Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Biol Eng ; 17(1): 51, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37550751

RESUMEN

Microfluidic devices have emerged as powerful tools for cell-based experiments, offering a controlled microenvironment that mimic the conditions within the body. Numerous cell experiment studies have successfully utilized microfluidic channels to achieve various new scientific discoveries. However, it has been often overlooked that undesired and unnoticed propagation of cellular molecules in such bio-microfluidic channel systems can have a negative impact on the experimental results. Thus, more careful designing is required to minimize such unwanted issues through deeper understanding and careful control of chemically and physically predominant factors at the microscopic scale. In this paper, we introduce a new approach to improve microfluidic channel design, specifically targeting the mitigation of the aforementioned challenges. To minimize the occurrence of undesired cell positioning upstream from the main test section where a concentration gradient field locates, an additional narrow port structure was devised between the microfluidic upstream channel and each inlet reservoir. This port also functioned as a passive lock that hold the flow at rest via fluid-air surface tension, which facilitated manual movement of the device even when cell attachment was not achieved completely. To demonstrate the practicability of the system, we conducted experiments and diffusion simulations on the effect of endocrine disruptors on germ cells. To this end, a bisphenol-A (BPA) concentration gradient was generated in the main channel of the system at BPA concentrations ranging from 120.8 µM to 79.3 µM, and the proliferation of GC-1 cells in the BPA gradient environment was quantitatively evaluated. The features and concepts of the introduced design is to minimize unexpected and ignored error sources, which will be one of the issues to be considered in the development of microfluidic systems to explore extremely delicate cellular phenomena.

2.
Nat Commun ; 14(1): 3365, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291127

RESUMEN

Spin Seebeck effect (SSE) refers to the generation of an electric voltage transverse to a temperature gradient via a magnon current. SSE offers the potential for efficient thermoelectric devices because the transverse geometry of SSE enables to utilize waste heat from a large-area source by greatly simplifying the device structure. However, SSE suffers from a low thermoelectric conversion efficiency that must be improved for widespread application. Here we show that the SSE substantially enhances by oxidizing a ferromagnet in normal metal/ferromagnet/oxide structures. In W/CoFeB/AlOx structures, voltage-induced interfacial oxidation of CoFeB modifies the SSE, resulting in the enhancement of thermoelectric signal by an order of magnitude. We describe a mechanism for the enhancement that results from a reduced exchange interaction of the oxidized region of ferromagnet, which in turn increases a temperature difference between magnons in the ferromagnet and electrons in the normal metal and/or a gradient of magnon chemical potential in the ferromagnet. Our result will invigorate research for thermoelectric conversion by suggesting a promising way of improving the SSE efficiency.


Asunto(s)
Electricidad , Electrones , Animales , Estro , Calor , Óxidos , Oxígeno
3.
J Biol Chem ; 299(5): 104652, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36990220

RESUMEN

N-formyl methionine (fMet)-containing proteins are produced in bacteria, eukaryotic organelles mitochondria and plastids, and even in cytosol. However, Nα-terminally formylated proteins have been poorly characterized because of the lack of appropriate tools to detect fMet independently of downstream proximal sequences. Using a fMet-Gly-Ser-Gly-Cys peptide as an antigen, we generated a pan-fMet-specific rabbit polyclonal antibody called anti-fMet. The raised anti-fMet recognized universally and sequence context-independently Nt-formylated proteins in bacterial, yeast, and human cells as determined by a peptide spot array, dot blotting, and immunoblotting. We anticipate that the anti-fMet antibody will be broadly used to enable an understanding of the poorly explored functions and mechanisms of Nt-formylated proteins in various organisms.


Asunto(s)
Anticuerpos , Especificidad de Anticuerpos , N-Formilmetionina , Proteínas , Animales , Humanos , Conejos , Anticuerpos/análisis , Anticuerpos/inmunología , Bacterias/química , Citosol/metabolismo , Sueros Inmunes/análisis , Sueros Inmunes/inmunología , Immunoblotting , Mitocondrias/metabolismo , N-Formilmetionina/análisis , N-Formilmetionina/inmunología , Proteínas/análisis , Proteínas/química , Proteínas/inmunología , Proteínas/metabolismo , Saccharomyces cerevisiae/química
4.
Biomedicines ; 10(9)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36140200

RESUMEN

Extensive progress in understanding the molecular mechanisms of cancer growth and proliferation has led to the remarkable development of drugs that target cancer-driving molecules. Most target molecules are proteins such as kinases and kinase-associated receptors, which have enzymatic activities needed for the signaling cascades of cells. The small molecule inhibitors for these target molecules greatly improved therapeutic efficacy and lowered the systemic toxicity in cancer therapies. However, long-term and high-dosage treatment of small inhibitors for cancer has produced other obstacles, such as resistance to inhibitors. Among recent approaches to overcoming drug resistance to cancers, targeted protein degradation (TPD) such as proteolysis-targeting chimera (PROTAC) technology adopts a distinct mechanism of action by which a target protein is destroyed through the cellular proteolytic system, such as the ubiquitin-proteasome system or autophagy. Here, we review the currently developed PROTACs as the representative TPD molecules for cancer therapy and the N-degrons of the N-degron pathways as the potential TPD ligands.

5.
Adv Mater ; 34(45): e2203558, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36122902

RESUMEN

Physical unclonable function (PUFs) utilize inherent random physical variations of solid-state devices and are a core ingredient of hardware security primitives. PUFs promise more robust information security than that provided by the conventional software-based approaches. While silicon- and memristor-based PUFs are advancing, their reliability and scalability require further improvements. These are currently limited by output fluctuations and associated additional peripherals. Here, highly reliable spintronic PUFs that exploit field-free spin-orbit-torque switching in IrMn/CoFeB/Ta/CoFeB structures are demonstrated. It is shown that the stochastic switching polarity of the perpendicular magnetization of the top CoFeB can be achieved by manipulating the exchange bias directions of the bottom IrMn/CoFeB. This serves as an entropy source for the spintronic PUF, which is characterized by high entropy, uniqueness, reconfigurability, and digital output. Furthermore, the device ensures a zero bit-error-rate under repetitive operations and robustness against external magnetic fields, and offers scalable and energy-efficient device implementations.

6.
Mol Plant ; 15(6): 991-1007, 2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35524409

RESUMEN

Salicylic acid (SA) plays an important role in plant immune response, including resistance to pathogens and systemic acquired resistance. Two major components, NONEXPRESSOR OF PATHOGENESIS-RELATED GENES (NPRs) and TGACG motif-binding transcription factors (TGAs), are known to mediate SA signaling, which might also be orchestrated by other hormonal and environmental changes. Nevertheless, the molecular and functional interactions between SA signaling components and other cellular signaling pathways remain poorly understood. Here we showed that the steroid plant hormone brassinosteroid (BR) promotes SA responses by inactivating BR-INSENSITIVE 2 (BIN2), which inhibits the redox-sensitive clade I TGAs in Arabidopsis. We found that both BR and the BIN2 inhibitor bikinin synergistically increase SA-mediated physiological responses, such as resistance to Pst DC3000. Our genetic and biochemical analyses indicated that BIN2 functionally interacts with TGA1 and TGA4, but not with other TGAs. We further demonstrated that BIN2 phosphorylates Ser-202 of TGA4, resulting in the suppression of the redox-dependent interaction between TGA4 and NPR1 as well as destabilization of TGA4. Consistently, transgenic Arabidopsis overexpressing TGA4-YFP with a S202A mutation displayed enhanced SA responses compared to the wild-type TGA4-YFP plants. Taken together, these results suggest a novel crosstalk mechanism by which BR signaling coordinates the SA responses mediated by redox-sensitive clade I TGAs.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Brasinoesteroides/metabolismo , Brasinoesteroides/farmacología , Regulación de la Expresión Génica de las Plantas , Inmunidad , Fosforilación , Proteínas Quinasas/metabolismo , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Sci Rep ; 11(1): 20884, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34686705

RESUMEN

Electrical conduction in magnetic materials depends on their magnetization configuration, resulting in various magnetoresistances (MRs). The microscopic mechanisms of MR have so far been attributed to either an intrinsic or extrinsic origin, yet the contribution and temperature dependence of either origin has remained elusive due to experimental limitations. In this study, we independently probed the intrinsic and extrinsic contributions to the anisotropic MR (AMR) of a permalloy film at varying temperatures using temperature-variable terahertz time-domain spectroscopy. The AMR induced by the scattering-independent intrinsic origin was observed to be approximately 1.5% at T = 16 K and is virtually independent of temperature. In contrast, the AMR induced by the scattering-dependent extrinsic contribution was approximately 3% at T = 16 K but decreased to 1.5% at T = 155 K, which is the maximum temperature at which the AMR can be resolved using THz measurements. Our results experimentally quantify the temperature-dependent intrinsic and extrinsic contributions to AMR, which can stimulate further theoretical research to aid the fundamental understanding of AMR.

8.
Nano Lett ; 20(11): 7803-7810, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33054243

RESUMEN

Coupling of spin and heat currents enables the spin Nernst effect, the thermal generation of spin currents in nonmagnets that have strong spin-orbit interaction. Analogous to the spin Hall effect that electrically generates spin currents and associated electrical spin-orbit torques (SOTs), the spin Nernst effect can exert thermal SOTs on an adjacent magnetic layer and control the magnetization direction. Here, the thermal SOT caused by the spin Nernst effect is experimentally demonstrated in W/CoFeB/MgO structures. It is found that an in-plane temperature gradient across the sample generates a magnetic torque and modulates the switching field of the perpendicularly magnetized CoFeB. The W thickness dependence suggests that the torque originates mainly from thermal spin currents induced in W. Moreover, the thermal SOT reduces the critical current for SOT-induced magnetization switching, demonstrating that it can be utilized to control the magnetization in spintronic devices.

9.
Anal Chem ; 92(9): 6462-6469, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32267142

RESUMEN

The field of terminal proteomics is limited in that it is optimized for large-scale analysis via multistep processes involving liquid chromatography. Here, we present an integrated N-terminal peptide enrichment method (iNrich) that can handle as little as 25 µg of cell lysate via a single-stage encapsulated solid-phase extraction column. iNrich enables simple, rapid, and reproducible sample processing, treatment of a wide range of protein amounts (25 µg ∼ 1 mg), multiplexed parallel sample preparation, and in-stage sample prefractionation using a mixed-anion-exchange filter. We identified ∼5000 N-terminal peptides (Nt-peptides) from only 100 µg of human cell lysate including Nt-formyl peptides. Multiplexed sample preparation facilitated quantitative and robust enrichment of N-terminome with dozens of samples simultaneously. We further developed the method to incorporate isobaric tags such as a tandem mass tag (TMT) and used it to discover novel peptides during ER stress analysis. The iNrich facilitated high-throughput N-terminomics and degradomics at a low cost using commercially available reagents and apparatus, without requiring arduous procedures.


Asunto(s)
Péptidos/química , Proteoma/análisis , Células Cultivadas , Cromatografía Liquida , Humanos , Concentración de Iones de Hidrógeno , Extracción en Fase Sólida , Espectrometría de Masas en Tándem
10.
Front Plant Sci ; 11: 64, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117399

RESUMEN

Plants have two endosymbiotic organelles, chloroplast and mitochondrion. Although they have their own genomes, proteome assembly in these organelles depends on the import of proteins encoded by the nuclear genome. Previously, we elucidated the general design principles of chloroplast and mitochondrial targeting signals, transit peptide, and presequence, respectively, which are highly diverse in primary structure. Both targeting signals are composed of N-terminal specificity domain and C-terminal translocation domain. Especially, the N-terminal specificity domain of mitochondrial presequences contains multiple arginine residues and hydrophobic sequence motif. In this study we investigated whether the design principles of plant mitochondrial presequences can be applied to those in other eukaryotic species. We provide evidence that both presequences and import mechanisms are remarkably conserved throughout the species. In addition, we present evidence that the N-terminal specificity domain of presequence might have evolved from the bacterial TAT (twin-arginine translocation) signal sequence.

11.
BMB Rep ; 52(3): 163-164, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30885288

RESUMEN

The ribosomal synthesis of proteins in the eukaryotic cytosol has always been thought to start from the unformylated N-terminal (Nt) methionine (Met). In contrast, in virtually all nascent proteins in bacteria and eukaryotic organelles, such as mitochondria and chloroplasts, Nt-formyl-methionine (fMet) is the first building block of ribosomal synthesis. Through extensive approaches, including mass spectrometric analyses of the N-termini of proteins and molecular genetic techniques with an affinity-purified antibody for Nt-formylation, we investigated whether Nt-formylated proteins could also be produced and have their own metabolic fate in the cytosol of a eukaryote, such as yeast Saccharomyces cerevisiae. We discovered that Nt-formylated proteins could be generated in the cytosol by yeast mitochondrial formyltransferase (Fmt1). These Nt-formylated proteins were massively upregulated in the stationary phase or upon starvation for specific amino acids and were crucial for the adaptation to specific stresses. The stress-activated kinase Gcn2 was strictly required for the upregulation of Nt-formylated proteins by regulating the activity of Fmt1 and its retention in the cytosol. We also found that the Nt-fMet residues of Nt-formylated proteins could be distinct N-terminal degradation signals, termed fMet/N-degrons, and that Psh1 E3 ubiquitin ligase mediated the selective destruction of Nt-formylated proteins as the recognition component of a novel eukaryotic fMet/N-end rule pathway, termed fMet/N-recognin. [BMB Reports 2019; 52(3): 163-164].


Asunto(s)
Transferasas de Hidroximetilo y Formilo/fisiología , Biosíntesis de Proteínas/fisiología , Aminoácidos/metabolismo , Citosol/metabolismo , Células Eucariotas/metabolismo , Transferasas de Hidroximetilo y Formilo/metabolismo , Metionina/metabolismo , Mitocondrias/metabolismo , Proteínas/metabolismo , Proteolisis , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Regulación hacia Arriba
12.
J Biol Chem ; 294(12): 4464-4476, 2019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-30674553

RESUMEN

All organisms begin protein synthesis with methionine (Met). The resulting initiator Met of nascent proteins is irreversibly processed by Met aminopeptidases (MetAPs). N-terminal (Nt) Met excision (NME) is an evolutionarily conserved and essential process operating on up to two-thirds of proteins. However, the universal function of NME remains largely unknown. MetAPs have a well-known processing preference for Nt-Met with Ala, Ser, Gly, Thr, Cys, Pro, or Val at position 2, but using CHX-chase assays to assess protein degradation in yeast cells, as well as protein-binding and RT-qPCR assays, we demonstrate here that NME also occurs on nascent proteins bearing Met-Asn or Met-Gln at their N termini. We found that the NME at these termini exposes the tertiary destabilizing Nt residues (Asn or Gln) of the Arg/N-end rule pathway, which degrades proteins according to the composition of their Nt residues. We also identified a yeast DNA repair protein, MQ-Rad16, bearing a Met-Gln N terminus, as well as a human tropomyosin-receptor kinase-fused gene (TFG) protein, MN-TFG, bearing a Met-Asn N terminus as physiological, MetAP-processed Arg/N-end rule substrates. Furthermore, we show that the loss of the components of the Arg/N-end rule pathway substantially suppresses the growth defects of naa20Δ yeast cells lacking the catalytic subunit of NatB Nt acetylase at 37 °C. Collectively, the results of our study reveal that NME is a key upstream step for the creation of the Arg/N-end rule substrates bearing tertiary destabilizing residues in vivo.


Asunto(s)
Arginina/metabolismo , Metionina/metabolismo , Biosíntesis de Proteínas , Saccharomyces cerevisiae/metabolismo , Humanos , Proteínas/química , Proteínas/metabolismo , Proteolisis
13.
Science ; 362(6418)2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30409808

RESUMEN

In bacteria, nascent proteins bear the pretranslationally generated N-terminal (Nt) formyl-methionine (fMet) residue. Nt-fMet of bacterial proteins is a degradation signal, termed fMet/N-degron. By contrast, proteins synthesized by cytosolic ribosomes of eukaryotes were presumed to bear unformylated Nt-Met. Here we found that the yeast formyltransferase Fmt1, although imported into mitochondria, could also produce Nt-formylated proteins in the cytosol. Nt-formylated proteins were strongly up-regulated in stationary phase or upon starvation for specific amino acids. This up-regulation strictly required the Gcn2 kinase, which phosphorylates Fmt1 and mediates its retention in the cytosol. We also found that the Nt-fMet residues of Nt-formylated proteins act as fMet/N-degrons and identified the Psh1 ubiquitin ligase as the recognition component of the eukaryotic fMet/N-end rule pathway, which destroys Nt-formylated proteins.


Asunto(s)
Aminoácidos/deficiencia , Transferasas de Hidroximetilo y Formilo/metabolismo , N-Formilmetionina/metabolismo , Proteolisis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Azidas/farmacología , Frío , Citosol/metabolismo , Redes y Vías Metabólicas , Mitocondrias/enzimología , N-Formilmetionina/química , Factores de Elongación de Péptidos/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/enzimología , Ubiquitina-Proteína Ligasas/metabolismo , Regulación hacia Arriba
14.
Sci Rep ; 8(1): 11337, 2018 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-30054593

RESUMEN

We investigated the temperature distribution induced by laser irradiation of ultrathin magnetic films by applying a finite element method (FEM) to the finite difference time domain (FDTD) representation for the analysis of thermal induced spin currents. The dependency of the thermal gradient (∇T) of ultrathin magnetic films on material parameters, including the reflectivity and absorption coefficient were evaluated by examining optical effects, which indicates that reflectance (R) and the apparent absorption coefficient (α*) play important roles in the calculation of ∇T for ultrathin layers. The experimental and calculated values of R and α* for the ultrathin magnetic layers irradiated by laser-driven heat sources estimated using the combined FDTD and FEM method are in good agreement for the amorphous CoFeB and crystalline Co layers of thicknesses ranging from 3~20 nm. Our results demonstrate that the optical parameters are crucial for the estimation of the temperature gradient induced by laser illumination for the study of thermally generated spin currents and related phenomena.

15.
Food Sci Biotechnol ; 26(4): 1129-1136, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-30263645

RESUMEN

This study aimed to evaluate the effectiveness of aerosolized chlorine dioxide (ClO2) in reducing Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on washed carrots at various time durations and conditions. Populations of the bacteria on carrots were reduced by 1.5, 1.5, and 1.3 log CFU/g, respectively, in each inoculum after exposure to 300 ppm of aerosolized ClO2 for 30 min. Populations were further reduced by 2.4, 2.3, and 2.1 log CFU/g, respectively, at 400 ppm, showing a positive correlation between the concentrations of ClO2 and microbial control. The D-value was 13, 14, and 15 min for E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively. ClO2 residues were 1 ppm or less in all treated carrots, showing no appearance or discoloration defects. As a result, effectiveness of aerosolized ClO2 in reducing bacterial pathogens and maintaining the quality of fresh carrots is signifying the prospects of aqueous ClO2 as a non-thermal disinfectant.

16.
Mol Cells ; 39(3): 169-78, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26883906

RESUMEN

Although Nα-terminal acetylation (Nt-acetylation) is a pervasive protein modification in eukaryotes, its general functions in a majority of proteins are poorly understood. In 2010, it was discovered that Nt-acetylation creates a specific protein degradation signal that is targeted by a new class of the N-end rule proteolytic system, called the Ac/N-end rule pathway. Here, we review recent advances in our understanding of the mechanism and biological functions of the Ac/N-end rule pathway, and its crosstalk with the Arg/N-end rule pathway (the classical N-end rule pathway).


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteínas/metabolismo , Acetilación , Humanos , Proteínas/química , Proteolisis , Transducción de Señal
17.
Science ; 347(6227): 1249-1252, 2015 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-25766235

RESUMEN

Rgs2, a regulator of G proteins, lowers blood pressure by decreasing signaling through Gαq. Human patients expressing Met-Leu-Rgs2 (ML-Rgs2) or Met-Arg-Rgs2 (MR-Rgs2) are hypertensive relative to people expressing wild-type Met-Gln-Rgs2 (MQ-Rgs2). We found that wild-type MQ-Rgs2 and its mutant, MR-Rgs2, were destroyed by the Ac/N-end rule pathway, which recognizes N(α)-terminally acetylated (Nt-acetylated) proteins. The shortest-lived mutant, ML-Rgs2, was targeted by both the Ac/N-end rule and Arg/N-end rule pathways. The latter pathway recognizes unacetylated N-terminal residues. Thus, the Nt-acetylated Ac-MX-Rgs2 (X = Arg, Gln, Leu) proteins are specific substrates of the mammalian Ac/N-end rule pathway. Furthermore, the Ac/N-degron of Ac-MQ-Rgs2 was conditional, and Teb4, an endoplasmic reticulum (ER) membrane-embedded ubiquitin ligase, was able to regulate G protein signaling by targeting Ac-MX-Rgs2 proteins for degradation through their N(α)-terminal acetyl group.


Asunto(s)
Proteínas RGS/metabolismo , Acetilación , Secuencia de Aminoácidos , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Procesamiento Proteico-Postraduccional , Estabilidad Proteica , Proteolisis , Proteínas RGS/química , Proteínas RGS/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
18.
J Microbiol ; 52(10): 842-8, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25163837

RESUMEN

The Saccharomyces cerevisiae NatB N-terminal acetylase contains a catalytic subunit Naa20 and an auxiliary subunit Naa25. To elucidate the cellular functions of the NatB, we utilized the Synthetic Genetic Array to screen for genes that are essential for cell growth in the absence of NAA20. The genome-wide synthetic lethal screen of NAA20 identified genes encoding for serine/threonine protein kinase Vps15, 1,3-beta-glucanosyltransferase Gas5, and a catabolic repression regulator Mig3. The present study suggests that the catalytic activity of the NatB N-terminal aceytase is involved in vacuolar protein sorting and cell wall maintenance.


Asunto(s)
Eliminación de Gen , Genes Esenciales , Acetiltransferasa B N-Terminal/genética , Acetiltransferasa B N-Terminal/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/fisiología , Dominio Catalítico/genética , Genes Fúngicos , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteína de Clasificación Vacuolar VPS15/genética , Proteína de Clasificación Vacuolar VPS15/metabolismo
20.
Proteins ; 82(6): 1093-8, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24356916

RESUMEN

BldD regulates transcription of key developmental genes in Streptomyces coelicolor. While the N-terminal domain is responsible for both dimerization and DNA binding, the structural and functional roles of the C-terminal domain (CTD) remain largely unexplored. Here, the solution structure of the BldD-CTD shows a novel winged-helix domain fold not compatible with DNA binding, due to the negatively charged surface and presence of an additional helix. Meanwhile, a small elongated groove with conserved hydrophobic patches surrounded by charged residues suggests that the BldD-CTD could be involved in protein-protein interactions that provide transcriptional regulation.


Asunto(s)
Proteínas Bacterianas/química , Streptomyces coelicolor , Factores de Transcripción Winged-Helix/química , Secuencia de Aminoácidos , Secuencia Conservada , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...