Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Trends Cell Biol ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38834379

RESUMEN

This report aims to propose the novel term 'neutrophil endoplasmic reticulum (ER) stress' (NERS). NERS explores the influence of neutrophil extracellular trap (NET) formation and exacerbation of respiratory ailments. This inquiry aims to advance comprehension in neutrophil biology and respiratory health.

2.
Stem Cell Res Ther ; 15(1): 118, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659053

RESUMEN

BACKGROUND: Cerebral organoids (COs) are the most advanced in vitro models that resemble the human brain. The use of COs as a model for Alzheimer's disease (AD), as well as other brain diseases, has recently gained attention. This study aimed to develop a human AD CO model using normal human pluripotent stem cells (hPSCs) that recapitulates the pathological phenotypes of AD and to determine the usefulness of this model for drug screening. METHODS: We established AD hPSC lines from normal hPSCs by introducing genes that harbor familial AD mutations, and the COs were generated using these hPSC lines. The pathological features of AD, including extensive amyloid-ß (Aß) accumulation, tauopathy, and neurodegeneration, were analyzed using enzyme-linked immunosorbent assay, Amylo-Glo staining, thioflavin-S staining, immunohistochemistry, Bielschowsky's staining, and western blot analysis. RESULTS: The AD COs exhibited extensive Aß accumulation. The levels of paired helical filament tau and neurofibrillary tangle-like silver deposits were highly increased in the AD COs. The number of cells immunoreactive for cleaved caspase-3 was significantly increased in the AD COs. In addition, treatment of AD COs with BACE1 inhibitor IV, a ß-secretase inhibitor, and compound E, a γ-secretase inhibitor, significantly attenuated the AD pathological features. CONCLUSION: Our model effectively recapitulates AD pathology. Hence, it is a valuable platform for understanding the mechanisms underlying AD pathogenesis and can be used to test the efficacy of anti-AD drugs.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Organoides , Células Madre Pluripotentes , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Organoides/metabolismo , Organoides/patología , Células Madre Pluripotentes/metabolismo , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Proteínas tau/metabolismo , Proteínas tau/genética , Ácido Aspártico Endopeptidasas/metabolismo , Ácido Aspártico Endopeptidasas/genética , Encéfalo/metabolismo , Encéfalo/patología , Modelos Biológicos
3.
Ageing Res Rev ; 96: 102256, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460555

RESUMEN

Alzheimer's disease (AD) poses a complex challenge, with abnormal protein accumulation in the brain causing memory loss and cognitive decline. Traditional models fall short in AD research, prompting interest in 3D brain organoids (BOs) from human stem cells. These findings hold promise for unveiling the mechanisms of AD, especially in relation to aging. However, an understanding of the aging impact of AD remains elusive. BOs offer insight but face challenges. This review delves into the role of BOs in deciphering aging-related AD and acknowledges limitations. Strategies to enhance BOs for accurate aging modeling in AD brains are suggested. Strengthened by molecular advancements, BOs have the potential to uncover the aging phenotype, advancing AD research.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Encéfalo , Envejecimiento , Organoides , Fenotipo
7.
Redox Biol ; 64: 102804, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37399733

RESUMEN

TMBIM6 is an endoplasmic reticulum (ER) protein that modulates various physiological and pathological processes, including metabolism and cancer. However, its involvement in bone remodeling has not been investigated. In this study, we demonstrate that TMBIM6 serves as a crucial negative regulator of osteoclast differentiation, a process essential for bone remodeling. Our investigation of Tmbim6-knockout mice revealed an osteoporotic phenotype, and knockdown of Tmbim6 inhibited the formation of multinucleated tartrate-resistant acid phosphatase-positive cells, which are characteristic of osteoclasts. Transcriptome and immunoblot analyses uncovered that TMBIM6 exerts its inhibitory effect on osteoclastogenesis by scavenging reactive oxygen species and preventing p65 nuclear localization. Additionally, TMBIM6 depletion was found to promote p65 localization to osteoclast-related gene promoters. Notably, treatment with N-acetyl cysteine, an antioxidant, impeded the osteoclastogenesis induced by TMBIM6-depleted cells, supporting the role of TMBIM6 in redox regulation. Furthermore, we discovered that TMBIM6 controls redox regulation via NRF2 signaling pathways. Our findings establish TMBIM6 as a critical regulator of osteoclastogenesis and suggest its potential as a therapeutic target for the treatment of osteoporosis.


Asunto(s)
Resorción Ósea , Proteínas de la Membrana , Osteoclastos , Osteogénesis , Animales , Masculino , Ratones , Resorción Ósea/genética , Diferenciación Celular , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Osteoclastos/citología , Ligando RANK/metabolismo , Transducción de Señal , Factor de Transcripción ReIA/metabolismo , Oxidación-Reducción
8.
Cells ; 11(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36497032

RESUMEN

Cancer cells adapt multiple mechanisms to counter intense stress on their way to growth. Tumor microenvironment stress leads to canonical and noncanonical endoplasmic stress (ER) responses, which mediate autophagy and are engaged during proteotoxic challenges to clear unfolded or misfolded proteins and damaged organelles to mitigate stress. In these conditions, autophagy functions as a cytoprotective mechanism in which malignant tumor cells reuse degraded materials to generate energy under adverse growing conditions. However, cellular protection by autophagy is thought to be complicated, contentious, and context-dependent; the stress response to autophagy is suggested to support tumorigenesis and drug resistance, which must be adequately addressed. This review describes significant findings that suggest accelerated autophagy in cancer, a novel obstacle for anticancer therapy, and discusses the UPR components that have been suggested to be untreatable. Thus, addressing the UPR or noncanonical ER stress components is the most effective approach to suppressing cytoprotective autophagy for better and more effective cancer treatment.


Asunto(s)
Neoplasias , Respuesta de Proteína Desplegada , Humanos , Estrés del Retículo Endoplásmico , Apoptosis , Autofagia , Retículo Endoplásmico/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral
9.
Bioeng Transl Med ; 7(3): e10317, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36176607

RESUMEN

The goal of this study was to fabricate bioactive cell-laden biocomposites supplemented with bone-derived decellularized extracellular matrix (dECM) with calcium phosphate ceramic, and to assess the effect of the biocomponents on the osteogenic and odontogenic differentiation of human dental pulp stem cells (hDPSCs). By evaluating the rheological properties and selecting printing parameters, mechanically stable cell-laden 3D biocomposites with high initial cell-viability (>90%) and reasonable printability (≈0.9) were manufactured. The cytotoxicity of the biocomposites was evaluated via MTT assay and nuclei/F-actin fluorescent analyses, while the osteo/odontogenic differentiation of the hDPSCs was assessed using histological and immunofluorescent analyses and various gene expressions. Alkaline phosphate activity and alizarin red staining results indicate that the dECM-based biocomposites exhibit significantly higher osteogenic activities, including calcification, compared to the collagen-based biocomposites. Furthermore, immunofluorescence images and gene expressions demonstrated upregulation of dentin matrix acidic phosphoprotein-1 and dentin sialophosphoprotein in the dECM-based biocomposites, indicating acceleration of the odontogenic differentiation of hDPSCs in the printed biocomposites. The hDPSC-laden biocomposite was implanted into the subcutaneous region of mice, and the biocomposite afforded clear induction of osteo/odontogenic ectopic hard tissue formation 8 weeks post-transplantation. From these results, we suggest that the hDPSC-laden biocomposite is a promising biomaterial for dental tissue engineering.

10.
Nano Res ; 15(10): 9253-9263, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35911478

RESUMEN

Direct messenger ribonucleic acid (mRNA) delivery to target cells or tissues has revolutionized the field of biotechnology. However, the applicability of regenerative medicine is limited by the technical difficulties of various mRNA-loaded nanocarriers. Herein, we report a new conductive hybrid film that could guide osteogenic differentiation of human adipose-derived mesenchymal stem cells (hADMSCs) via electrically controlled mRNA delivery. To find optimal electrical conductivity and mRNA-loading capacity, the polypyrrole-graphene oxide (PPy-GO) hybrid film was electropolymerized on indium tin oxide substrates. We found that the fluorescein sodium salt, a molecule partially mimicking the physical and chemical properties of mRNAs, can be effectively absorbed and released by electrical stimulation (ES). The hADMSCs cultivated on the PPy-GO hybrid film loaded with pre-osteogenic mRNAs showed the highest osteogenic differentiation under electrical stimulation. This platform can load various types of RNAs thus highly promising as a new nucleic acid delivery tool for the development of stem cell-based therapeutics. Electronic Supplementary Material: Supplementary material (electrochemical and FT-IR analysis on the film, additional SEM, AFM and C-AFM images of the film, optical and fluorescence images of cells, and the primers used for RT-qPCR analysis) is available in the online version of this article at 10.1007/s12274-022-4613-y.

11.
Biomed Opt Express ; 13(8): 4160-4174, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36032579

RESUMEN

Oral mucosa is a soft tissue lining the inside of the mouth, protecting the oral cavity from microbiological insults. The mucosal immune system is composed of diverse types of cells that defend against a wide range of pathogens. The pathophysiology of various oral mucosal diseases has been studied mostly by ex vivo histological analysis of harvested specimens. However, to analyze dynamic cellular processes in the oral mucosa, longitudinal in vivo observation of the oral mucosa in a single mouse during pathogenesis is a highly desirable and efficient approach. Herein, by utilizing micro GRIN lens-based rotatory side-view confocal endomicroscopy, we demonstrated non-invasive longitudinal cellular-level in vivo imaging of the oral mucosa, visualizing fluorescently labeled cells including various immune cells, pericytes, nerve cells, and lymphatic and vascular endothelial cells. With rotational and sliding movement of the side-view endomicroscope on the oral mucosa, we successfully achieved a multi-color wide-area cellular-level visualization in a noninvasive manner. By using a transgenic mouse expressing photoconvertible protein, Kaede, we achieved longitudinal repetitive imaging of the same microscopic area in the buccal mucosa of a single mouse for up to 10 days. Finally, we performed longitudinal intravital visualization of the oral mucosa in a DNFB-derived oral contact allergy mouse model, which revealed highly dynamic spatiotemporal changes of CSF1R or LysM expressing immune cells such as monocytes, macrophages, and granulocytes in response to allergic challenge for one week. This technique can be a useful tool to investigate the complex pathophysiology of oral mucosal diseases.

12.
Curr Issues Mol Biol ; 44(5): 2300-2308, 2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35678685

RESUMEN

Psoralea corylifolia L. (P. corylifolia) has been used as an oriental phytomedicine to treat coldness of hands and feet in bone marrow injury. Hydroxyapatite is usually used for tooth regeneration. In this study, the role of P. corylifolia and bakuchiol, a compound originated from P. corylifolia as differentiation-inducing substances for tooth regeneration, was determined by monitoring odontogenic differentiation in human dental pulp stem cells (hDPSCs). We confirmed that P. corylifolia extracts and bakuchiol increased the odontogenic differentiation of hDPSCs. In addition, the expression of the odontogenic differentiation marker genes alkaline phosphatase (APL), Runt-related transcription factor 2 (RUNX-2), osteocalcin (OC), and dentin matrix acidic phosphoprotein-1 (DMP-1) was proved by real-time polymerase chain reaction, and protein expression of dentin matrix acidic phosphoprotein-1 (DMP-1) and dentin sialophosphoprotein (DSPP) was proved by western blotting. Further, by confirming the increase in small mothers against decapentaplegia (SMAD) 1/5/8 phosphorylation, the SMAD signaling pathway was found to increase the differentiation of odontoblasts. This study confirmed that P. corylifolia L. extracts and bakuchiol alone promote odontogenic differentiation in hDPSCs. These results suggest that bakuchiol from P. corylifolia is responsible for odontogenic differentiation, and they encourage future in vivo studies on dentin regeneration.

13.
Adv Mater ; 34(32): e2204159, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35702762

RESUMEN

Conventional electronic (e-) skins are a class of thin-film electronics mainly fabricated in laboratories or factories, which is incapable of rapid and simple customization for personalized healthcare. Here a new class of e-tattoos is introduced that can be directly implemented on the skin by facile one-step coating with various designs at multi-scale depending on the purpose of the user without a substrate. An e-tattoo is realized by attaching Pt-decorated carbon nanotubes on gallium-based liquid-metal particles (CMP) to impose intrinsic electrical conductivity and mechanical durability. Tuning the CMP suspension to have low-zeta potential, excellent wettability, and high-vapor pressure enables conformal and intimate assembly of particles directly on the skin in 10 s. Low-cost, ease of preparation, on-skin compatibility, and multifunctionality of CMP make it highly suitable for e-tattoos. Demonstrations of electrical muscle stimulators, photothermal patches, motion artifact-free electrophysiological sensors, and electrochemical biosensors validate the simplicity, versatility, and reliability of the e-tattoo-based approach in biomedical engineering.


Asunto(s)
Galio , Nanotubos de Carbono , Tatuaje , Atención a la Salud , Conductividad Eléctrica , Electrónica , Reproducibilidad de los Resultados
14.
ACS Appl Mater Interfaces ; 14(27): 31312-31320, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35762786

RESUMEN

A soft bending sensor based on the inverse pyramid structure is demonstrated, revealing that it can effectively suppress microcrack formation in designated regions, thus allowing the cracks to open gradually with bending in a controlled manner. Such a feature enabled the bending sensor to simultaneously have a wide dynamic range of bending strain (0.025-5.4%), high gauge factor (∼74), and high linearity (R2 ∼ 0.99). Furthermore, the bending sensor can capture repeated instantaneous changes in strain and various types of vibrations, owing to its fast response time. Moreover, the bending direction can be differentiated with a single layer of the sensor, and using an array of sensors integrated on a glove, object recognition was demonstrated via machine learning. Finally, a self-monitoring proprioceptive ionic electroactive polymer (IEAP) actuator capable of operating in liquid was demonstrated. Such features of our bending sensor will enable a simple and effective way of detecting sophisticated motion, thus potentially advancing wearable healthcare monitoring electronics and enabling proprioceptive soft robotics.

15.
Int J Oral Sci ; 14(1): 21, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35459199

RESUMEN

Sphingosine-1-phosphate (S1P) is an important lipid mediator that regulates a diverse range of intracellular cell signaling pathways that are relevant to tissue engineering and regenerative medicine. However, the precise function of S1P in dental pulp stem cells (DPSCs) and its osteogenic differentiation remains unclear. We here investigated the function of S1P/S1P receptor (S1PR)-mediated cellular signaling in the osteogenic differentiation of DPSCs and clarified the fundamental signaling pathway. Our results showed that S1P-treated DPSCs exhibited a low rate of differentiation toward the osteogenic phenotype in association with a marked reduction in osteogenesis-related gene expression and AKT activation. Of note, both S1PR1/S1PR3 and S1PR2 agonists significantly downregulated the expression of osteogenic genes and suppressed AKT activation, resulting in an attenuated osteogenic capacity of DPSCs. Most importantly, an AKT activator completely abrogated the S1P-mediated downregulation of osteoblastic markers and partially prevented S1P-mediated attenuation effects during osteogenesis. Intriguingly, the pro-inflammatory TNF-α cytokine promoted the infiltration of macrophages toward DPSCs and induced S1P production in both DPSCs and macrophages. Our findings indicate that the elevation of S1P under inflammatory conditions suppresses the osteogenic capacity of the DPSCs responsible for regenerative endodontics.


Asunto(s)
Pulpa Dental , Osteogénesis , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Pulpa Dental/metabolismo , Lisofosfolípidos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Esfingosina/análogos & derivados , Células Madre
16.
Int J Oral Sci ; 14(1): 18, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365595

RESUMEN

The programmed cell death ligand 1 (PD-L1) and its receptor programmed cell death 1 (PD-1) deliver inhibitory signals to regulate immunological tolerance during immune-mediated diseases. However, the role of PD-1 signaling and its blockade effect on human dental pulp stem cells (hDPSCs) differentiation into the osteo-/odontogenic lineage remain unknown. We show here that PD-L1 expression, but not PD-1, is downregulated during osteo-/odontogenic differentiation of hDPSCs. Importantly, PD-L1/PD-1 signaling has been shown to negatively regulate the osteo-/odontogenic differentiation of hDPSCs. Mechanistically, depletion of either PD-L1 or PD-1 expression increased ERK and AKT phosphorylation levels through the upregulation of Ras enzyme activity, which plays a pivotal role during hDPSCs osteo-/odontogenic differentiation. Treatment with nivolumab (a human anti-PD-1 monoclonal antibody), which targets PD-1 to prevent PD-L1 binding, successfully enhanced osteo-/odontogenic differentiation of hDPSCs through enhanced Ras activity-mediated phosphorylation of ERK and AKT. Our findings underscore that downregulation of PD-L1 expression accompanies during osteo-/odontogenic differentiation, and hDPSCs-intrinsic PD-1 signaling inhibits osteo-/odontogenic differentiation. These findings provide a significant basis that PD-1 blockade could be effective immunotherapeutic strategies in hDPSCs-mediated dental pulp regeneration.


Asunto(s)
Antígeno B7-H1 , Pulpa Dental , Antígeno B7-H1/metabolismo , Pulpa Dental/metabolismo , Humanos , Receptor de Muerte Celular Programada 1/metabolismo , Regeneración , Células Madre
17.
Small Sci ; 2(2): 2100111, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34901932

RESUMEN

The recent global spread of COVID-19 stresses the importance of developing diagnostic testing that is rapid and does not require specialized laboratories. In this regard, nanomaterial thin-film-based immunosensors fabricated via solution processing are promising, potentially due to their mass manufacturability, on-site detection, and high sensitivity that enable direct detection of virus without the need for molecular amplification. However, thus far, thin-film-based biosensors have been fabricated without properly analyzing how the thin-film properties are correlated with the biosensor performance, limiting the understanding of property-performance relationships and the optimization process. Herein, the correlations between various thin-film properties and the sensitivity of carbon nanotube thin-film-based immunosensors are systematically analyzed, through which optimal sensitivity is attained. Sensitivities toward SARS-CoV-2 nucleocapsid protein in buffer solution and in the lysed virus are 0.024 [fg/mL]-1 and 0.048 [copies/mL]-1, respectively, which are sufficient for diagnosing patients in the early stages of COVID-19. The technique, therefore, can potentially elucidate complex relationships between properties and performance of biosensors, thereby enabling systematic optimization to further advance the applicability of biosensors for accurate and rapid point-of-care (POC) diagnosis.

18.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34884488

RESUMEN

In dental pulp, diverse types of cells mediate the dental pulp immunity in a highly complex and dynamic manner. Yet, 3D spatiotemporal changes of various pulpal immune cells dynamically reacting against foreign pathogens during immune response have not been well characterized. It is partly due to the technical difficulty in detailed 3D comprehensive cellular-level observation of dental pulp in whole intact tooth beyond the conventional histological analysis using thin tooth slices. In this work, we validated the optical clearing technique based on modified Murray's clear as a valuable tool for a comprehensive cellular-level analysis of dental pulp. Utilizing the optical clearing, we successfully achieved a 3D visualization of CD11c+ dendritic cells in the dentin-pulp complex of a whole intact murine tooth. Notably, a small population of unique CD11c+ dendritic cells extending long cytoplasmic processes into the dentinal tubule while located at the dentin-pulp interface like odontoblasts were clearly visualized. 3D visualization of whole murine tooth enabled a reliable observation of these rarely existing cells with a total number less than a couple of tens in one tooth. These CD11c+ dendritic cells with processes in the dentinal tubule were significantly increased in the dental pulpitis model induced by mechanical and chemical irritation. Additionally, the 3D visualization revealed a distinct spatial 3D arrangement of pulpal CD11c+ cells in the pulp into a front-line barrier-like formation in the pulp within 12 h after the irritation. Collectively, these observations demonstrated the unique capability of optical clearing-based comprehensive 3D cellular-level visualization of the whole tooth as an efficient method to analyze 3D spatiotemporal changes of various pulpal cells in normal and pathological conditions.


Asunto(s)
Antígeno CD11c/metabolismo , Células Dendríticas/inmunología , Pulpa Dental/inmunología , Imagenología Tridimensional/métodos , Pulpitis/inmunología , Diente/inmunología , Animales , Células Dendríticas/metabolismo , Células Dendríticas/patología , Pulpa Dental/metabolismo , Pulpa Dental/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Pulpitis/metabolismo , Pulpitis/patología , Diente/metabolismo , Diente/patología
19.
Redox Biol ; 47: 102128, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34562874

RESUMEN

Age-associated persistent ER stress is the result of declining chaperone systems of the ER that reduces cellular functions, induces apoptosis, and leads to age-related diseases. This study investigated the previously unknown regulatory mechanism of TMBIM6 during age-associated hepatic abnormalities. Wild-type (WT) and the TMBIM6 knockout (TMBIM6-/-) mice liver, human liver samples from different age groups were used to demonstrate the effect of physiological aging on liver. For TMBIM6 rescue experiments, TMBIM6-/- old mice and stable human hepatic cell lines expressing TMBIM 6 were used to study the functional role of TMBIM6 on aging-associated steatosis and its associated mechanisms. In aging humans and mice, we observed declined expression of TMBIM6 and aberrant UPR expression, which were associated with high hepatic lipid accumulation. During aging, TMBIM6-deficient mice had increased senescence than their WT counterparts. We identified redox-mediated posttranslational modifications of IRE1α such as S-nitrosylation and sulfonation were higher in TMBIM6-deficient aging mice and humans, which impaired the ER stress response signaling. Sulfonation of IRE1α enhanced regulated IRE1α-dependent decay (RIDD) activity inducing TMBIM6 decay, whereas S-nitrosylation of IRE1α inhibited XBP1 splicing enhancing the cell death. Moreover, the degradation of miR-338-3p by strong IRE1α cleavage activity enhanced the expression of PTP1B, resulting in diminishing phosphorylation of PERK. The re-expression of TMBIM6 reduced IRE1α modifications, preserved ER homeostasis, reduced senescence and senescence-associated lipid accumulation in human hepatic cells and TMBIM6-depleted mice. S-nitrosylation or sulfonation of IRE1α and its controller, the TMBIM6, might be the potential therapeutic targets for maintaining ER homeostasis in aging and aging-associated liver diseases.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Estrés del Retículo Endoplásmico , Endorribonucleasas , Proteínas de la Membrana , Factores de Edad , Animales , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Humanos , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , MicroARNs , Oxidación-Reducción , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
20.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203256

RESUMEN

Porphyromonas gingivalis is a gram-negative bacterium found in the human oral cavity and is responsible for the development of chronic periodontitis as well as neurological diseases, including Alzheimer's disease (AD). Given the significance of the roles of P. gingivalis in AD pathogenesis, it is critical to understand the underlying mechanisms of P. gingivalis-driven neuroinflammation and their contribution to neurodegeneration. Herein, we hypothesize that P. gingivalis produces secondary metabolites that may cause neurodegeneration through direct or indirect pathways mediated by microglia. To test our hypothesis, we treated human neural cells with bacterial conditioned media on our brain platforms and assessed microgliosis, astrogliosis and neurodegeneration. We found that bacteria-mediated microgliosis induced the production of nitric oxide, which causes neurodegeneration assessed with high pTau level. Our study demonstrated the elevation of detrimental protein mediators, CD86 and iNOS and the production of several pro-inflammatory markers from stimulated microglia. Through inhibition of LPS and succinate dehydrogenase in a bacterial conditioned medium, we showed a decrease in neurodegenerative microgliosis. In addition, we demonstrated the bidirectional effect of microgliosis and astrogliosis on each other exacerbating neurodegeneration. Overall, our study suggests that the mouth-brain axis may contribute to the pathogenesis of AD.


Asunto(s)
Enfermedades Neurodegenerativas/microbiología , Porphyromonas gingivalis/patogenicidad , Enfermedad de Alzheimer/microbiología , Humanos , Microglía/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...