Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neurodev Disord ; 16(1): 40, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39020320

RESUMEN

BACKGROUND: Tic disorder is a neuropsychiatric disorder characterized by involuntary movements or vocalizations. Previous studies utilizing diffusion-weighted imaging to explore white-matter alterations in tic disorders have reported inconsistent results regarding the affected tracts. We aimed to address this gap by employing a novel tractography technique for more detailed analysis. METHODS: We analyzed MRI data from 23 children with tic disorders and 23 healthy controls using TRActs Constrained by UnderLying Anatomy (TRACULA), an advanced automated probabilistic tractography method. We examined fractional anisotropy (FA), radial diffusivity (RD), axial diffusivity, and mean diffusivity in 42 specific significant white matter tracts. RESULTS: Our findings revealed notable differences in the children with tic disorders compared to the control group. Specifically, there was a significant reduction in FA in the parietal part and splenium of the corpus callosum and the left corticospinal tract. Increased RD was observed in the temporal and splenium areas of the corpus callosum, the left corticospinal tract, and the left acoustic radiation. A higher mean diffusivity was also noted in the left middle longitudinal fasciculus. A significant correlation emerged between the severity of motor symptoms, measured by the Yale Global Tic Severity Scale, and FA in the parietal part of the corpus callosum, as well as RD in the left acoustic radiation. CONCLUSION: These results indicate a pattern of reduced interhemispheric connectivity in the corpus callosum, aligning with previous studies and novel findings in the diffusion indices changes in the left corticospinal tract, left acoustic radiation, and left middle longitudinal fasciculus. Tic disorders might involve structural abnormalities in key white matter tracts, offering new insights into their pathogenesis.


Asunto(s)
Imagen de Difusión Tensora , Trastornos de Tic , Sustancia Blanca , Humanos , Masculino , Femenino , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Niño , Trastornos de Tic/diagnóstico por imagen , Trastornos de Tic/fisiopatología , Trastornos de Tic/patología , Adolescente , Cuerpo Calloso/diagnóstico por imagen , Cuerpo Calloso/patología , Imagen de Difusión por Resonancia Magnética
2.
Cancer Sci ; 115(6): 2036-2048, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38613358

RESUMEN

Triple-negative breast cancer (TNBC) patients harboring wild-type breast cancer susceptibility gene 1 (BRCA1) account for most TNBC patients but lack adequate targeted therapeutic options. Although radiotherapy (RT) is the primary treatment modality for TNBC patients, radioresistance is one of the major challenges. RT-induced increase in cathepsin S (CTSS) causes radioresistance through suppressing BRCA1-mediated apoptosis of tumor cells, which was induced by CTSS-mediated degradation of BRCA1. Targeting CTSS may provide a novel therapeutic opportunity for TNBC patients. Publicly available data and human tissue microarray slides were analyzed to investigate the relationship between CTSS and BRCA1 in breast cancer patients. A CTSS enzyme assay and in silico docking analysis were conducted to identify a novel CTSS inhibitor. RO5461111 was used first to confirm the concept of targeting CTSS for radiosensitizing effects. The MDA-MB-231 TNBC cell line was used for in vitro and in vivo assays. Western blotting, promoter assay, cell death assay, clonogenic survival assay, and immunohistochemistry staining were conducted to evaluate novel CTSS inhibitors. CTSS inhibitors were further evaluated for their additional benefit of inhibiting cell migration. A novel CTSS inhibitor, TS-24, increased BRCA1 protein levels and showed radiosensitization in TNBC cells with wild-type BRCA1 and in vivo in a TNBC xenograft mouse model. These effects were attributed by BRCA1-mediated apoptosis facilitated by TS-24. Furthermore, TS-24 demonstrated the additional effect of inhibiting cell migration. Our study suggests that employing CTSS inhibitors for the functional restoration of BRCA1 to enhance RT-induced apoptosis may provide a novel therapeutic opportunity for TNBC patients harboring wild-type BRCA1.


Asunto(s)
Apoptosis , Proteína BRCA1 , Fármacos Sensibilizantes a Radiaciones , Neoplasias de la Mama Triple Negativas , Animales , Femenino , Humanos , Ratones , Apoptosis/efectos de los fármacos , Catepsinas/metabolismo , Catepsinas/antagonistas & inhibidores , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Ratones Desnudos , Estabilidad Proteica/efectos de los fármacos , Tolerancia a Radiación/efectos de los fármacos , Fármacos Sensibilizantes a Radiaciones/farmacología , Neoplasias de la Mama Triple Negativas/radioterapia , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Biomol Ther (Seoul) ; 29(5): 562-570, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34011695

RESUMEN

Topoisomerase IIα has been a representative anti-cancer target for decades thanks to its functional necessity in highly proliferative cancer cells. As type of topoisomerase IIα targeting drugs, topoisomerase II poisons are frequently in clinical usage. However, topoisomerase II poisons result in crucial consequences resulted from mechanistically induced DNA toxicity. For this reason, it is needed to develop catalytic inhibitors of topoisomerase IIα through the alternative mechanism of enzymatic regulation. As a catalytic inhibitor of topoisomerase IIα, AK-I-191 was previously reported for its enzyme inhibitory activity. In this study, we clarified the mechanism of AK-I-191 and conducted various types of spectroscopic and biological evaluations for deeper understanding of its mechanism of action. Conclusively, AK-I-191 represented potent topoisomerase IIα inhibitory activity through binding to minor groove of DNA double helix and showed synergistic effects with tamoxifen in antiproliferative activity.

4.
Bioorg Chem ; 111: 104884, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33872925

RESUMEN

The objective of this study was to discover potential topoisomerase (topo) targeting anticancer agents. Novel series of hydroxylated and halogenated(-F, -Cl, and -CF3) 2,4-diaryl benzofuro[3,2-b]pyridin-7-ols were systematically designed and synthesized by faster, economic, and environmentally friendly l-proline catalyzed and microwave-assisted one pot reaction method. The synthesized compounds were assessed for topo I and IIα inhibitory and anti-proliferative activities. The in vitroevaluation displayed that most of the compounds have selective topo IIα inhibitoryactivity as well as selectivity towards T47D human cancer cell line. Structure-activity relationship study suggested that the introduction of additional hydroxyl functionality at 7-positon of benzofuro[3,2-b]pyridine skeleton is crucial for selective topo IIα inhibitory activity. Placement of phenolic moiety on the 4-position of the tricyclic system imparts better topo IIα inhibitory and anti-proliferative activity.


Asunto(s)
Antineoplásicos/farmacología , Benzofuranos/farmacología , Proteínas de Unión a Poli-ADP-Ribosa/antagonistas & inhibidores , Piridinas/farmacología , Inhibidores de Topoisomerasa II/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Benzofuranos/síntesis química , Benzofuranos/química , Proliferación Celular/efectos de los fármacos , ADN-Topoisomerasas de Tipo II/metabolismo , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Halogenación , Humanos , Hidroxilación , Estructura Molecular , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Piridinas/síntesis química , Piridinas/química , Relación Estructura-Actividad , Inhibidores de Topoisomerasa II/síntesis química , Inhibidores de Topoisomerasa II/química , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA