Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 122023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37963071

RESUMEN

In vitro culture systems that structurally model human myogenesis and promote PAX7+ myogenic progenitor maturation have not been established. Here we report that human skeletal muscle organoids can be differentiated from induced pluripotent stem cell lines to contain paraxial mesoderm and neuromesodermal progenitors and develop into organized structures reassembling neural plate border and dermomyotome. Culture conditions instigate neural lineage arrest and promote fetal hypaxial myogenesis toward limb axial anatomical identity, with generation of sustainable uncommitted PAX7 myogenic progenitors and fibroadipogenic (PDGFRa+) progenitor populations equivalent to those from the second trimester of human gestation. Single-cell comparison to human fetal and adult myogenic progenitor /satellite cells reveals distinct molecular signatures for non-dividing myogenic progenitors in activated (CD44High/CD98+/MYOD1+) and dormant (PAX7High/FBN1High/SPRY1High) states. Our approach provides a robust 3D in vitro developmental system for investigating muscle tissue morphogenesis and homeostasis.


Humans contains around 650 skeletal muscles which allow the body to move around and maintain its posture. Skeletal muscles are made up of individual cells that bundle together into highly organized structures. If this group of muscles fail to develop correctly in the embryo and/or fetus, this can lead to muscular disorders that can make it painful and difficult to move. One way to better understand how skeletal muscles are formed, and how this process can go wrong, is to grow them in the laboratory. This can be achieved using induced pluripotent stem cells (iPSCs), human adult cells that have been 'reprogrammed' to behave like cells in the embryo that can develop in to almost any cell in the body. The iPSCs can then be converted into specific cell types in the laboratory, including the cells that make up skeletal muscle. Here, Mavrommatis et al. created a protocol for developing iPSCs into three-dimensional organoids which resemble how cells of the skeletal muscle look and arrange themselves in the fetus. To form the skeletal muscle organoid, Mavrommatis et al. treated iPSCs that were growing in a three-dimensional environment with various factors that are found early on in development. This caused the iPSCs to organize themselves in to embryonic and fetal structures that will eventually give rise to the parts of the body that contain skeletal muscle, such as the limbs. Within the organoid were cells that produced Pax7, a protein commonly found in myogenic progenitors that specifically mature into skeletal muscle cells in the fetus. Pax 7 is also present in 'satellite cells' that help to regrow damaged skeletal muscle in adults. Indeed, Mavrommatis et al. found that the myogenic progenitors produced by the organoid were able to regenerate muscle when transplanted in to adult mice. These findings suggest that this organoid protocol can generate cells that will give rise to skeletal muscle. In the future, these lab-grown progenitors could potentially be created from cells isolated from patients and used to repair muscle injuries. The organoid model could also provide new insights in to how skeletal muscles develop in the fetus, and how genetic mutations linked with muscular disorders disrupt this process.


Asunto(s)
Músculo Esquelético , Células Satélite del Músculo Esquelético , Humanos , Músculo Esquelético/metabolismo , Diferenciación Celular , Feto/metabolismo , Células Satélite del Músculo Esquelético/fisiología , Desarrollo de Músculos/fisiología , Factor de Transcripción PAX7/metabolismo
2.
Cells ; 11(14)2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35883684

RESUMEN

The transplantation of pluripotent stem cell (PSC)-derived liver organoids has been studied to solve the current donor shortage. However, the differentiation of unintended cell populations, difficulty in generating multi-lineage organoids, and tumorigenicity of PSC-derived organoids are challenges. However, direct conversion technology has allowed for the generation lineage-restricted induced stem cells from somatic cells bypassing the pluripotent state, thereby eliminating tumorigenic risks. Here, liver assembloids (iHEAs) were generated by integrating induced endothelial cells (iECs) into the liver organoids (iHLOs) generated with induced hepatic stem cells (iHepSCs). Liver assembloids showed enhanced functional maturity compared to iHLOs in vitro and improved therapeutic effects on cholestatic liver fibrosis animals in vivo. Mechanistically, FN1 expressed from iECs led to the upregulation of Itgα5/ß1 and Hnf4α in iHEAs and were correlated to the decreased expression of genes related to hepatic stellate cell activation such as Lox and Spp1 in the cholestatic liver fibrosis animals. In conclusion, our study demonstrates the possibility of generating transplantable iHEAs with directly converted cells, and our results evidence that integrating iECs allows iHEAs to have enhanced hepatic maturation compared to iHLOs.


Asunto(s)
Colestasis , Células Endoteliales , Animales , Colestasis/metabolismo , Cirrosis Hepática/metabolismo , Organoides/metabolismo
3.
Biomaterials ; 270: 120688, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33549994

RESUMEN

Culturing autologous cells with therapeutic potential derived from a patient within a bioactive scaffold to induce functioning tissue formation is considered the ideal methodology towards realizing patient-specific regenerative medicine. Hydrogels are often employed as the scaffold material for this purpose mainly for their tunable mechanical and diffusional properties as well as presenting cell-responsive moieties. Herein, a two-fold strategy was employed to control the physicomechanical properties and microarchitecture of hydrogels to maximize the efficacy of engineered hepatic tissues. First, a hydrophilic polymeric crosslinker with a tunable degree of reactive functional groups was employed to control the mechanical properties in a wide range while minimizing the change in diffusional properties. Second, photolithography technique was utilized to introduce microchannels into hydrogels to overcome the critical diffusional limit of bulk hydrogels. Encapsulating hepatic progenitor cells derived via direct reprogramming of tissue-harvested fibroblasts, the application of this strategy to control the mechanics, diffusion, and architecture of hydrogels in a combinatorial manner could allow the optimization of their hepatic functions. The regenerative capacity of this engineered hepatic tissue was further demonstrated using an in vivo acute liver injury model.


Asunto(s)
Hidrogeles , Ingeniería de Tejidos , Humanos , Hígado , Medicina Regenerativa , Células Madre
4.
Bioorg Med Chem Lett ; 30(16): 127347, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32631546

RESUMEN

Human pluripotent stem cells (hPSCs) are a useful cell source for regenerative medicine. Despite having a potential of hPSCs for cell-based therapy, there is a need for a selective human pluripotency sensor for monitoring of live hPSCs. Here, we report the discovery of a novel pluripotency sensor (SHI5) from BODIPY-based library by high-throughput cell-based screening and describe the use of SHI5 to identify and isolate human embryonic stem cells and human induced pluripotent stem cells. We demonstrate that SHI5-based assay can be applied to live cells that gain pluripotency in the reprogramming process without any effect on their viability. We also show that SHI5 is internalized through a clathrin-mediated endocytosis pathway. These findings suggest that SHI5 can be an attractive sensor for pluripotency cells during reprogramming. Taken together, SHI5-based screening for hPSCs opens probably unlimited possibilities of detection probe for hPSC therapy via assures their safety issue.


Asunto(s)
Colorantes Fluorescentes/química , Ensayos Analíticos de Alto Rendimiento , Células Madre Pluripotentes Inducidas/citología , Diferenciación Celular , Humanos , Estructura Molecular
5.
Elife ; 92020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32571478

RESUMEN

Generation of autologous human motor neurons holds great promise for cell replacement therapy to treat spinal cord injury (SCI). Direct conversion allows generation of target cells from somatic cells, however, current protocols are not practicable for therapeutic purposes since converted cells are post-mitotic that are not scalable. Therefore, therapeutic effects of directly converted neurons have not been elucidated yet. Here, we show that human fibroblasts can be converted into induced motor neurons (iMNs) by sequentially inducing POU5F1(OCT4) and LHX3. Our strategy enables scalable production of pure iMNs because of the transient acquisition of proliferative iMN-intermediate cell stage which is distinct from neural progenitors. iMNs exhibited hallmarks of spinal motor neurons including transcriptional profiles, electrophysiological property, synaptic activity, and neuromuscular junction formation. Remarkably, transplantation of iMNs showed therapeutic effects, promoting locomotor functional recovery in rodent SCI model. Together, our advanced strategy will provide tools to acquire sufficient human iMNs that may represent a promising cell source for personalized cell therapy.


Asunto(s)
Fibroblastos/fisiología , Regulación de la Expresión Génica , Proteínas con Homeodominio LIM/genética , Locomoción/fisiología , Neuronas Motoras/trasplante , Factor 3 de Transcripción de Unión a Octámeros/genética , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/terapia , Factores de Transcripción/genética , Animales , Trasplante de Células , Modelos Animales de Enfermedad , Femenino , Humanos , Proteínas con Homeodominio LIM/metabolismo , Masculino , Ratones , Ratones Desnudos , Neuronas Motoras/fisiología , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Traumatismos de la Médula Espinal/fisiopatología , Factores de Transcripción/metabolismo
6.
Cells ; 9(5)2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32455709

RESUMEN

Alzheimer's disease (AD) is a complex, age-related neurodegenerative disease that is the most common form of dementia. However, the cure for AD has not yet been founded. The accumulation of amyloid beta (Aß) is considered to be a hallmark of AD. Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), also known as beta secretase is the initiating enzyme in the amyloidogenic pathway. Blocking BACE1 could reduce the amount of Aß, but this would also prohibit the other functions of BACE1 in brain physiological activity. SPONDIN1 (SPON1) is known to bind to the BACE1 binding site of the amyloid precursor protein (APP) and blocks the initiating amyloidogenesis. Here, we show the effect of SPON1 in Aß reduction in vitro in neural cells and in an in vivo AD mouse model. We engineered mouse induced neural stem cells (iNSCs) to express Spon1. iNSCs harboring mouse Spon1 secreted SPON1 protein and reduced the quantity of Aß when co-cultured with Aß-secreting Neuro 2a cells. The human SPON1 gene itself also reduced Aß in HEK 293T cells expressing the human APP transgene with AD-linked mutations through lentiviral-mediated delivery. We also demonstrated that injecting SPON1 reduced the amount of Aß and ameliorated cognitive dysfunction and memory impairment in 5xFAD mice expressing human APP and PSEN1 transgenes with five AD-linked mutations.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Disfunción Cognitiva/complicaciones , Disfunción Cognitiva/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Trastornos de la Memoria/complicaciones , Trastornos de la Memoria/metabolismo , Animales , Efecto Espectador , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones Endogámicos C57BL , Células-Madre Neurales/metabolismo
7.
Arterioscler Thromb Vasc Biol ; 40(4): e105-e113, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32075417

RESUMEN

OBJECTIVE: Vascular progenitor cells (VPCs), which are able to differentiate into both endothelial cells and smooth muscle cells, have the potential for treatment of ischemic diseases. Generated by pluripotent stem cells, VPCs carry the risk of tumorigenicity in clinical application. This issue could be resolved by direct lineage conversion, the induction of functional cells from another lineage by using only lineage-restricted transcription factors. Here, we show that induced VPCs (iVPCs) can be generated from fibroblasts by ETS (E-twenty six) transcription factors, Etv2 and Fli1. Approach and Results: Mouse fibroblasts were infected with lentivirus encoding Etv2 and Fli1. Cell colonies appeared in Fli1- and Etv2/Fli1-infected groups and were mechanically picked. The identity of cell colonies was confirmed by proliferation assay and reverse-transcription polymerase chain reaction with vascular markers. Etv2/Fli1- infected cell colonies were sorted by CD144 (also known as CDH5, VE-cadherin). We defined that CD144-positive iVPCs maintained its own population and expanded stably at multiple passages. iVPCs could differentiate into functional endothelial cells and smooth muscle cells by a defined medium. The functionalities of iVPC-derived endothelial cells and smooth muscle cells were confirmed by analyzing LDL (low-density lipoprotein) uptake, carbachol-induced contraction, and tube formation in vitro. Transplantation of iVPCs into the ischemic hindlimb model enhanced blood flow without tumor formation in vivo. Human iVPCs were generated by human ETS transcription factors ETV2 and FLI1. CONCLUSIONS: We demonstrate that ischemic disease curable iVPCs, which have self-renewal and bipotency, can be generated from mouse fibroblasts by enforced ETS family transcription factors, Etv2 and Fli1 expression. Our simple strategy opens insights into stem cell-based ischemic disease therapy.


Asunto(s)
Fibroblastos/citología , Isquemia/fisiopatología , Proteína Proto-Oncogénica c-fli-1/fisiología , Células Madre/fisiología , Factores de Transcripción/fisiología , Animales , Antígenos CD , Cadherinas , Diferenciación Celular , Línea Celular , Proliferación Celular , Modelos Animales de Enfermedad , Células Endoteliales/citología , Miembro Posterior/irrigación sanguínea , Isquemia/terapia , Miocitos del Músculo Liso/citología , Trasplante de Células Madre , Células Madre/inmunología
8.
Biofabrication ; 12(2): 025003, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31783385

RESUMEN

Recently, decellularized extracellular matrix-based bio-ink (dECM bio-ink) derived from animal organs is attracting attention because of its excellent biocompatibility. However, its poor 3D printability and weak mechanical properties remain a challenge. Here, we developed a new dECM bio-ink with enhanced 3D printability and mechanical properties. dECM micro-particles of about 13.4 µm in size were prepared by decellularizing a porcine liver followed by freeze-milling. The new bio-ink, named as dECM powder-based bio-ink (dECM pBio-ink), was prepared by loading the dECM micro-particles into a gelatin mixture. The usefulness of the dECM pBio-ink was evaluated by assessing its mechanical properties, printability, and cytocompatibility. The results showed that its mechanical properties and 3D printability were greatly improved. Its elastic modulus increased by up to 9.17 times that of the conventional dECM bio-ink. Micro-patterns with living cells were successfully achieved with 93% cell viability. Above all, the new bio-ink showed superior performance in stacking of layers for 3D printing, whereas the conventional bio-ink could not maintain its shape. Finally, we demonstrated that the dECM pBio-ink possessed comparable cytocompatibility with the conventional dECM bio-ink through in vitro tests with endothelial cells and primary mouse hepatocytes.


Asunto(s)
Bioimpresión/instrumentación , Matriz Extracelular/química , Impresión Tridimensional/instrumentación , Animales , Fenómenos Biomecánicos , Proliferación Celular , Supervivencia Celular , Células Endoteliales/citología , Células Endoteliales/metabolismo , Matriz Extracelular/metabolismo , Gelatina/química , Gelatina/metabolismo , Hepatocitos/citología , Hepatocitos/metabolismo , Tinta , Hígado/química , Hígado/citología , Hígado/metabolismo , Ratones , Reología , Porcinos
9.
PLoS One ; 14(8): e0221085, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31404112

RESUMEN

Direct conversion from fibroblasts to generate hepatocyte like-cells (iHeps) bypassing the pluripotent state has been described in previous reports as an attractive method acquiring hepatocytes for cell-based therapy. The limited proliferation of iHeps, however, has hampered it uses in cell-based therapy. Since hepatic stem cells (HepSCs) possess self-renewal and bipotency with the capacity to differentiate into both hepatocytes and cholangiocytes, they have therapeutic potential for treating liver disease. Here, we investigated the therapeutic effects of induced HepSCs (iHepSCs) on a carbon tetrachloride (CCl4)-induced liver fibrosis model. We demonstrate that Oct4 and Hnf4a are sufficient to convert fibroblasts into expandable iHepSCs. Hepatocyte-like cells derived from iHepSCs (iHepSC-HEPs) exhibit the typical morphology of hepatocytes and hepatic functions, including glycogen storage, low-density lipoprotein (LDL) uptake, Indocyanine green (ICG) detoxification, drug metabolism, urea production, and albumin secretion. iHepSCs-derived cholangiocyte-like cells (iHepSC-CLCs) expressed cholangiocyte-specific markers and formed cysts and tubule-like structures with apical-basal polarity and secretory function in three-dimensional culture condition. Furthermore, iHepSCs showed anti-inflammatory and anti-fibrotic effects in CCl4-induced liver fibrosis. This study demonstrates that Oct4 and Hnf4α-induced HepSCs show typical hepatic and biliary functionality in vitro. It also presents the therapeutic effect of iHepSCs in liver fibrosis. Therefore, directly converting iHepSCs from somatic cells may facilitate the development of patient-specific cell-based therapy for chronic liver damage.


Asunto(s)
Intoxicación por Tetracloruro de Carbono , Factor Nuclear 4 del Hepatocito , Células Madre Pluripotentes Inducidas , Cirrosis Hepática , Hígado , Lesión Pulmonar , Factor 3 de Transcripción de Unión a Octámeros , Trasplante de Células Madre , Animales , Intoxicación por Tetracloruro de Carbono/genética , Intoxicación por Tetracloruro de Carbono/metabolismo , Intoxicación por Tetracloruro de Carbono/terapia , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Células Madre Pluripotentes Inducidas/trasplante , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Cirrosis Hepática/terapia , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/genética , Lesión Pulmonar/metabolismo , Masculino , Ratones , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo
10.
PLoS One ; 12(11): e0178881, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29161257

RESUMEN

Glioma is the most malignant type of primary central nervous system tumors, and has an extremely poor prognosis. One potential therapeutic approach is to induce the terminal differentiation of glioma through the forced expression of pro-neural factors. Our goal is to show the proof of concept of the neuronal conversion of C6 glioma through the combined action of small molecules. We investigated the various changes in gene expression, cell-specific marker expression, signaling pathways, physiological characteristics, and morphology in glioma after combination treatment with two small molecules (CHIR99021, a glycogen synthase kinase 3 [GSK3] inhibitor and forskolin, a cyclic adenosine monophosphate [cAMP] activator). Here, we show that the combined action of CHIR99021 and forskolin converted malignant glioma into fully differentiated neurons with no malignant characteristics; inhibited the proliferation of malignant glioma; and significantly down-regulated gene ontology and gene expression profiles related to cell division, gliogenesis, and angiogenesis in small molecule-induced neurons. In vivo, the combined action of CHIR99021 and forskolin markedly delayed neurological deficits and significantly reduced the tumor volume. We suggest that reprogramming technology may be a potential treatment strategy replacing the therapeutic paradigm of traditional treatment of malignant glioma, and a combination molecule comprising a GSK3 inhibitor and a cAMP inducer could be the next generation of anticancer drugs.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Reprogramación Celular/efectos de los fármacos , Glioma/tratamiento farmacológico , Glioma/genética , Glucógeno Sintasa Quinasa 3/genética , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Colforsina/administración & dosificación , AMP Cíclico/antagonistas & inhibidores , AMP Cíclico/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioma/patología , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Humanos , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Imagen Óptica , Piridinas/administración & dosificación , Pirimidinas/administración & dosificación , Ratas , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/administración & dosificación , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Stem Cells Int ; 2016: 4736159, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26977154

RESUMEN

Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) by overexpression of the transcription factors OCT4, SOX2, KLF4, and c-Myc holds great promise for the development of personalized cell replacement therapies. In an attempt to minimize the risk of chromosomal disruption and to simplify reprogramming, several studies demonstrated that a reduced set of reprogramming factors is sufficient to generate iPSC. We recently showed that a reduction of reprogramming factors in murine cells not only reduces reprogramming efficiency but also may worsen subsequent differentiation. To prove whether this is also true for human cells, we compared the efficiency of neuronal differentiation of iPSC generated from fetal human neural stem cells with either one (OCT4; hiPSC1F-NSC) or two (OCT4, KLF4; hiPSC2F-NSC) reprogramming factors with iPSC produced from human fibroblasts using three (hiPSC3F-FIB) or four reprogramming factors (hiPSC4F-FIB). After four weeks of coculture with PA6 stromal cells, neuronal differentiation of hiPSC1F-NSC and hiPSC2F-NSC was as efficient as iPSC3F-FIB or iPSC4F-FIB. We conclude that a reduction of reprogramming factors in human cells does reduce reprogramming efficiency but does not alter subsequent differentiation into neural lineages. This is of importance for the development of future application of iPSC in cell replacement therapies.

13.
Stem Cell Res ; 16(2): 460-8, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26930613

RESUMEN

Somatic cells could be directly converted into induced neural stem cells (iNSCs) by ectopic expression of defined transcription factors. However, the underlying mechanism of direct lineage transition into iNSCs is largely unknown. In this study, we examined the effect of genetic background on the direct conversion process into an iNSC state. The iNSCs from two different mouse strains exhibited the distinct efficiency of lineage conversion as well as clonal expansion. Furthermore, the expression levels of endogenous NSC markers, silencing of transgenes, and in vitro differentiation potential were also different between iNSC lines from different strains. Therefore, our data suggest that the genetic background of starting cells influences the conversion efficiency as well as reprogramming status of directly converted iNSCs.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Células-Madre Neurales/citología , Animales , Diferenciación Celular , Células Cultivadas , Reprogramación Celular , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Fibroblastos/citología , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Nestina/metabolismo , Células-Madre Neurales/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
Sci Rep ; 6: 20708, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26846167

RESUMEN

The maintenance of undifferentiated human pluripotent stem cells (hPSC) under xeno-free condition requires the use of human feeder cells or extracellular matrix (ECM) coating. However, human-derived sources may cause human pathogen contamination by viral or non-viral agents to the patients. Here we demonstrate feeder-free and xeno-free culture system for hPSC expansion using diffusion assisted synthesis-grown nanocrystalline graphene (DAS-NG), a synthetic non-biological nanomaterial which completely rule out the concern of human pathogen contamination. DAS-NG exhibited advanced biocompatibilities including surface nanoroughness, oxygen containing functional groups and hydrophilicity. hPSC cultured on DAS-NG could maintain pluripotency in vitro and in vivo, and especially cell adhesion-related gene expression profile was comparable to those of cultured on feeders, while hPSC cultured without DAS-NG differentiated spontaneously with high expression of somatic cell-enriched adhesion genes. This feeder-free and xeno-free culture method using DAS-NG will facilitate the generation of clinical-grade hPSC.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Grafito/química , Células Madre Pluripotentes Inducidas/citología , Nanoestructuras/química , Adhesión Celular , Diferenciación Celular , Línea Celular , Proliferación Celular , Células Nutrientes/citología , Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Propiedades de Superficie
15.
EMBO J ; 34(23): 2971-83, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26497893

RESUMEN

The generation of patient-specific oligodendrocyte progenitor cells (OPCs) holds great potential as an expandable cell source for cell replacement therapy as well as drug screening in spinal cord injury or demyelinating diseases. Here, we demonstrate that induced OPCs (iOPCs) can be directly derived from adult mouse fibroblasts by Oct4-mediated direct reprogramming, using anchorage-independent growth to ensure high purity. Homogeneous iOPCs exhibit typical small-bipolar morphology, maintain their self-renewal capacity and OPC marker expression for more than 31 passages, share high similarity in the global gene expression profile to wild-type OPCs, and give rise to mature oligodendrocytes and astrocytes in vitro and in vivo. Notably, transplanted iOPCs contribute to functional recovery in a spinal cord injury (SCI) model without tumor formation. This study provides a simple strategy to generate functional self-renewing iOPCs and yields insights for the in-depth study of demyelination and regenerative medicine.


Asunto(s)
Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Oligodendroglía/metabolismo , Oligodendroglía/fisiología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/terapia , Células Madre/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Fibroblastos/citología , Inmunohistoquímica , Cariotipo , Masculino , Ratones , Ratones SCID , Factor 3 de Transcripción de Unión a Octámeros/genética , Oligodendroglía/citología , Ratas , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/genética , Trasplante de Células Madre , Células Madre/citología , Células Madre/fisiología
16.
Haematologica ; 100(1): 32-41, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25326431

RESUMEN

Epigenetic memory in induced pluripotent stem cells, which is related to the somatic cell type of origin of the stem cells, might lead to variations in the differentiation capacities of the pluripotent stem cells. In this context, induced pluripotent stem cells from human CD34(+) hematopoietic stem cells might be more suitable for hematopoietic differentiation than the commonly used fibroblast-derived induced pluripotent stem cells. To investigate the influence of an epigenetic memory on the ex vivo expansion of induced pluripotent stem cells into erythroid cells, we compared induced pluripotent stem cells from human neural stem cells and human cord blood-derived CD34(+) hematopoietic stem cells and evaluated their potential for differentiation into hematopoietic progenitor and mature red blood cells. Although genome-wide DNA methylation profiling at all promoter regions demonstrates that the epigenetic memory of induced pluripotent stem cells is influenced by the somatic cell type of origin of the stem cells, we found a similar hematopoietic induction potential and erythroid differentiation pattern of induced pluripotent stem cells of different somatic cell origin. All human induced pluripotent stem cell lines showed terminal maturation into normoblasts and enucleated reticulocytes, producing predominantly fetal hemoglobin. Differences were only observed in the growth rate of erythroid cells, which was slightly higher in the induced pluripotent stem cells derived from CD34(+) hematopoietic stem cells. More detailed methylation analysis of the hematopoietic and erythroid promoters identified similar CpG methylation levels in the induced pluripotent stem cell lines derived from CD34(+) cells and those derived from neural stem cells, which confirms their comparable erythroid differentiation potential.


Asunto(s)
Diferenciación Celular , Células Eritroides/citología , Sangre Fetal/citología , Células Madre Hematopoyéticas/citología , Células Madre Pluripotentes Inducidas/citología , Células-Madre Neurales/citología , Biomarcadores/metabolismo , Metilación de ADN , Epigenómica , Células Eritroides/metabolismo , Sangre Fetal/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Células Madre Hematopoyéticas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células-Madre Neurales/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
Cell Rep ; 8(6): 1697-1703, 2014 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-25220454

RESUMEN

The differentiation capability of induced pluripotent stem cells (iPSCs) toward certain cell types for disease modeling and drug screening assays might be influenced by their somatic cell of origin. Here, we have compared the neural induction of human iPSCs generated from fetal neural stem cells (fNSCs), dermal fibroblasts, or cord blood CD34(+) hematopoietic progenitor cells. Neural progenitor cells (NPCs) and neurons could be generated at similar efficiencies from all iPSCs. Transcriptomics analysis of the whole genome and of neural genes revealed a separation of neuroectoderm-derived iPSC-NPCs from mesoderm-derived iPSC-NPCs. Furthermore, we found genes that were similarly expressed in fNSCs and neuroectoderm, but not in mesoderm-derived iPSC-NPCs. Notably, these neural signatures were retained after transplantation into the cortex of mice and paralleled with increased survival of neuroectoderm-derived cells in vivo. These results indicate distinct origin-dependent neural cell identities in differentiated human iPSCs both in vitro and in vivo.


Asunto(s)
Encéfalo/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células-Madre Neurales/citología , Animales , Antígenos CD34/metabolismo , Diferenciación Celular , Células Cultivadas , Sangre Fetal/citología , Sangre Fetal/metabolismo , Feto/citología , Fibroblastos/citología , Perfilación de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células Madre Hematopoyéticas/citología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/trasplante , Mesodermo/citología , Ratones , Ratones Endogámicos NOD , Microscopía Confocal , Placa Neural/citología
18.
Biomaterials ; 33(29): 6952-64, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22809643

RESUMEN

Surface modification of tissue engineering scaffolds and substrates is required for improving the efficacy of stem cell therapy by generating physicochemical stimulation promoting proliferation and differentiation of stem cells. However, typical surface modification methods including chemical conjugation or physical absorption have several limitations such as multistep, complicated procedures, surface denaturation, batch-to-batch inconsistencies, and low surface conjugation efficiency. In this study, we report a mussel-inspired, biomimetic approach to surface modification for efficient and reliable manipulation of human neural stem cell (NSC) differentiation and proliferation. Our study demonstrates that polydopamine coating facilitates highly efficient, simple immobilization of neurotrophic growth factors and adhesion peptides onto polymer substrates. The growth factor or peptide-immobilized substrates greatly enhance differentiation and proliferation of human NSCs (human fetal brain-derived NSCs and human induced pluripotent stem cell-derived NSCs) at a level comparable or greater than currently available animal-derived coating materials (Matrigel) with safety issues. Therefore, polydopamine-mediated surface modification can provide a versatile platform technology for developing chemically defined, safe, functional substrates and scaffolds for therapeutic applications of human NSCs.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Indoles/química , Células-Madre Neurales/citología , Polímeros/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Biomimética/métodos , Adhesión Celular , Diferenciación Celular , Colágeno/química , Combinación de Medicamentos , Humanos , Inmunohistoquímica/métodos , Laminina/química , Ratones , Modelos Químicos , Neuronas/citología , Péptidos/química , Proteoglicanos/química , Propiedades de Superficie
19.
Stem Cells ; 30(3): 570-9, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22213586

RESUMEN

Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) by retroviral overexpression of the transcription factors Oct4, Sox2, Klf4, and c-Myc holds great promise for the development of personalized cell replacement therapies. In an attempt to minimize the risk for chromosomal disruption and to simplify reprogramming, several studies demonstrated that a reduced set of reprogramming factors is sufficient to generate iPSC, albeit at lower efficiency. To elucidate the influence of factor reduction on subsequent differentiation, we compared the efficiency of neuronal differentiation in iPSC generated from postnatal murine neural stem cells with either one (Oct4; iPSC(1F-NSC) ), two (Oct4, Klf4; iPSC(2F-NSC) ), or all four factors (iPSC(4F-NSC) ) with those of embryonic stem cells (ESCs) and iPSC produced from fibroblasts with all four factors (iPSC(4F-MEF) ). After 2 weeks of coculture with PA6 stromal cells, neuronal differentiation of iPSC(1F-NSC) and iPSC(2F-NSC) was less efficient compared with iPSC(4F-NSC) and ESC, yielding lower proportions of colonies that stained positive for early and late neuronal markers. Electrophysiological analyses after 4 weeks of differentiation identified functional maturity in neurons differentiated from ESC, iPSC(2F-NSC) , iPSC(4F-NSC) , and iPSC(4F-MEF) but not in those from iPSC(1F-NSC) . Similar results were obtained after hematoendothelial differentiation on OP9 bone marrow stromal cells, where factor-reduced iPSC generated lower proportions of colonies with hematoendothelial progenitors than colonies of ESC, iPSC(4F-NSC) , and iPSC(4F-MEF) . We conclude that a reduction of reprogramming factors does not only reduce reprogramming efficiency but may also worsen subsequent differentiation and hinder future application of iPSC in cell replacement therapies.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas/fisiología , Células-Madre Neurales/fisiología , Animales , Antígenos de Diferenciación/metabolismo , Técnicas de Cultivo de Célula , Células Cultivadas , Técnicas de Cocultivo , Células Endoteliales/citología , Células Endoteliales/metabolismo , Expresión Génica , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas de Filamentos Intermediarios/metabolismo , Factor 4 Similar a Kruppel , Potenciales de la Membrana , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Nestina , Células-Madre Neurales/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Ratas , Células del Estroma/metabolismo , Células del Estroma/fisiología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
20.
Stroke ; 42(6): 1757-63, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21566228

RESUMEN

BACKGROUND AND PURPOSE: Intravenous neural progenitor cell (NPC) treatment was shown to improve functional recovery after experimental stroke. The underlying mechanisms, however, are not completely understood so far. Here, we investigated the effects of systemic NPC transplantation on endogenous neurogenesis and dendritic plasticity of host neurons. METHODS: Twenty-four hours after photothrombotic ischemia, adult rats received either 5 million NPC or placebo intravenously. Behavioral tests were performed weekly up to 4 weeks after ischemia. Endogenous neurogenesis, dendritic length, and dendritic branching of cortical pyramid cells and microglial activation were quantified. RESULTS: NPC treatment led to a significantly improved sensorimotor function measured by the adhesive removal test. The dendritic length and the amount of branch points were significantly increased after NPC transplantation, whereas endogenous neurogenesis was decreased compared to placebo therapy. Decreased endogenous neurogenesis was associated with an increased number of activated microglial cells. CONCLUSIONS: Our findings suggest that an increased dendritic plasticity might be the structural basis of NPC-induced functional recovery. The decreased endogenous neurogenesis after NPC treatment seems to be mediated by microglial activation.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Células-Madre Neurales/fisiología , Células-Madre Neurales/trasplante , Neurogénesis/fisiología , Recuperación de la Función/fisiología , Accidente Cerebrovascular/terapia , Animales , Conducta Animal/fisiología , Células Cultivadas , Ratones , Células-Madre Neurales/citología , Fenotipo , Distribución Aleatoria , Ratas , Accidente Cerebrovascular/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...