Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.214
Filtrar
1.
Nanoscale ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39027948

RESUMEN

Triboelectric devices, operating through contact electrification (CE) and electrostatic induction, have shown great promise in energy harvesting applications. However, optimizing charge transfer at the interface remains crucial for enhancing device performance. This study introduces a novel approach to harnessing CE by employing morphological and chemical modifications of polymers. Our strategy involves adjusting the elastomer base to curing agent ratio to fine-tune the chemical properties of polydimethylsiloxane (PDMS) and introducing morphological modifications through a peeling and flipping (P/F) process of PDMS off the Si-substrate. Unlike conventional methods, the P/F-method minimally alters the intrinsic properties of PDMS, creating nanoscale surface corrugations adiabatically. We explore the mechanical, tribological, and electrical properties of the surface at the nano-scale and demonstrate that our approach allows for precise control of energy dissipation and electric potential at the surface, thereby optimizing charge transfer. Furthermore, we show that using a plasma-treated Si-substrate can further increase device performance up to 80% without affecting other properties. This study presents a comprehensive strategy for fine-tuning CE to enhance the performance of triboelectric nanogenerators.

2.
JMIR Med Educ ; 10: e51282, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38989848

RESUMEN

Background: Accurate medical advice is paramount in ensuring optimal patient care, and misinformation can lead to misguided decisions with potentially detrimental health outcomes. The emergence of large language models (LLMs) such as OpenAI's GPT-4 has spurred interest in their potential health care applications, particularly in automated medical consultation. Yet, rigorous investigations comparing their performance to human experts remain sparse. Objective: This study aims to compare the medical accuracy of GPT-4 with human experts in providing medical advice using real-world user-generated queries, with a specific focus on cardiology. It also sought to analyze the performance of GPT-4 and human experts in specific question categories, including drug or medication information and preliminary diagnoses. Methods: We collected 251 pairs of cardiology-specific questions from general users and answers from human experts via an internet portal. GPT-4 was tasked with generating responses to the same questions. Three independent cardiologists (SL, JHK, and JJC) evaluated the answers provided by both human experts and GPT-4. Using a computer interface, each evaluator compared the pairs and determined which answer was superior, and they quantitatively measured the clarity and complexity of the questions as well as the accuracy and appropriateness of the responses, applying a 3-tiered grading scale (low, medium, and high). Furthermore, a linguistic analysis was conducted to compare the length and vocabulary diversity of the responses using word count and type-token ratio. Results: GPT-4 and human experts displayed comparable efficacy in medical accuracy ("GPT-4 is better" at 132/251, 52.6% vs "Human expert is better" at 119/251, 47.4%). In accuracy level categorization, humans had more high-accuracy responses than GPT-4 (50/237, 21.1% vs 30/238, 12.6%) but also a greater proportion of low-accuracy responses (11/237, 4.6% vs 1/238, 0.4%; P=.001). GPT-4 responses were generally longer and used a less diverse vocabulary than those of human experts, potentially enhancing their comprehensibility for general users (sentence count: mean 10.9, SD 4.2 vs mean 5.9, SD 3.7; P<.001; type-token ratio: mean 0.69, SD 0.07 vs mean 0.79, SD 0.09; P<.001). Nevertheless, human experts outperformed GPT-4 in specific question categories, notably those related to drug or medication information and preliminary diagnoses. These findings highlight the limitations of GPT-4 in providing advice based on clinical experience. Conclusions: GPT-4 has shown promising potential in automated medical consultation, with comparable medical accuracy to human experts. However, challenges remain particularly in the realm of nuanced clinical judgment. Future improvements in LLMs may require the integration of specific clinical reasoning pathways and regulatory oversight for safe use. Further research is needed to understand the full potential of LLMs across various medical specialties and conditions.


Asunto(s)
Inteligencia Artificial , Cardiología , Humanos , Cardiología/normas
3.
Int Immunopharmacol ; 139: 112677, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39024753

RESUMEN

High-molecular-weight fucoidan (Fucoidan P), sourced from Undaria pinnatifida exhibits several health benefits, including immunomodulation. However, the mechanisms underlying the immune-enhancing effects of Fucoidan P remain unclear. Here, we investigated the immune-enhancing effects and the potential mechanisms of Fucoidan P using RAW 264.7 macrophages and cyclophosphamide (CP)-induced immunosuppression rat model. In macrophages, Fucoidan P showed dose-dependent stimulation by increasing cell proliferation, nitric oxide production, and gene expression of inducible nitric oxide synthase, cyclooxygenase-2, and proinflammatory cytokines. These effects are mediated through the activation of the nuclear factor-kappa B (NF-κB) signaling pathway. Moreover, orally administered Fucoidan P was evaluated in immunosuppressed rats treated with CP. Fucoidan P administration increased hematological values and natural killer cell activity, and positively affected nitrite and prostaglandin E2 levels. The Fucoidan P treatment groups exhibited improved serum cytokine levels as well as splenic and intestinal cytokine mRNA expression compared to the model group. Fucoidan P also mitigated splenic damage and increased the phosphorylation of NF-κB and NF-κB inhibitor alpha (IκBα). Furthermore, Fucoidan P treatment altered the gut microbiota composition, enhancing the alpha diversity, evenness, and abundance of Bacteroidetes, which are associated with immune function. Taken together, our findings suggest that Fucoidan P exerts beneficial effects on immune function by activating NF-κB and modulating gut microbiota. These findings suggested its potential as a therapeutic agent for immune enhancement.

4.
Sci Total Environ ; 947: 174669, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39002599

RESUMEN

With the increasing importance of decarbonization to prevent global climate change, hydrogen supply has received considerable attention from several countries, including Korea and Japan, due to the growing demand for the implementation of a hydrogen economy. This study conducted a comprehensive analysis on hydrogen supply methods from Australia to the Republic of Korea in environmental and economic aspects using a life cycle assessment (LCA). The blue hydrogen produced in Australia was considered for import to the Republic of Korea via ocean shipping. The study analyzed the holistic environmental effects in the life cycle of hydrogen ocean transport for various types of hydrogen storage methods (CH2, LH2, LOHC, LNH3, and LNG), as well as alternative marine fuels (MGO, LNG, LPG, CH2, LH2, LNG-LH2, MeOH, and LNH3) for ship transportation. Environmental impact performance was presented in terms of global warming potential (GWP), acidification potential (AP), photochemical ozone creation potential (POCP), eutrophication potential (EP), and particulate matter (PM). For the environmental results, sensitivity studies were conducted to analyze the effects of operating distance and cargo tank size when shipping hydrogen via ocean transport. Additionally, the GWP results of the transportation of green hydrogen and ammonia were compared with those of blue hydrogen and ammonia transport. A cost analysis was performed for the overall processes of hydrogen ocean transport, and the results were included in the study with the estimated hydrogen price for each transportation method.

5.
Ecotoxicol Environ Saf ; 281: 116665, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38964062

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs), notably benzo[a]pyrene (BaP), are environmental contaminants with multiple adverse ecological implications. Numerous studies have suggested the use of BaP biodegradation using various bacterial strains to remove BaP from the environment. This study investigates the BaP biodegradation capability of Pigmentiphaga kullae strain KIT-003, isolated from the Nak-dong River (South Korea) under specific environmental conditions. The optimum conditions of biodegradation were found to be pH 7.0, 35°C, and a salinity of 0 %. GC-MS analysis suggested alternative pathways by which KIT-003 produced catechol from BaP through several intermediate metabolites, including 4-formylchrysene-5-carboxylic acid, 5,6-dihydro-5,6-dihydroxychrysene-5-carboxylic acid (isomer: 3,4-dihydro-3,4-dihydroxychrysene-4-carboxylic acid), naphthalene-1,2-dicarboxylic acid, and 2-hydroxy-1-naphthoic acid. Proteomic profiles indicated upregulation of enzymes associated with aromatic compound degradation, such as nahAc and nahB, and of those integral to the tricarboxylic acid cycle, reflecting the strain's adaptability to and degradation of BaP. Lipidomic analysis of KIT-003 demonstrated that BaP exposure induced an accumulation of glycerolipids such as diacylglycerol and triacylglycerol, indicating their crucial role in bacterial adaptation mechanisms under BaP stress. This study provides significant scientific knowledge regarding the intricate mechanisms involved in BaP degradation by microorganisms.


Asunto(s)
Benzo(a)pireno , Biodegradación Ambiental , Benzo(a)pireno/metabolismo , Benzo(a)pireno/toxicidad , República de Corea , Proteómica , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/toxicidad , Cromatografía de Gases y Espectrometría de Masas , Catecoles/metabolismo , Ríos/química , Ríos/microbiología , Multiómica
6.
J Am Chem Soc ; 146(28): 19434-19448, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38959476

RESUMEN

Immuno-photodynamic therapy (IPDT) has emerged as a new modality for cancer treatment. Novel photosensitizers can help achieve the promise inherent in IPDT, namely, the complete eradication of a tumor without recurrence. We report here a small molecule photosensitizer conjugate, LuCXB. This IPDT agent integrates a celecoxib (cyclooxygenase-2 inhibitor) moiety with a near-infrared absorbing lutetium texaphyrin photocatalytic core. In aqueous environments, the two components of LuCXB are self-associated through inferred donor-acceptor interactions. A consequence of this intramolecular association is that upon photoirradiation with 730 nm light, LuCXB produces superoxide radicals (O2-•) via a type I photodynamic pathway; this provides a first line of defense against the tumor while promoting IPDT. For in vivo therapeutic applications, we prepared a CD133-targeting, aptamer-functionalized exosome-based nanophotosensitizer (Ex-apt@LuCXB) designed to target cancer stem cells. Ex-apt@LuCXB was found to display good photosensitivity, acceptable biocompatibility, and robust tumor targetability. Under conditions of photoirradiation, Ex-apt@LuCXB acts to amplify IPDT while exerting a significant antitumor effect in both liver and breast cancer mouse models. The observed therapeutic effects are attributed to a synergistic mechanism that combines antiangiogenesis and photoinduced cancer immunotherapy.


Asunto(s)
Celecoxib , Lutecio , Fotoquimioterapia , Fármacos Fotosensibilizantes , Porfirinas , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Animales , Humanos , Porfirinas/química , Porfirinas/farmacología , Ratones , Lutecio/química , Celecoxib/química , Celecoxib/farmacología , Inmunoterapia , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Femenino
7.
Int J Mol Sci ; 25(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39000606

RESUMEN

Sarcopenia refers to an age-related decrease in muscle mass and strength. The gut-muscle axis has been proposed as a promising target to alleviate muscle atrophy. The effect of KL-Biome-a postbiotic preparation comprising heat-killed Lactiplantibacillus plantarum KM-2, its metabolites, and an excipient (soybean powder)-on muscle atrophy was evaluated using dexamethasone (DEX)-induced atrophic C2C12 myoblasts and C57BL/6J mice. KL-Biome significantly downregulated the expression of genes (Atrogin-1 and MuRF1) associated with skeletal muscle degradation but increased the anabolic phosphorylation of FoxO3a, Akt, and mTOR in C2C12 cells. Oral administration of KL-Biome (900 mg/kg) for 8 weeks significantly improved muscle mass, muscle function, and serum lactate dehydrogenase levels in DEX-treated mice. KL-Biome administration increased gut microbiome diversity and reversed DEX-mediated gut microbiota alterations. Furthermore, it significantly increased the relative abundances of the genera Subdologranulum, Alistipes, and Faecalibacterium prausnitzii, which are substantially involved in short-chain fatty acid production. These findings suggest that KL-Biome exerts beneficial effects on muscle atrophy by regulating gut microbiota.


Asunto(s)
Dexametasona , Microbioma Gastrointestinal , Ratones Endogámicos C57BL , Músculo Esquelético , Atrofia Muscular , Animales , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/metabolismo , Atrofia Muscular/inducido químicamente , Ratones , Dexametasona/farmacología , Dexametasona/efectos adversos , Microbioma Gastrointestinal/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Masculino , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteínas Ligasas SKP Cullina F-box/genética , Probióticos/administración & dosificación , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/genética , Sarcopenia/tratamiento farmacológico , Sarcopenia/metabolismo , Sarcopenia/patología , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Línea Celular , Lactobacillus plantarum
8.
Clin Oral Investig ; 28(8): 417, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38972945

RESUMEN

OBJECTIVES: The treatment of fractures prioritizes the restoration of functionality through the realignment of fractured segments. Conventional methods, such as titanium plates, have been employed for this purpose; however, certain limitations have been observed, leading to the development of patient-specific plates. Furthermore, recent advancements in digital technology in dentistry enable the creation of virtual models and simulations of surgical procedures. The aim was to assess the clinical effectiveness of patient-specific plates utilizing digital technology in treating mandibular fractures compared to conventional titanium plates. MATERIALS AND METHODS: Twenty patients diagnosed with mandibular fractures were included and randomly assigned to either the study or control groups. The surgical procedure comprised reduction and internal fixation utilizing patient-specific plates generated through virtual surgery planning with digital models for the study group, while the control group underwent the same procedure with conventional titanium plates. Assessment criteria included the presence of malunion, infection, sensory disturbance, subjective occlusal disturbance and occlusal force in functional maximum intercuspation (MICP). Statistical analysis involved using the Chi-square test and one-way repeated measures analysis of variance. RESULTS: All parameters showed no statistically significant differences between the study and control groups, except for the enhancement in occlusal force in functional MICP, where a statistically significant difference was observed (p = 0.000). CONCLUSION: Using patient-specific plates using digital technology has demonstrated clinical effectiveness in treating mandibular fractures, offering advantages of time efficiency and benefits for less experienced surgeons. CLINICAL RELEVANCE: Patient-specific plates combined with digital technology can be clinically effective in mandibular fracture treatment.


Asunto(s)
Placas Óseas , Fijación Interna de Fracturas , Fracturas Mandibulares , Titanio , Humanos , Fracturas Mandibulares/cirugía , Titanio/química , Masculino , Femenino , Fijación Interna de Fracturas/métodos , Fijación Interna de Fracturas/instrumentación , Adulto , Resultado del Tratamiento , Persona de Mediana Edad , Diseño Asistido por Computadora , Cirugía Asistida por Computador/métodos
9.
J Audiol Otol ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38973325

RESUMEN

Background and Objectives: : Wireless streaming technology (WT), designed to transmit sounds directly from a mobile phone to hearing aids, was developed to enhance the signal-to-noise ratio. However, the advantages of WT during phone use and the specific demographic that can fully benefit from this technology has not been thoroughly evaluated. We aimed to investigate the benefits and identify predictive factors associated with bilateral wireless streaming among hearing aid users. Subjects and Methods: : Eighteen adults with symmetrical, bilateral hearing loss participated in the study. To assess the benefits of wireless streaming during phone use, researchers assessed sentence/word recognition and listening effort in two scenarios: a noisy background with WT turned "OFF" or "ON." Listening effort was evaluated through self-reported measurements. Cognitive function was also assessed using the Montreal Cognitive Assessment (MoCA) score. Results: : Participant mean age was 57.3 years (range 27-70), and the mean MoCA score was 27.0 (23-30). The activation of WT demonstrated a significant improvement in the sentence/word recognition test and reduced listening effort. The MoCA score showed a significant correlation with WT (ρ=0.59, p=0.01), suggesting a positive association between cognitive function and the benefits of WT. Conclusions: : Bilateral wireless streaming may enhance sentence/word recognition and reduce listening effort during phone use in hearing aid users, with these benefits potentially linked to cognitive function.

10.
Biomaterials ; 311: 122696, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38971121

RESUMEN

Cancer immunotherapy has been developed to improve therapeutic effects for patients by activating the innate immune stimulator of interferon gene (STING) pathway. However, most patients cannot benefit from this therapy, mainly due to the problems of excessively low immune responses and lack of tumor specificity. Herein, we report a solution to these two problems by developing a bifunctional platform of black phosphorus quantum dots (BPQDs) for STING agonists. Specifically, BPQDs could connect targeted functional groups and regulate surface zeta potential by coordinating metal ions to increase loading (over 5 times) while maintaining high universality (7 STING agonists). The controlled release of STING agonists enabled specific interactions with their proteins, activating the STING pathway and stimulating the secretion release of immunosuppressive factors by phosphorylating TBK1 and IFN-IRF3 and secreting high levels of immunostimulatory cytokines, including IL-6, IFN-α, and IFN-ß. Moreover, the immunotherapy was enhanced was enhanced mild photothermal therapy (PTT) of BPQDs platform, producing enough T cells to eliminate tumors and prevent tumor recurrence. This work facilitates further research on targeted delivery of small-molecule immune drugs to enhance the development of clinical immunotherapy.

11.
Small ; : e2403737, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949018

RESUMEN

In next-generation neuromorphic computing applications, the primary challenge lies in achieving energy-efficient and reliable memristors while minimizing their energy consumption to a level comparable to that of biological synapses. In this work, hexagonal boron nitride (h-BN)-based metal-insulator-semiconductor (MIS) memristors operating is presented at the attojoule-level tailored for high-performance artificial neural networks. The memristors benefit from a wafer-scale uniform h-BN resistive switching medium grown directly on a highly doped Si wafer using metal-organic chemical vapor deposition (MOCVD), resulting in outstanding reliability and low variability. Notably, the h-BN-based memristors exhibit exceptionally low energy consumption of attojoule levels, coupled with fast switching speed. The switching mechanisms are systematically substantiated by electrical and nano-structural analysis, confirming that the h-BN layer facilitates the resistive switching with extremely low high resistance states (HRS) and the native SiOx on Si contributes to suppressing excessive current, enabling attojoule-level energy consumption. Furthermore, the formation of atomic-scale conductive filaments leads to remarkably fast response times within the nanosecond range, and allows for the attainment of multi-resistance states, making these memristors well-suited for next-generation neuromorphic applications. The h-BN-based MIS memristors hold the potential to revolutionize energy consumption limitations in neuromorphic devices, bridging the gap between artificial and biological synapses.

12.
Nat Commun ; 15(1): 6094, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030167

RESUMEN

Monitoring mechanical stresses in microchannels is challenging. Herein, we report the development of a mechanofluorescence sensor system featuring a fluorogenic single polydiacetylene (PDA) particle, fabricated using a co-flow microfluidic method. We construct a stenotic vessel-mimicking capillary channel, in which the hydrodynamically captured PDA particle is subjected to controlled fluid flows. Fluorescence responses of the PDA particle are directly monitored in real time using fluorescent microscopy. The PDA particle displays significant nonlinear fluorescence emissions influenced by fluid viscosity and the presence of nanoparticles and biomolecules in the fluid. This nonlinear response is likely attributed to the torsion energy along the PDA's main chain backbone. Computational fluid dynamic simulations indicate that the complete blue-to-red transition necessitates ~307 µJ, aligning with prior research. We believe this study offers a unique advantage for simulating specific problematic regions of the human body in an in vitro environment, potentially paving the way for future exploration of difficult-to-access areas within the body.

14.
Hepatology ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39042837

RESUMEN

BACKGROUND AND AIMS: Liver fibrosis represents a global health burden, given the paucity of approved antifibrotic therapies. Liver sinusoidal endothelial cells (LSECs) play a major gatekeeping role in hepatic homeostasis and liver disease pathophysiology. In early tumorigenesis, runt-related transcription factor 3 (RUNX3) functions as a sentinel; however, its function in liver fibrosis in LSECs remains unclear. This study aimed to investigate the role of RUNX3 as an important regulator of the gatekeeping functions of LSECs and explore novel angiocrine regulators of liver fibrosis. APPROACH AND RESULTS: Mice with endothelial Runx3 deficiency develop gradual and spontaneous liver fibrosis secondary to LSEC dysfunction, thereby more prone to liver injury. Mechanistic studies in human immortalized LSECs and mouse primary LSECs revealed that IL-6/JAK/STAT-3 pathway activation was associated with LSEC dysfunction in the absence of RUNX3. Single-cell RNA sequencing and quantitative RT-PCR revealed that leucine-rich alpha-2-glycoprotein 1 (LRG1) was highly expressed in RUNX3-deficient and dysfunctional LSECs. In in vitro and coculture experiments, RUNX3-depleted LSECs secreted LRG1, which activated hepatic stellate cells via TGFBR1-SMAD2/3 signaling in a paracrine manner. Furthermore, circulating LRG1 levels were elevated in mouse models of liver fibrosis and in patients with fatty liver and cirrhosis. CONCLUSIONS: RUNX3 deficiency in the endothelium induces LSEC dysfunction, LRG1 secretion, and liver fibrosis progression. Therefore, endothelial RUNX3 is a crucial gatekeeping factor in LSECs, and profibrotic angiocrine LRG1 may be a novel target for combating liver fibrosis.

15.
Nat Prod Res ; : 1-6, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992973

RESUMEN

There is increasing interest in hair loss treatment because a growing number of people affected. Nepenthes kampotiana Lecomte is known for its anticancer effects, but its potential for preventing hair loss has not been researched. Therefore, this study focused on the hair loss prevention effects of N. kampotiana Lecomte ethanol extract (Nk-EE). The results showed that Nk-EE had a proliferative effect on human follicle dermal papilla cells and inhibited cell death. In vivo experiments using androgenic areata models showed that Nk-EE had a positive effect on a variety of biomarkers such as hair-to-skin ratio, hair type frequency, and hair thickness. The results of this study suggest that Nk-EE has potential as an effective treatment for androgenic alopecia.

16.
Artículo en Inglés | MEDLINE | ID: mdl-38995165

RESUMEN

A Gram-negative, non-motile, and creamy-white coloured bacterium, designated CAU 1616T, was isolated from sea sand collected at Ayajin Beach, Goseong-gun, Republic of Korea. The bacterium was found to grow optimally at 37 °C, pH 8.0-8.5, and with 1-5 % (w/v) NaCl. Phylogenetic analyses based on the 16S rRNA gene sequences placed strain CAU 1616T within the order Rhodospirillales. The highest 16S rRNA gene sequence similarity was to Fodinicurvata fenggangensis YIM D812T (94.1 %), Fodinicurvata sediminis YIM D82T (93.7 %), Fodinicurvata halophila BA45ALT (93.6 %) and Algihabitans albus HHTR 118T (92.3 %). Comparing strain CAU 1616T with closely related species (Fodinicurvata fenggangensis YIM D812T and Fodinicurvata sediminis YIM D82T), the average nucleotide identity based on blast+ values were 69.7-69.8 %, the average amino acid identity values were 61.3-61.4 %, and the digital DNA-DNA hybridization values were 18.4-18.5 %. The assembled draft genome of strain CAU 1616T had 29 contigs with an N50 value of 385.8 kbp, a total length of 3 490 371 bp, and a DNA G+C content of 65.1 mol%. The predominant cellular fatty acids were C18 : 1 2-OH, C19 : 0 cyclo ω8c, and summed feature 8 (C18 : 1 ω6c and/or C18 : 1 ω7c). The major respiratory quinone was Q-10. Based on phenotypic, phylogenetic, and chemotaxonomic evidence, strain CAU 1616T represents a novel genus in the family Rhodovibrionaceae, for which the name Aquibaculum arenosum gen. nov., sp. nov. is proposed. The type strain is CAU 1616T (=KCTC 82428T=MCCC 1K06089T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S , Arena , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , Ácidos Grasos/química , ADN Bacteriano/genética , República de Corea , Arena/microbiología , Agua de Mar/microbiología , Ubiquinona
17.
Clin Infect Dis ; 79(Supplement_1): S53-S62, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38996037

RESUMEN

BACKGROUND: Cholera outbreaks have afflicted Ethiopia, with nearly 100 000 cases and 1030 deaths reported from 2015 to 2023, emphasizing the critical need to understand water, sanitation, and hygiene (WaSH) risk factors. METHODS: We conducted a cross-sectional household (HH) survey among 870 HHs in Shashemene Town and Shashemene Woreda, alongside extracting retrospective cholera case data from the Ethiopian Public Health Institute database. Relationships between WaSH and sociodemographic/economic-levels of HHs were examined. WaSH status and cholera attack rates (ARs) were described at kebele-level using geospatial mapping, and their association was statistically analyzed. RESULTS: Access to basic drinking water, sanitation, and hygiene facilities was limited, with 67.5% (95% confidence interval, 64.4-70.6), 73.4% (70.3-76.3), and 30.3% (27.3-33.3) of HHs having access, respectively. Better WaSH practices were associated with urban residence (adjusted odds ratio, 1.7, [95% confidence interval, 1.1-2.7]), higher educational levels (2.7 [1.2-5.8]), and wealth (2.5 [1.6-4.0]). The association between cholera ARs and at least basic WaSH status was not statistically significant (multiple R2 = 0.13; P = .36), although localized effects were suggested for sanitation (Moran I = 0.22; P = .024). CONCLUSIONS: Addressing gaps in WaSH access and hygiene practices is crucial for reducing cholera risk. Further analyses with meaningful covariates and increased sample sizes are necessary to understand the association between cholera AR and specific WaSH components.


Asunto(s)
Cólera , Higiene , Saneamiento , Humanos , Etiopía/epidemiología , Cólera/epidemiología , Cólera/prevención & control , Higiene/normas , Estudios Transversales , Factores de Riesgo , Masculino , Femenino , Adulto , Adolescente , Brotes de Enfermedades , Estudios Retrospectivos , Agua Potable/microbiología , Adulto Joven , Niño , Composición Familiar , Persona de Mediana Edad , Abastecimiento de Agua/normas , Preescolar
18.
Pharmacology ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39008961

RESUMEN

BACKGROUND: Cholesterol homeostasis in the human body is a crucial process that involves a delicate balance between dietary cholesterol absorption in the intestine and de novo cholesterol synthesis in the liver. Both pathways contribute significantly to the overall pool of cholesterol in the body, influencing plasma cholesterol levels and impacting cardiovascular health. Elevated absorption of cholesterol in the intestines has a suppressive impact on the synthesis of cholesterol in the liver, serving to preserve cholesterol balance. Nonetheless, the precise mechanisms driving this phenomenon remain largely unclear. SUMMARY: This review aims to discuss the previously unrecognized role of cholesin and GPR146 in the regulation of cholesterol biosynthesis, providing a novel conceptual framework for understanding cholesterol homeostasis. KEY MESSAGES: The discovery of cholesin, a novel protein implicated in the regulation of cholesterol homeostasis, represents a significant advancement in our understanding of cholesterol biosynthesis and its associated pathways. The cholesin-GPR146 axis could have profound implications across various therapeutic areas concerning abnormal cholesterol metabolism, offering new hope for patients and improving overall healthcare outcomes.

19.
Anim Cells Syst (Seoul) ; 28(1): 340-352, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39011371

RESUMEN

Preventing disease and maintaining the health of the elderly are crucial goals for an aging population, with obesity and immune function restoration being of paramount importance. Obesity, particularly visceral obesity characterized by excessive fat accumulation around the abdominal organs, is linked to chronic conditions such as diabetes, hypertension, cardiovascular diseases, and immune dysfunction. Globally, obesity is considered a disease, prompting significant research interest in its treatment. Therefore, it is essential to explore potential therapeutic and preventive strategies to address obesity and the decline in immune function brought about by aging. Tenebrio molitor larvae (TML), commonly known as 'mealworms,' are rich in unsaturated fatty acids, including oleic and linoleic acids, and essential amino acids, such as isoleucine and tyrosine. In this study, we aimed to investigate the effects of the consumption of TML oil and mealworm fermented extract (MWF-1) on obesity and immunological changes in aged obese mice. Our data showed reduced body fat in 23-week-old C57BL/6 mice fed processed TML products for 6 weeks. Additionally, the characteristically high levels of serum triglycerides decreased by treating with TML oil. The immune responsiveness results confirmed an increase in B cells by treating with MWF-1, while cytokine levels (interferon-gamma, tumor necrosis factor-alpha, interleukin-2, and -6) were restored to levels similar to young mice. These results suggest that TML oil and MWF-1 are promising dietary supplements for addressing obesity and restoring immune function.

20.
Adv Sci (Weinh) ; : e2405374, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013112

RESUMEN

This study delves into the development of a novel 10 by 10 sensor array featuring 100 pressure sensor pixels, achieving remarkable sensitivity up to 888.79 kPa-1, through the innovative design of sensor structure. The critical challenge of strain sensitivity inherent is addressed in stretchable piezoresistive pressure sensors, a domain that has seen significant interest due to their potential for practical applications. This approach involves synthesizing and electrospinning polybutadiene-urethane (PBU), a reversible cross-linking polymer, subsequently coated with MXene nanosheets to create a conductive fabric. This fabrication technique strategically enhances sensor sensitivity by minimizing initial current values and incorporating semi-cylindrical electrodes with Ag nanowires (AgNWs) selectively coated for optimal conductivity. The application of a pre-strain method to electrode construction ensures strain immunity, preserving the sensor's electrical properties under expansion. The sensor array demonstrated remarkable sensitivity by consistently detecting even subtle airflow from an air gun in a wind sensing test, while a novel deep learning methodology significantly enhanced the long-term sensing accuracy of polymer-based stretchable mechanical sensors, marking a major advancement in sensor technology. This research presents a significant step forward in enhancing the reliability and performance of stretchable piezoresistive pressure sensors, offering a comprehensive solution to their current limitations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA