking in living cells with novel state-of-the-art imaging technologies that show images at high resolution. Also, DENVSome can be exploited to screen whether candidate antiviral drugs interact with DENVs. Consequently, we successfully demonstrated that DENVSome is an efficient tool for tracking and unraveling the mechanisms of replication and drug screening for antiviral drugs of DENV.


Asunto(s)
Antivirales/farmacología , Virus del Dengue/efectos de los fármacos , Evaluación Preclínica de Medicamentos/métodos , Compuestos de Boro/química , Rastreo Celular , Dengue/virología , Virus del Dengue/química , Virus del Dengue/fisiología , Evaluación Preclínica de Medicamentos/instrumentación , Colorantes Fluorescentes/química , Humanos , Nanopartículas/química , Replicación Viral/efectos de los fármacos
17.
Transbound Emerg Dis ; 67(4): 1607-1613, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31978278

RESUMEN

The canine influenza virus (CIV) has spread globally from East Asia to the United States and mutated and evolved to generate various CIVs. Since 2010, the mutant CIVs found in China and Korea have presented increased virulence in mice, guinea pigs and ferrets, which has raised concerns about public health and outbreak of a severe canine flu. We analysed and compared the morphology, cellular uptake and pathogenicity of CIV variants in host animals, to determine their characteristics. The Chinese mutant, A/canine/Jiangsu/06/2010[H3N2](JS10), has two amino acid insertions at the distal end of the NA stalk, and A/canine/Korea/01/2007[H3N2](KR07) presented comparable efficiency of cell uptake and a similar morphology to spherical or small ovoid particles. However, KR07M generated from swapping of M segment of the pandemic isolate, A/California/04/2009 [H1N1] (CA04) into KR07 alone accounted for morphologic change and higher efficiency of cell uptake to the wild-type CIV. This study will provide an insight into the pathogenesis, transmission and evolution of CIVs and help determine future countermeasures.


Asunto(s)
Enfermedades de los Perros/virología , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Subtipo H3N2 del Virus de la Influenza A/patogenicidad , Infecciones por Orthomyxoviridae/veterinaria , Animales , Anticuerpos Antivirales/sangre , Antígenos Virales/inmunología , China , Enfermedades de los Perros/patología , Perros , Citometría de Flujo/veterinaria , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/fisiología , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/fisiología , Células de Riñón Canino Madin Darby , Microscopía Confocal/veterinaria , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , Filogenia , República de Corea , Estados Unidos , Virulencia/fisiología , Replicación Viral/fisiología
18.
Nanoscale ; 11(5): 2434-2438, 2019 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-30667011

RESUMEN

Herein, we report a de novo synthesis approach to produce bandgap-controlled polyaniline (PAni) nanostructure via Mn-mediated oxidative polymerization at the catalytic nanoreactor. To achieve systemic nanoconfined polymerization, manganese oxide (MnOx) nanoparticles coated with silica were used as the sacrificial nanotemplate. Interestingly, the catalytic nanoreactor simultaneously allowed the nanoconfined oxidative polymerization and controlling of the bandgap. MnOx could be reduced by the addition of aniline monomers and consecutive redox reaction at the nanoreactor. Furthermore, core cavity was generated, and ionized Mn could control the bandgap by coordination at the nanostructures.

19.
Adv Healthc Mater ; 8(2): e1800953, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30549426

RESUMEN

Powerful adjuvants to augment vaccine efficacy with a less immunogenic vaccine system are in great demand. In this study, a novel squalene-based cationic poly(amino acid) adjuvant (CASq) that elicits both cellular (Th1) and humoral (Th2) immune responses is developed. CASq is demonstrated to promote cellular uptake of viral antigen and stimulate macrophages, leading to active production of interleukin-12. Furthermore, co-administration of inactivated pdm H1N1 vaccine with CASq significantly increases the generation of antigen-specific antibodies and T cell immune responses in mice, as well as resulting in complete prevention of disease symptoms and protection against lethal infection.


Asunto(s)
Adyuvantes Inmunológicos/química , Adyuvantes Inmunológicos/farmacología , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/inmunología , Polímeros/química , Animales , Citocinas/metabolismo , Inmunidad Celular , Inmunidad Humoral , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/farmacología , Lisina/química , Ratones , Ratones Endogámicos C57BL , Nanopartículas/química , Infecciones por Orthomyxoviridae/prevención & control , Fenilalanina/química , Polímeros/farmacología , Células RAW 264.7 , Escualeno/química , Vacunas de Productos Inactivados/inmunología , Vacunas de Productos Inactivados/farmacología
20.
Adv Funct Mater ; 28(34): 1800960, 2018 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-32313543

RESUMEN

Highly pathogenic avian influenza virus (HPAIV) infections have occurred continuously and crossed the species barrier to humans, leading to fatalities. A polymerase chain reaction based molecular test is currently the most sensitive diagnostic tool for HPAIV; however, the results must be analyzed in centralized diagnosis systems by a trained individual. This requirement leads to delays in quarantine and isolation. To control the spread of HPAIV, rapid and accurate diagnostics suitable for field testing are needed, and the tests must facilitate a differential diagnosis between HPAIV and low pathogenic avian influenza virus (LPAIV), which undergo cleavage specifically by trypsin- or furin-like proteases, respectively. In this study, a differential avian influenza virus rapid test kit is developed and evaluated in vitro and using clinical specimens from HPAIV H5N1-infected animals. It is demonstrated that this rapid test kit provides highly sensitive and specific detection of HPAIV and LPAIV and is thus a useful field diagnostic tool for H5N1 HPAIV outbreaks and for rapid quarantine control of the disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...