Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732060

RESUMEN

The human gut microbiota, an intricate ecosystem within the gastrointestinal tract, plays a pivotal role in health and disease. Prebiotics, non-digestible food ingredients that beneficially affect the host by selectively stimulating the growth and/or activity of beneficial microorganisms, have emerged as a key modulator of this complex microbial community. This review article explores the evolution of the prebiotic concept, delineates various types of prebiotics, including fructans, galactooligosaccharides, xylooligosaccharides, chitooligosaccharides, lactulose, resistant starch, and polyphenols, and elucidates their impact on the gut microbiota composition. We delve into the mechanisms through which prebiotics exert their effects, particularly focusing on producing short-chain fatty acids and modulating the gut microbiota towards a health-promoting composition. The implications of prebiotics on human health are extensively reviewed, focusing on conditions such as obesity, inflammatory bowel disease, immune function, and mental health. The review further discusses the emerging concept of synbiotics-combinations of prebiotics and probiotics that synergistically enhance gut health-and highlights the market potential of prebiotics in response to a growing demand for functional foods. By consolidating current knowledge and identifying areas for future research, this review aims to enhance understanding of prebiotics' role in health and disease, underscoring their importance in maintaining a healthy gut microbiome and overall well-being.


Asunto(s)
Microbioma Gastrointestinal , Prebióticos , Humanos , Probióticos/farmacología , Obesidad/microbiología , Obesidad/dietoterapia , Obesidad/metabolismo , Ácidos Grasos Volátiles/metabolismo , Animales , Enfermedades Inflamatorias del Intestino/microbiología , Enfermedades Inflamatorias del Intestino/dietoterapia
3.
Biomedicines ; 12(4)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38672155

RESUMEN

In patients with ulcerative colitis (UC), the development of an antidrug antibody (ADA) to anti-tumor necrosis factor (TNF)α agent is a crucial problem which aggravates the clinical course of the disease, being cited as one of the most common causes for discontinuing anti-TNFα treatment. This is due to ADA eventually causing secondary LOR, leading to discontinuation of anti-TNFα treatment. Recently, research on the microbiome and relationship between worsening UC and dysbiosis has been conducted. Further, investigations on the association between the microbiome and secondary LOR are increasing. Here, we present the therapeutic effect of fecal microbiota transplantation (FMT) on a 42-year-old man with secondary LOR and high ADA levels. FMT has recently been used for the treatment of, and for overcoming, drug resistance through microbiome modification. Stool samples were collected from the patient before and 4 weeks after FMT. Symptoms, including hematochezia and Mayo endoscopy sub-scores, improved after FMT, while ADA levels decreased by one-third to less than half the value (29 ng/mL) compared to before FMT (79 ng/mL). Additionally, the trough level of infliximab became measurable, which reflects the improvement in the area under the concentration (AUC). Butyricicoccus, Faecalibacterium, Bifidobacterium, Ligilactobacillus, Alistipes, and Odoribacter, which regulate immune responses and alleviate inflammation, also increased after FMT. We report a case in which microbiome modification by FMT increased the AUC of anti-TNFα in a patient who developed secondary LOR during anti-TNFα treatment, thereby improving symptoms and mucosal inflammation.

4.
Ther Adv Neurol Disord ; 17: 17562864231218181, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38250318

RESUMEN

Background: The brain-gut axis has emerged as a potential target in neurodegenerative diseases, including dementia, as individuals with dementia exhibit distinct gut microbiota compositions. Fecal microbiota transplantation (FMT), the transfer of fecal solution from a healthy donor to a patient, has shown promise in restoring homeostasis and cognitive enhancement. Objective: This study aimed to explore the effects of FMT on specific cognitive performance measures in Alzheimer's dementia (AD) patients and investigate the relationship between cognition and the gut microbiota by evaluating changes in gene expression following FMT. Methods: Five AD patients underwent FMT, and their cognitive function [Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), and Clinical Dementia Rating Scale Sum of Boxes (CDR-SOB)] was assessed before and after FMT. The patients' fecal samples were analyzed with 16S rRNA to compare the composition of their gut microbiota. We also assessed modifications in the serum mRNA expression of patients' genes related to lipid metabolism using serum RNA sequencing and quantitative real-time polymerase chain reaction. Results: Significant improvements in cognitive function, as measured by the MMSE (pre- and post-FMT was 13.00 and 18.00) and MoCA were seen. The MoCA scores at 3 months post-FMT (21.0) were the highest (12.0). The CDR-SOB scores at pre- and post-FMT were 10.00 and 5.50, respectively. Analysis of the gut microbiome composition revealed changes via 16S rRNA sequencing with an increase in Bacteroidaceae and a decrease in Enterococcaceae. Gene expression analysis identified alterations in lipid metabolism-related genes after FMT. Conclusion: These findings suggest a link between alterations in the gut microbiome, gene expression related to lipid metabolism, and cognitive function. The study highlights the importance of gut microbiota in cognitive function and provides insights into potential biomarkers for cognitive decline progression. FMT could complement existing therapies and show potential as a therapeutic intervention to mitigate cognitive decline in AD.

5.
Front Nutr ; 10: 1249358, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38024360

RESUMEN

Introduction: Green banana flour can be used as a prebiotic due to its ability to promote gut health and provide several health benefits. In this study, we investigated whether feeding mice green banana flour at different doses would alter intestinal microbiota composition. Methods: We fed C57BL/6N mice either a Low-dose (500 mg/kg/day) or High-dose (2000 mg/kg/day) of green banana flour daily for 3 weeks, and fecal samples were collected on days 0, 14, and 21 for microbiota analysis. Results: Our results showed that the composition of intestinal microbiota was significantly altered by day 21, regardless of the dose. Notably, the consumption of green banana flour increased the presence of beneficial bacteria, including Coriobacteriaceae_UCG-002, Turicibacter, Parasutterella, Gastranaerophilales_ge, and RF39_ge. These changes in the intestinal microorganisms were accompanied by increased biological processes such as amino acid biosynthesis and secondary metabolite biosynthesis. Conversely, the consumption of green banana flour resulted in a decrease in biological processes related to carbohydrate degradation, glycerol degradation, and similar functions. Discussion: These results emphasize the potential of green banana flour as a prebiotic that can benefit the gut microbiome.

6.
Viruses ; 15(9)2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37766351

RESUMEN

Since its initial report in Vietnam in early 2019, the African swine fever (ASF), a highly lethal and severe viral swine disease worldwide, continues to cause outbreaks in other Southeast Asian countries. This study analyzed and compared the genomic sequences of ASF viruses (ASFVs) during the first outbreak in Hung Yen (VN/HY/2019-ASFV1) and Quynh Phu provinces (VN/QP/2019-ASFV1) in Vietnam in 2019, and the subsequent outbreak in Hung Yen (VN/HY/2022-ASFV2) in 2022, to those of other ASFV strains. VN/HY/2019-ASFV1, VN/QP/2019-ASFV1, and VN/HY/2022-ASFV2 genomes were 189,113, 189,081, and 189,607 bp in length, encoding 196, 196, and 203 open reading frames (ORFs), respectively. VN/HY/2019-ASFV1 and VN/QP/2019-ASFV1 shared a 99.91-99.99% average nucleotide identity with genotype II strains. Variations were identified in 28 ORFs in VN/HY/2019-ASFV1 and VN/QP/2019-ASFV1 compared to 20 ASFV strains, and 16 ORFs in VN/HY/2022-ASFV2 compared to VN/HY/2019-ASFV1 and VN/QP/2019-ASFV1. Vietnamese ASFV genomes were classified as IGR II variants between the I73R and I329L genes, with two copy tandem repeats between the A179L and A137R genes. A phylogenetic analysis based on the whole genomes of 27 ASFV strains indicated that the Vietnamese ASFV strains are genetically related to Estonia 2014, ASFV-SY18, and Russia/Odintsovo_02/14. These results reveal the complete genome sequences of ASFV circulating during the first outbreak in 2019, providing important insights into understanding the evolution, transmission, and genetic variation of ASFV in Vietnam.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Animales , Porcinos , Virus de la Fiebre Porcina Africana/genética , Vietnam/epidemiología , Fiebre Porcina Africana/epidemiología , Filogenia , Brotes de Enfermedades
7.
Nutrients ; 15(11)2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37299573

RESUMEN

Alterations in the intestinal microbial flora are known to cause various diseases, and many people routinely consume probiotics or prebiotics to balance intestinal microorganisms and the growth of beneficial bacteria. In this study, we selected a peptide from fish (tilapia) skin that induces significant changes in the intestinal microflora of mice and reduces the Firmicutes/Bacteroidetes ratio, which is linked to obesity. We attempted to verify the anti-obesity effect of selected fish collagen peptides in a high-fat-diet-based obese mouse model. As anticipated, the collagen peptide co-administered with a high-fat diet significantly inhibited the increase in the Firmicutes/Bacteroidetes ratio. It increased specific bacterial taxa, including Clostridium_sensu_stricto_1, Faecalibaculum, Bacteroides, and Streptococcus, known for their anti-obesity effects. Consequently, alterations in the gut microbiota resulted in the activation of metabolic pathways, such as polysaccharide degradation and essential amino acid synthesis, which are associated with obesity inhibition. In addition, collagen peptide also effectively reduced all obesity signs caused by a high-fat diet, such as abdominal fat accumulation, high blood glucose levels, and weight gain. Ingestion of collagen peptides derived from fish skin induced significant changes in the intestinal microflora and is a potential auxiliary therapeutic agent to suppress the onset of obesity.


Asunto(s)
Bacteroidetes , Firmicutes , Animales , Ratones , Obesidad/metabolismo , Aumento de Peso , Bacterias , Dieta Alta en Grasa , Péptidos/farmacología , Ratones Endogámicos C57BL
8.
Microbiol Spectr ; 11(4): e0278022, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37358445

RESUMEN

Microbes found in the digestive tracts of insects are known to play an important role in their host's behavior. Although Lepidoptera is one of the most varied insect orders, the link between microbial symbiosis and host development is still poorly understood. In particular, little is known about the role of gut bacteria in metamorphosis. Here, we explored gut microbial biodiversity throughout the life cycle of Galleria mellonella, using amplicon pyrosequencing with the V1 to V3 regions, and found that Enterococcus spp. were abundant in larvae, while Enterobacter spp. were predominant in pupae. Interestingly, eradication of Enterococcus spp. from the digestive system accelerated the larval-to-pupal transition. Furthermore, host transcriptome analysis demonstrated that immune response genes were upregulated in pupae, whereas hormone genes were upregulated in larvae. In particular, regulation of antimicrobial peptide production in the host gut correlated with developmental stage. Certain antimicrobial peptides inhibited the growth of Enterococcus innesii, a dominant bacterial species in the gut of G. mellonella larvae. Our study highlights the importance of gut microbiota dynamics on metamorphosis as a consequence of the active secretion of antimicrobial peptides in the G. mellonella gut. IMPORTANCE First, we demonstrated that the presence of Enterococcus spp. is a driving force for insect metamorphosis. RNA sequencing and peptide production subsequently revealed that antimicrobial peptides targeted against microorganisms in the gut of Galleria mellonella (wax moth) did not kill Enterobacteria species, but did kill Enterococcus species, when the moth was at a certain stage of growth, and this promoted moth pupation.


Asunto(s)
Enterococcus , Mariposas Nocturnas , Animales , Enterococcus/genética , Mariposas Nocturnas/microbiología , Larva/microbiología , Insectos , Bacterias , Péptidos Antimicrobianos , Dinámica Poblacional
9.
J Antimicrob Chemother ; 78(4): 923-932, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36880170

RESUMEN

BACKGROUND: Although polymyxin has been used as a last-resort antibiotic against resistant bacteria, its use is restricted due to nephrotoxicity and neurotoxicity. While the present antibiotic resistance issue compels clinicians to reconsider polymyxin use in severe illness cases, polymyxin-resistant microorganisms exert an effect. OBJECTIVES: To address the issue of antibiotic resistance, the cycle of developing new antibiotics to counteract emerging resistance must be discontinued. Here we tried to develop novel therapies that do not rely on direct antimicrobial activity and thus do not promote antibiotic resistance. METHODS: By a high-throughout screening system based on bacterial respiration, chemical compounds accelerating the antimicrobial effects of polymyxin B were screened. In vitro and in vivo tests were performed to validate adjuvanticity. In addition, membrane depolarization and total transcriptome analysis were used to determine molecular mechanisms. RESULTS: PA108, a newly discovered chemical compound, was used to eradicate polymyxin-resistant A. baumannii and three other species in the presence of polymyxin B at concentrations less than the MIC. Since this molecule lacks self-bactericidal action, we hypothesized that PA108 acts as an antibiotic adjuvant, enhancing the antimicrobial activity of polymyxin B against resistant bacteria. At working concentrations, no toxicity was observed in cell lines or mice, although co-treatment with PA108 and polymyxin B increased survival of infected mouse and decreased bacterial loads in organs. CONCLUSIONS: Boosting antibiotic efficiency through the use of antibiotic adjuvants holds significant promise for tackling the rise in bacterial antibiotic resistance.


Asunto(s)
Acinetobacter baumannii , Polimixina B , Animales , Ratones , Polimixina B/farmacología , Farmacorresistencia Bacteriana Múltiple , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Polimixinas/farmacología , Pruebas de Sensibilidad Microbiana
11.
Aging (Albany NY) ; 14(16): 6449-6466, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35980280

RESUMEN

After fecal microbiota transplantation (FMT) to treat Clostridioides difficile infection (CDI), cognitive improvement is noticeable, suggesting an essential association between the gut microbiome and neural function. Although the gut microbiome has been associated with cognitive function, it remains to be elucidated whether fecal microbiota transplantation can improve cognition in patients with cognitive decline. The study included 10 patients (age range, 63-90 years; female, 80%) with dementia and severe CDI who were receiving FMT. Also, 10 patients (age range, 62-91; female, 80%) with dementia and severe CDI who were not receiving FMT. They were evaluated using cognitive function tests (Mini-Mental State Examination [MMSE] and Clinical Dementia Rating scale Sum of Boxes [CDR-SB]) at 1 month before and after FMT or antibiotics treatment (control group). The patients' fecal samples were analyzed to compare the composition of their gut microbiota before and 3 weeks after FMT or antibiotics treatment. Ten patients receiving FMT showed significantly improvements in clinical symptoms and cognitive functions compared to control group. The MMSE and CDR-SB of FMT group were improved compare to antibiotics treatment (MMSE: 16.00, median, 13.00-18.00 [IQR] vs. 10.0, median, 9.8-15.3 [IQR]); CDR-SB: 5.50, median, 4.00-8.00 [IQR]) vs. 8.0, median, 7.9-12.5, [IQR]). FMT led to changes in the recipient's gut microbiota composition, with enrichment of Proteobacteria and Bacteroidetes. Alanine, aspartate, and glutamate metabolism pathways were also significantly different after FMT. This study revealed important interactions between the gut microbiome and cognitive function. Moreover, it suggested that FMT may effectively delay cognitive decline in patients with dementia.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Disfunción Cognitiva , Demencia , Anciano , Anciano de 80 o más Años , Antibacterianos/uso terapéutico , Infecciones por Clostridium/complicaciones , Infecciones por Clostridium/microbiología , Infecciones por Clostridium/terapia , Cognición , Disfunción Cognitiva/terapia , Trasplante de Microbiota Fecal , Heces/microbiología , Femenino , Humanos , Resultado del Tratamiento
12.
Medicine (Baltimore) ; 101(12): e29135, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35357354

RESUMEN

RATIONALE: Cronkhite-Canada syndrome (CCS) is a rare non-hereditary disease of unknown etiology that is characterized by the appearance of multiple polyps in the entire gastrointestinal (GI) tract, except in the esophagus, with GI and non-GI symptoms. Various factors are associated with the pathogenesis of CCS. Immune dysregulation has been discussed as one of the pathogeneses of CCS, and dysbiosis of the gut microbiota can affect the immune system. Currently, standard treatment has not been established. PATIENT CONCERNS AND DIAGNOSIS: We present the treatment with fecal microbiota transplantation (FMT) in a 67-year-old male patient with steroid-refractory CCS who could not undergo anti-tumor necrosis factor-a treatment due to suspected tuberculosis infection. INTERVENTIONS: FMT has recently attracted attention as a method of overcoming drug resistance through immunomodulatory effects through microbiome regulation. We collected the patient's stool samples before FMT and 8weeks after FMT. OUTCOMES: We analyzed the microbiome composition of patients by sequencing the V3-V4 region of the 16s rRNA gene (Miseq). After FMT, the number of episodes of diarrhea and hypoalbuminemia were also corrected. The Chao 1 index after FMT, which was significantly higher than that of donors before FMT, changed to a similar level for donors after FMT. Fusobacterium nucleatum, Pyramidobacter piscolens, and Campylobacter concisus disappeared after FMT, suggesting the presence of an association between gut microbiota and CCS. LESSONS: Furthermore, we provide the possibility that microbiome modulation by FMT could serve as a complementary treatment in patients with steroid-refractory CCS.


Asunto(s)
Trasplante de Microbiota Fecal , Poliposis Intestinal , Anciano , Trasplante de Microbiota Fecal/métodos , Heces/microbiología , Humanos , Poliposis Intestinal/terapia , Masculino , ARN Ribosómico 16S/genética , Esteroides
13.
EMBO Mol Med ; 14(1): e14678, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34842355

RESUMEN

Shiga toxins (Stxs) produced by enterohemorrhagic Escherichia coli (EHEC) are the major virulence factors responsible for hemorrhagic colitis, which can lead to life-threatening systemic complications including acute renal failure (hemolytic uremic syndrome) and neuropathy. Here, we report that O-GlcNAcylation, a type of post-translational modification, was acutely increased upon induction of endoplasmic reticulum (ER) stress in host cells by Stxs. Suppression of the abnormal Stx-mediated increase in O-GlcNAcylation effectively inhibited apoptotic and inflammatory responses in Stx-susceptible cells. The protective effect of O-GlcNAc inhibition for Stx-mediated pathogenic responses was also verified using three-dimensional (3D)-cultured spheroids or organoids mimicking the human kidney. Treatment with an O-GlcNAcylation inhibitor remarkably improved the major disease symptoms and survival rate for mice intraperitoneally injected with a lethal dose of Stx. In conclusion, this study elucidates O-GlcNAcylation-dependent pathogenic mechanisms of Stxs and demonstrates that inhibition of aberrant O-GlcNAcylation is a potential approach to treat Stx-mediated diseases.


Asunto(s)
Infecciones por Escherichia coli , Síndrome Hemolítico-Urémico , Animales , Estrés del Retículo Endoplásmico , Síndrome Hemolítico-Urémico/patología , Riñón/patología , Ratones , Toxina Shiga/metabolismo , Toxinas Shiga
14.
Environ Microbiol ; 23(11): 7245-7254, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34668292

RESUMEN

Cryptic prophages are not genomic junk but instead enable cells to combat myriad stresses as an active stress response. How these phage fossils affect persister cell resuscitation has, however, not been explored. Persister cells form as a result of stresses such as starvation, antibiotics and oxidative conditions, and resuscitation of these persister cells likely causes recurring infections such as those associated with tuberculosis, cystic fibrosis and Lyme disease. Deletion of each of the nine Escherichia coli cryptic prophages has no effect on persister cell formation. Strikingly, elimination of each cryptic prophage results in an increase in persister cell resuscitation with a dramatic increase in resuscitation upon deleting all nine prophages. This increased resuscitation includes eliminating the need for a carbon source and is due to activation of the phosphate import system resulting from inactivating the transcriptional regulator AlpA of the CP4-57 cryptic prophage. Deletion of alpA increases persister resuscitation, and AlpA represses phosphate regulator PhoR. Both phosphate regulators PhoP and PhoB stimulate resuscitation. This suggests a novel cellular stress mechanism controlled by cryptic prophages: regulation of phosphate uptake which controls the exit of the cell from dormancy and prevents premature resuscitation in the absence of nutrients.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Humanos , Nutrientes , Profagos/genética
15.
Curr Med Res Opin ; 37(10): 1739-1744, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34289768

RESUMEN

After fecal microbiota transplantation (FMT) to treat Clostridioides difficile infection (CDI), cognitive improvement is noticeable, suggesting an essential association between the gut microbiome and neural function. Although it is known that the gut microbiome is linked with cognitive function, whether FMT may lead to cognitive improvement in patients with neurodegenerative disorders remains to be elucidated. We present the case of a 90-year-old woman with Alzheimer's dementia and severe CDI who underwent FMT. Cognitive function testing (Mini-Mental State Examination, Montreal Cognitive Assessment, and Clinical Dementia Rating assessment) was performed one month before FMT and one week and one month after FMT. We collected the patients' fecal samples before FMT and 3 weeks after FMT to compare the microbiota composition. The 16S rRNA gene amplicons were analyzed using the QIIME2 platform (version 2020.2) and the Phyloseq R package. The linear discriminant analysis effect size was performed to determine the taxonomic difference between pre- and post-FMT. Functional biomarker analysis using the Kruskal-Wallis H test was performed between the pre- and post-FMT. The cognitive function tests after FMT showed an improvement compared to the tests before the procedure. FMT changed the microbiota composition in recipient feces. We found that the genera were reported to be associated with cognitive function. In addition, short-chain fatty acids were found to be significantly different between before and after FMT. This finding suggests the presence of an association between the gut microbiome and cognitive function. Further, it emphasizes the need for clinical awareness regarding the effect of FMT on the brain-gut-microbiome axis and its potential as a therapy for patients with dementia.


Asunto(s)
Enfermedad de Alzheimer , Clostridioides difficile , Infecciones por Clostridium , Anciano de 80 o más Años , Enfermedad de Alzheimer/terapia , Infecciones por Clostridium/terapia , Cognición , Trasplante de Microbiota Fecal , Heces , Femenino , Humanos , ARN Ribosómico 16S/genética , Resultado del Tratamiento
16.
Comput Struct Biotechnol J ; 18: 2494-2500, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33005311

RESUMEN

Archaea are members of most microbiomes. While archaea are highly abundant in extreme environments, they are less abundant and diverse in association with eukaryotic hosts. Nevertheless, archaea are a substantial constituent of plant-associated ecosystems in the aboveground and belowground phytobiome. Only a few studies have investigated the role of archaea in plant health and its potential symbiosis in ecosystems. This review discusses recent progress in identifying how archaea contribute to plant traits such as growth, adaptation to abiotic stresses, and immune activation. We synthesized the most recent functional and molecular data on archaea, including root colonization and the volatile emission to activate plant systemic immunity. These data represent a paradigm shift in our understanding of plant-microbiota interactions.

17.
Biosens Bioelectron ; 167: 112514, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32866713

RESUMEN

Current techniques for Gram-typing and for diagnosing a pathogen at the early infection stage rely on Gram stains, cultures, Enzyme linked immunosorbent assay (ELISA), polymerase chain reaction (PCR), and gene microarrays, which are labor-intensive and time-consuming approaches. In addition, a delayed or imprecise diagnosis of clinical pathogenic bacteria leads to a life-threatening emergency or overuse of antibiotics and a high-rate occurrence of antimicrobial-resistance microbes. Herein, we report high-performance antibiotics (as bioprobes) conjugated graphene micropattern field-effect transistors (ABX-GMFETs) to facilitate on-site Gram-typing and help in the detection of the presence or absence of Gram-negative and -positive bacteria in the samples. The ABX-GMFET platform, which consists of recognition probes and GM transistors conjugated with novel interfacing chemical compounds, was integrated into the microfluidics to minimize the required human intervention and facilitate automation. The mechanism of binding of ABX-GMFET was based on a charge or chemical moiety interaction between the bioprobes and target bacteria. Subsequently, ABX-GMFETs exhibited unprecedented high sensitivity with a limit of detection (LOD) of 100 CFU/mL (1-9 CFU/mL), real-time target specificity.


Asunto(s)
Técnicas Biosensibles , Grafito , Bacterias , Humanos , Límite de Detección , Reacción en Cadena de la Polimerasa
18.
Artículo en Inglés | MEDLINE | ID: mdl-32582571

RESUMEN

Following infection with certain strains of Shiga toxin-producing Escherichia coli (STEC), particularly enterohemorrhagic ones, patients are at elevated risk for developing life-threatening extraintestinal complications, such as acute renal failure. Hence, these bacteria represent a public health concern in both developed and developing countries. Shiga toxins (Stxs) expressed by STEC are highly cytotoxic class II ribosome-inactivating proteins and primary virulence factors responsible for major clinical signs of Stx-mediated pathogenesis, including bloody diarrhea, hemolytic uremic syndrome (HUS), and neurological complications. Ruminant animals are thought to serve as critical environmental reservoirs of Stx-producing Escherichia coli (STEC), but other emerging or arising reservoirs of the toxin-producing bacteria have been overlooked. In particular, a number of new animal species from wildlife and aquaculture industries have recently been identified as unexpected reservoir or spillover hosts of STEC. Here, we summarize recent findings about reservoirs of STEC and review outbreaks of these bacteria both within and outside the United States. A better understanding of environmental transmission to humans will facilitate the development of novel strategies for preventing zoonotic STEC infection.


Asunto(s)
Infecciones por Escherichia coli , Síndrome Hemolítico-Urémico , Escherichia coli Shiga-Toxigénica , Animales , Brotes de Enfermedades , Infecciones por Escherichia coli/epidemiología , Síndrome Hemolítico-Urémico/epidemiología , Humanos , Toxinas Shiga , Escherichia coli Shiga-Toxigénica/genética
19.
Environ Microbiol ; 22(7): 2485-2495, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32307848

RESUMEN

Interactions between pathogenic microorganisms and their hosts are varied and complex, encompassing open-field scale interactions to interactions at the molecular level. The capacity of plant pathogenic bacteria and fungi to cause diseases in human and animal systems was, until recently, considered of minor importance. However, recent evidence suggests that animal and human infections caused by plant pathogenic fungi, bacteria and viruses may have critical impacts on human and animal health and safety. This review analyses previous research on plant pathogens as causal factors of animal illness. In addition, a case study involving disruption of type III effector-mediated phagocytosis in a human cell line upon infection with an opportunistic phytopathogen, Pseudomonas syringae pv. tomato, is discussed. Further knowledge regarding the molecular interactions between plant pathogens and human and animal hosts is needed to understand the extent of disease incidence and determine mechanisms for disease prevention.


Asunto(s)
Infecciones Bacterianas/transmisión , Hongos/patogenicidad , Micosis/transmisión , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/patogenicidad , Animales , Proteínas Bacterianas/metabolismo , Hongos/metabolismo , Humanos , Solanum lycopersicum/microbiología , Pseudomonas syringae/metabolismo
20.
Cell Death Dis ; 11(4): 231, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32286254

RESUMEN

Malignant melanoma is a fatal disease that rapidly spreads to the whole body. Treatments have limited efficiency owing to drug resistance and various side effects. Pseudomonas syringae pv. tomato (Pto) is a model bacterial pathogen capable of systemic infection in plants. Pto injects the effector protein HopQ into the plant cytosol via a type III secretion machinery and suppresses the host immunity. Intriguingly, host plant proteins regulated by HopQ are conserved even in humans and conferred in tumor metastasis. Nevertheless, the potential for HopQ to regulate human cancer metastasis was unknown. In this study, we addressed the suitability of HopQ as a possible drug against melanoma metastasis. In melanoma cells, overexpressed HopQ is phosphorylated and bound to 14-3-3 through its N-terminal domain, resulting in stronger interaction between HopQ and vimentin. The binding of HopQ to vimentin allowed for degradation of vimentin via p62-dependent selective autophagy. Attenuation of vimentin expression by HopQ inhibited melanoma motility and in vivo metastasis. These findings demonstrated that HopQ directly degraded vimentin in melanoma cells and could be applied to an inhibitor of melanoma metastasis.


Asunto(s)
Melanoma/tratamiento farmacológico , Vimentina/uso terapéutico , Animales , Autofagia , Movimiento Celular , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Metástasis de la Neoplasia , Fosforilación , Transfección , Vimentina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...