Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Genomics ; 116(2): 110805, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38309446

RESUMEN

The gut plays a key role in regulating metabolic health. Dietary factors disrupt intestinal physiology and contribute to obesity and diabetes, whereas bariatric procedures such as vertical sleeve gastrectomy (VSG) cause gut adaptations that induce robust metabolic improvements. However, our understanding of these adaptations at the cellular and molecular levels remains limited. In a validated murine model, we leverage single-cell transcriptomics to determine how VSG impacts different cell lineages of the small intestinal epithelium. We define cell type-specific genes and pathways that VSG rescues from high-fat diet perturbation and characterize additional rescue-independent changes brought about by VSG. We show that Paneth cells have increased expression of the gut peptide Reg3g after VSG. We also find that VSG restores pathways pertaining to mitochondrial respiration and cellular metabolism, especially within crypt-based cells. Overall, our study provides unprecedented molecular resolution of VSG's therapeutic effects on the gut epithelium.


Asunto(s)
Gastrectomía , Obesidad , Ratones , Humanos , Animales , Gastrectomía/métodos , Mucosa Intestinal/metabolismo , Dieta Alta en Grasa/efectos adversos
2.
J Cancer ; 14(12): 2224-2235, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37576393

RESUMEN

The anti-proliferative effects of a newly developed N3-acyl-N5-aryl-3,5-diaminoindazole analog, KMU-191, have been previously evaluated in various cancer cells. However, the detailed anti-cancer molecular mechanisms of KMU-191 remain unknown. In this study, we investigated anti-cancer mechanisms by which KMU-191 regulates apoptosis-related genes in human clear cell renal cell carcinoma Caki cells. KMU-191 induced poly ADP-ribose polymerase cleavage and caspase-dependent apoptosis. In addition, KMU-191 induced down-regulation of the long form of cellular FADD-like IL-1ß-converting enzyme inhibitory protein (c-FLIP (L)) at the transcriptional level as well as that of long form of myeloid cell leukemia (Mcl-1 (L)) and B-cell lymphoma-extra large at the post-transcriptional level. Furthermore, KMU-191-induced apoptosis was closely associated with the Mcl-1 (L) down-regulation, but also partially associated with c-FLIP (L) down-regulation. In contrast, KMU-191 up-regulated p53, which is closely related to KMU-191-induced apoptosis. Although KMU-191 showed cytotoxicity of normal cells, it unusually did not induce cardiotoxicity. Taken together, these results suggest that a multi-target small molecule, N3-acyl-N5-aryl-3,5-diaminoindazole analog, KMU-191 is a potential anti-cancer agent that does not induce cardiotoxicity.

3.
Front Pharmacol ; 14: 1220796, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37649890

RESUMEN

Due to the outbreak of the SARS-CoV-2 virus, drug repurposing and Emergency Use Authorization have been proposed to treat the coronavirus disease 2019 (COVID-19) during the pandemic. While the efficiency of the drugs has been discussed, it was identified that certain compounds, such as chloroquine and hydroxychloroquine, cause QT interval prolongation and potential cardiotoxic effects. Drug-induced cardiotoxicity and QT prolongation may lead to life-threatening arrhythmias such as torsades de pointes (TdP), a potentially fatal arrhythmic symptom. Here, we evaluated the risk of repurposed pyronaridine or artesunate-mediated cardiac arrhythmias alone and in combination for COVID-19 treatment through in vitro and in silico investigations using the Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative. The potential effects of each drug or in combinations on cardiac action potential (AP) and ion channels were explored using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and Chinese hamster ovary (CHO) cells transiently expressing cardiac ion channels (Nav1.5, Cav1.2, and hERG). We also performed in silico computer simulation using the optimized O'Hara-Rudy human ventricular myocyte model (ORd model) to classify TdP risk. Artesunate and dihydroartemisinin (DHA), the active metabolite of artesunate, are classified as a low risk of inducing TdP based on the torsade metric score (TMS). Moreover, artesunate does not significantly affect the cardiac APs of hiPSC-CMs even at concentrations up to 100 times the maximum serum concentration (Cmax). DHA modestly prolonged at APD90 (10.16%) at 100 times the Cmax. When considering Cmax, pyronaridine, and the combination of both drugs (pyronaridine and artesunate) are classified as having an intermediate risk of inducing TdP. However, when considering the unbound concentration (the free fraction not bound to carrier proteins or other tissues inducing pharmacological activity), both drugs are classified as having a low risk of inducing TdP. In summary, pyronaridine, artesunate, and a combination of both drugs have been confirmed to pose a low proarrhythmogenic risk at therapeutic and supratherapeutic (up to 4 times) free Cmax. Additionally, the CiPA initiative may be suitable for regulatory use and provide novel insights for evaluating drug-induced cardiotoxicity.

4.
Adv Mater ; 35(36): e2301098, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37196994

RESUMEN

Blood vessel anastomosis by suture is a life-saving, yet time-consuming and labor-intensive operation. While suture-less alternatives utilizing clips or related devices are developed to address these shortcomings, suture anastomosis is still overwhelmingly used in most cases. In this study, practical "less-suture" strategies are proposed, rather than ideal "suture-less" methods, to reflect real-world clinical situations. In the case of rat artery (d = 0.64 mm) anastomosis, the less-suture anastomosis involves the application of thin, adhesive, transparent, and self-wrapping films to the site. This surprisingly reduces the number of stitches required from ten (without films) to four (with films), saving 27 min of operating time per vessel. Furthermore, the decreased number of stitches largely alleviates fibrosis-mediated wall-thickening. Thus, a less-suture strategy is particularly useful for anastomosis of multiple vessels in emergency conditions and small-diameter vessels.


Asunto(s)
Adhesivos , Materiales Biocompatibles , Ratas , Animales , Materiales Biocompatibles/uso terapéutico , Arterias/cirugía , Anastomosis Quirúrgica/métodos , Suturas
5.
Anim Cells Syst (Seoul) ; 27(1): 82-92, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36999134

RESUMEN

Cardiomyocytes derived from human pluripotent stem cells (hPSCs) can be used in various applications including disease modeling, drug safety screening, and novel cell-based cardiac therapies. Here, we report an optimized selection and maturation method to induce maturation of cardiomyocytes into a specific subtype after differentiation driven by the regulation of Wnt signaling. The medium used to optimize selection and maturation was in a glucose starvation conditions, supplemented with either a nutrition complex or ascorbic acid. Following optimized selection and maturation, more cardiac Troponin T (cTnT)-positive cardiomyocytes were detected using albumin and ascorbic acid than B27. In addition, ascorbic acid enriched maturation of ventricular cardiomyocytes. We compared cardiomyocyte-specific gene expression patterns under different selection and maturation conditions by next-generation sequencing (NGS) analysis. Our optimized conditions will enable simple and efficient maturation and specification of the desired cardiomyocyte subtype, facilitating both biomedical research and clinical applications.

6.
JCI Insight ; 7(11)2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35503251

RESUMEN

Vertical sleeve gastrectomy (VSG) results in an increase in the number of hormone-secreting enteroendocrine cells (EECs) in the intestinal epithelium; however, the mechanism remains unclear. Notably, the beneficial effects of VSG are lost in a mouse model lacking the nuclear bile acid receptor farnesoid X receptor (FXR). FXR is a nuclear transcription factor that has been shown to regulate intestinal stem cell (ISC) function in cancer models. Therefore, we hypothesized that the VSG-induced increase in EECs is due to changes in intestinal differentiation driven by an increase in bile acid signaling through FXR. To test this, we performed VSG in mice that express EGFP in ISC/progenitor cells and performed RNA-Seq on GFP-positive cells sorted from the intestinal epithelia. We also assessed changes in EEC number (marked by glucagon-like peptide-1, GLP-1) in mouse intestinal organoids following treatment with bile acids, an FXR agonist, and an FXR antagonist. RNA-Seq of ISCs revealed that bile acid receptors are expressed in ISCs and that VSG explicitly alters expression of several genes that regulate EEC differentiation. Mouse intestinal organoids treated with bile acids and 2 different FXR agonists increased GLP-1-positive cell numbers, and administration of an FXR antagonist blocked these effects. Taken together, these data indicate that VSG drives ISC fate toward EEC differentiation through bile acid signaling.


Asunto(s)
Ácidos y Sales Biliares , Gastrectomía , Animales , Diferenciación Celular , Gastrectomía/métodos , Péptido 1 Similar al Glucagón/metabolismo , Ratones , Células Madre/metabolismo
7.
CPT Pharmacometrics Syst Pharmacol ; 11(5): 653-664, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35579100

RESUMEN

Comprehensive in vitro Proarrhythmia Assay (CiPA) projects for assessing proarrhythmic drugs suggested a logistic regression model using qNet as the Torsades de Pointes (TdP) risk assessment biomarker, obtained from in silico simulation. However, using a single in silico feature, such as qNet, cannot reflect whole characteristics related to TdP in the entire action potential (AP) shape. Thus, this study proposed a deep convolutional neural network (CNN) model using differential action potential shapes to classify three proarrhythmic risk levels: high, intermediate, and low, considering both characteristics related to TdP not only in the depolarization phase but also the repolarization phase of AP shape. We performed an in silico simulation and got AP shapes with drug effects using half-maximal inhibitory concentration and Hill coefficients of 28 drugs released by CiPA groups. Then, we trained the deep CNN model with the differential AP shapes of 12 drugs and tested it with those of 16 drugs. Our model had a better performance for classifying the proarrhythmic risk of drugs than the traditional logistic regression model using qNet. The classification accuracy was 98% for high-risk level drugs, 94% for intermediate-risk level drugs, and 89% for low-risk level drugs.


Asunto(s)
Torsades de Pointes , Simulación por Computador , Proteínas de Unión al ADN , Humanos , Redes Neurales de la Computación , Medición de Riesgo , Torsades de Pointes/inducido químicamente
8.
Cell Biol Toxicol ; 38(4): 557-575, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35267148

RESUMEN

Human lung organoids (hLOs) are useful for disease modelling and drug screening. However, a lack of immune cells in hLOs limits the recapitulation of in vivo cellular physiology. Here, we generated hLOs containing alveolar macrophage (AMφ)-like cells derived from pluripotent stem cells (PSC). To bridge hLOs with advanced human lung high-resolution X-ray computed tomography (CT), we acquired quantitative micro-CT images. Three hLO types were observed during differentiation. Among them, alveolar hLOs highly expressed not only lung epithelial cell markers but also AMφ-specific markers. Furthermore, CD68+ AMφ-like cells were spatially organized on the luminal epithelial surface of alveolar hLOs. Bleomycin-treated alveolar hLOs showed upregulated expression of fibrosis-related markers and extracellular matrix deposits in the alveolar sacs. Alveolar hLOs also showed structural alterations such as excessive tissue fraction under bleomycin treatment. Therefore, we suggest that micro-CT analyzable PSC-derived alveolar hLOs are a promising in vitro model to predict lung toxicity manifestations, including fibrosis.


Asunto(s)
Células Madre Pluripotentes , Fibrosis Pulmonar , Células Epiteliales Alveolares , Bleomicina/metabolismo , Humanos , Pulmón , Macrófagos Alveolares , Organoides , Células Madre Pluripotentes/metabolismo , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Microtomografía por Rayos X
9.
Front Physiol ; 12: 761691, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34955882

RESUMEN

As part of the Comprehensive in vitro Proarrhythmia Assay initiative, methodologies for predicting the occurrence of drug-induced torsade de pointes via computer simulations have been developed and verified recently. However, their predictive performance still requires improvement. Herein, we propose an artificial neural networks (ANN) model that uses nine multiple input features, considering the action potential morphology, calcium transient morphology, and charge features to further improve the performance of drug toxicity evaluation. The voltage clamp experimental data for 28 drugs were augmented to 2,000 data entries using an uncertainty quantification technique. By applying these data to the modified O'Hara Rudy in silico model, nine features (dVm/dtmax, APresting, APD90, APD50, Caresting, CaD90, CaD50, qNet, and qInward) were calculated. These nine features were used as inputs to an ANN model to classify drug toxicity into high-risk, intermediate-risk, and low-risk groups. The model was trained with data from 12 drugs and tested using the data of the remaining 16 drugs. The proposed ANN model demonstrated an AUC of 0.92 in the high-risk group, 0.83 in the intermediate-risk group, and 0.98 in the low-risk group. This was higher than the classification performance of the method proposed in previous studies.

10.
Eur J Pharmacol ; 911: 174416, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34606836

RESUMEN

Age-related cartilage loss is worsened by the limited regenerative capacity of chondrocytes. The role of cell-based therapies using mesenchymal stem cells is gaining interest. Adipose tissue-derived mesenchymal stem cells (ADSCs) are an attractive source to generate the optimal number of chondrocytes required to repair a cartilage defect and regenerate hyaline articular cartilage. Here, we report an outstanding technique to prepare chondrocytes for cartilage repair using canine ADSCs. We hypothesized that external electrical fields promote prechondrogenic condensation without requiring genetic modifications or exogenous factors. We analyzed the effect of electrical stimulation (ES) on the differentiation of ADSC micromass into chondrocytes. Highly compact structures were formed within 3 days of ES of canine ADSC micromass. The expression of type I collagen gene was abolished in these cells compared with that in control micromass cultures and monolayer cultures. We further found that ES enhanced the production of proteoglycan, a highly produced extracellular matrix component in chondrocytes. Additionally, single-cell RNA sequencing analysis showed that canine ADSC micromass undergoing ES developed a prechondrogenic cell aggregation, suggesting their metabolic conversion, biogenesis, and calcium ion change. Collectively, our findings demonstrate the capacity of ES to drive the chondrogenesis of ADSCs in the absence of exogenous factors and confirm its commercial potential as a budget-friendly therapy for the repair of cartilage defects.


Asunto(s)
Cartílago Articular
11.
Int J Mol Sci ; 22(8)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33924053

RESUMEN

Previous studies have investigated the inhibitory effect of BMI-1026 on cyclin-dependent kinase 1 in vitro. However, the molecular mechanisms by which BMI-1026 treatment leads to cancer cell death remain unclear. This study was conducted to investigate the anticancer mechanisms of BMI-1026 on human renal carcinoma Caki cells. BMI-1026 induced apoptosis in association with the cleavage of poly(ADP-ribose) polymerase and pro-caspase-3 and the release of apoptosis-inducing factor and cytochrome c from mitochondria in Caki cells. BMI-1026-induced apoptosis was inhibited by the pan-caspase inhibitor z-VAD-fmk. Furthermore, BMI-1026 downregulated Bcl-2 and X-linked inhibitor of apoptosis protein (XIAP) at the transcriptional level and Mcl-1 (L) and cellular FADD-like IL-1ß-converting enzyme inhibitory protein (c-FLIP (L)) at the post-transcriptional level. Interestingly, Mcl-1 (L) and c-FLIP (L), but not Bcl-2 or XIAP, played important roles in BMI-1026-induced Caki cell apoptosis. Although the constitutively active form of Akt did not attenuate BMI-1026-induced apoptosis, blockade of the PI3K/Akt pathway using a subcytotoxic concentration of the PI3K/Akt inhibitor LY294002 enhanced Caki cell apoptosis induced by BMI-1026. Electrophysiological safety was confirmed by determining the cardiotoxicity of BMI-1026 via left ventricular pressure analysis. These results suggest that BMI-1026 is a potent multitarget anticancer agent with electrophysiological safety and should be further investigated.


Asunto(s)
Apoptosis/efectos de los fármacos , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , Carcinoma de Células Renales/metabolismo , Fenoles/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Pirimidinas/farmacología , Western Blotting , Línea Celular Tumoral , Cromonas/farmacología , Regulación hacia Abajo , Citometría de Flujo , Células HCT116 , Humanos , Morfolinas/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo
12.
JCI Insight ; 5(7)2020 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-32182221

RESUMEN

Leptin receptor-expressing (LepRb-expressing) neurons of the nucleus tractus solitarius (NTS; LepRbNTS neurons) receive gut signals that synergize with leptin action to suppress food intake. NTS neurons that express preproglucagon (Ppg) (and that produce the food intake-suppressing PPG cleavage product glucagon-like peptide-1 [GLP1]) represent a subpopulation of mouse LepRbNTS cells. Using Leprcre, Ppgcre, and Ppgfl mouse lines, along with Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), we examined roles for Ppg in GLP1NTS and LepRbNTS cells for the control of food intake and energy balance. We found that the cre-dependent ablation of NTS Ppgfl early in development or in adult mice failed to alter energy balance, suggesting the importance of pathways independent of NTS GLP1 for the long-term control of food intake. Consistently, while activating GLP1NTS cells decreased food intake, LepRbNTS cells elicited larger and more durable effects. Furthermore, while the ablation of NTS Ppgfl blunted the ability of GLP1NTS neurons to suppress food intake during activation, it did not impact the suppression of food intake by LepRbNTS cells. While Ppg/GLP1-mediated neurotransmission plays a central role in the modest appetite-suppressing effects of GLP1NTS cells, additional pathways engaged by LepRbNTS cells dominate for the suppression of food intake.


Asunto(s)
Ingestión de Alimentos , Regulación de la Expresión Génica , Péptido 1 Similar al Glucagón/metabolismo , Neuronas/metabolismo , Receptores de Leptina/biosíntesis , Núcleo Solitario/metabolismo , Animales , Ratones , Ratones Noqueados , Receptores de Leptina/genética
13.
Mol Metab ; 32: 148-159, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32029224

RESUMEN

OBJECTIVE: Post-bariatric surgery hypoglycemia (PBH) is defined as the presence of neuroglycopenic symptoms accompanied by postprandial hypoglycemia in bariatric surgery patients. Recent clinical studies using continuous glucose monitoring (CGM) technology revealed that PBH is more frequently observed in vertical sleeve gastrectomy (VSG) patients than previously recognized. PBH cannot be alleviated by current medication. Therefore, a model system to investigate the mechanism and treatment is required. METHODS: We used CGM in a rat model of VSG and monitored the occurrence of glycemic variability and hypoglycemia in various meal conditions for 4 weeks after surgery. Another cohort of VSG rats with CGM was used to investigate whether the blockade of glucagon-like peptide-1 receptor (GLP-1R) signaling alleviates these symptoms. A mouse VSG model was used to investigate whether the impaired glucose counterregulatory system causes postprandial hypoglycemia. RESULTS: Like in humans, rats have increased glycemic variability and hypoglycemia after VSG. Postprandial hypoglycemia was specifically detected after liquid versus solid meals. Further, the blockade of GLP-1R signaling raises the glucose nadir but does not affect glycemic variability. CONCLUSIONS: Rat bariatric surgery duplicates many features of human post-bariatric surgery hypoglycemia including postprandial hypoglycemia and glycemic variability, while blockade of GLP-1R signaling prevents hypoglycemia but not the variability.


Asunto(s)
Glucemia/metabolismo , Gastrectomía , Hipoglucemia/metabolismo , Hipoglucemia/cirugía , Animales , Modelos Animales de Enfermedad , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Prueba de Tolerancia a la Glucosa , Masculino , Ratas
14.
Front Pharmacol ; 10: 1419, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31849669

RESUMEN

The Comprehensive in vitro Proarrhythmia Assay (CiPA) project suggested the torsade metric score (TMS) which requires substantial computing resources as a useful biomarker to predict proarrhythmic risk from human ether-à-go-go-related gene (hERG) and a few other ion channel block data. The TMS was useful to predict low TdP risks of drugs blocking Na+ (ranolazine) and Ca2+ (verapamil) channels as well as the hERG channel. However, Mistry asserted that the simple linear metric, Bnet reflecting net blockade of a few influential ion channels has similar predictive power. Here we compared the predictability of Bnet and TMS for the 12 training and 16 validation CiPA drugs which were pre-classified into three categories according to the known TdP risks (low, intermediate, and high risk) by CiPA. Bnet at 5×Cmax (Bnet5×Cmax) was calculated using the ion-channel IC50 and Hill coefficients of CiPA drugs collected from previous reports by the CiPA team and others. The receiver operating characteristic curve area under curve (ROC AUC) values for TMS and Bnet5×Cmax as performance metrics in discerning low versus intermediate/high risk categories for the 28 CiPA drugs were similar. However, Bnet5×Cmax was much inferior to TMS at discerning between intermediate- and high-risk drugs. Dynamic Bnet, which used in silico hERG dynamic parameters unlike conventional Bnet, improved the misspecification. Thus, we propose that Bnet5×Cmax is used for quick screening of TdP risks of drug candidates and if the "intermediate/high" risk is predicted by Bnet5×Cmax, in silico approaches, such as dynamic Bnet or TMS, may be further considered.

15.
JCI Insight ; 4(20)2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31619587

RESUMEN

Intestinally derived glucagon-like peptide-1 (GLP-1), encoded by the preproglucagon (Gcg) gene, is believed to function as an incretin. However, our previous work questioned this dogma and demonstrated that pancreatic peptides rather than intestinal Gcg peptides, including GLP-1, are a primary regulator of glucose homeostasis in normal mice. The objective of these experiments was to determine whether changes in nutrition or alteration of gut hormone secretion by bariatric surgery would result in a larger role for intestinal GLP-1 in the regulation of insulin secretion and glucose homeostasis. Multiple transgenic models, including mouse models with intestine- or pancreas tissue-specific Gcg expression and a whole-body Gcg-null mouse model, were generated to study the role of organ-specific GLP-1 production on glucose homeostasis under dietary-induced obesity and after weight loss from bariatric surgery (vertical sleeve gastrectomy; VSG). Our findings indicated that the intestine is a major source of circulating GLP-1 after various nutrient and surgical stimuli. However, even with the 4-fold increase in intestinally derived GLP-1 with VSG, it is pancreatic peptides, not intestinal Gcg peptides, that are necessary for surgery-induced improvements in glucose homeostasis.


Asunto(s)
Glucemia/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Insulina/metabolismo , Obesidad/metabolismo , Páncreas/metabolismo , Animales , Cirugía Bariátrica/métodos , Glucemia/análisis , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Gastrectomía/métodos , Perfilación de la Expresión Génica , Péptido 1 Similar al Glucagón/análisis , Péptido 1 Similar al Glucagón/genética , Humanos , Mucosa Intestinal/metabolismo , Masculino , Ratones , Ratones Transgénicos , Obesidad/sangre , Obesidad/etiología , Obesidad/cirugía , Pérdida de Peso/fisiología
16.
Korean J Physiol Pharmacol ; 23(5): 329-334, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31496870

RESUMEN

Diabetes is associated with an increased risk of cardiovascular complications. Dipeptidyl peptidase-4 (DPP-IV) inhibitors are used clinically to reduce high blood glucose levels as an antidiabetic agent. However, the effect of the DPP-IV inhibitor gemigliptin on ischemia/reperfusion (I/R)-induced myocardial injury and hypertension is unknown. In this study, we assessed the effects and mechanisms of gemigliptin in rat models of myocardial I/R injury and spontaneous hypertension. Gemigliptin (20 and 100 mg/kg/d) or vehicle was administered intragastrically to Sprague-Dawley rats for 4 weeks before induction of I/R injury. Gemigliptin exerted a preventive effect on I/R injury by improving hemodynamic function and reducing infarct size compared to the vehicle control group. Moreover, administration of gemigliptin (0.03% and 0.15%) powder in food for 4 weeks reversed hypertrophy and improved diastolic function in spontaneously hypertensive rats. We report here a novel effect of the gemigliptin on I/R injury and hypertension.

17.
Korean J Physiol Pharmacol ; 23(5): 393-402, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31496876

RESUMEN

Aurora kinases inhibitors, including ZM447439 (ZM), which suppress cell division, have attracted a great deal of attention as potential novel anti-cancer drugs. Several recent studies have confirmed the anti-cancer effects of ZM in various cancer cell lines. However, there have been no studies regarding the cardiac safety of this agent. We performed several cytotoxicity, invasion and migration assays to examine the anti-cancer effects of ZM. To evaluate the potential effects of ZM on cardiac repolarisation, whole-cell patch-clamp experiments were performed with human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and cells with heterogeneous cardiac ion channel expression. We also conducted a contractility assay with rat ventricular myocytes to determine the effects of ZM on myocardial contraction and/or relaxation. In tests to determine in vitro efficacy, ZM inhibited the proliferation of A549, H1299 (lung cancer), MCF-7 (breast cancer) and HepG2 (hepatoma) cell lines with IC50 in the submicromolar range, and attenuated the invasive and metastatic capacity of A549 cells. In cardiac toxicity testing, ZM did not significantly affect I Na, I Ks or I K1, but decreased I hERG in a dose-dependent manner (IC50: 6.53 µM). In action potential (AP) assay using hiPSC-CMs, ZM did not induce any changes in AP parameters up to 3 µM, but it at 10 µM induced prolongation of AP duration. In summary, ZM showed potent broad-spectrum anti-tumor activity, but relatively low levels of cardiac side effects compared to the effective doses to tumor. Therefore, ZM has a potential to be a candidate as an anti-cancer with low cardiac toxicity.

18.
J Clin Invest ; 129(6): 2404-2416, 2019 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-31063988

RESUMEN

Bariatric surgeries are integral to the management of obesity and its metabolic complications. However, these surgeries cause bone loss and increase fracture risk through poorly understood mechanisms. In a mouse model, vertical sleeve gastrectomy (VSG) caused trabecular and cortical bone loss that was independent of sex, body weight, and diet, and this loss was characterized by impaired osteoid mineralization and bone formation. VSG had a profound effect on the bone marrow niche, with rapid loss of marrow adipose tissue, and expansion of myeloid cellularity, leading to increased circulating neutrophils. Following VSG, circulating granulocyte-colony stimulating factor (G-CSF) was increased in mice, and was transiently elevated in a longitudinal study of humans. Elevation of G-CSF was found to recapitulate many effects of VSG on bone and the marrow niche. In addition to stimulatory effects of G-CSF on myelopoiesis, endogenous G-CSF suppressed development of marrow adipocytes and hindered accrual of peak cortical and trabecular bone. Effects of VSG on induction of neutrophils and depletion of marrow adiposity were reduced in mice deficient for G-CSF; however, bone mass was not influenced. Although not a primary mechanism for bone loss with VSG, G-CSF plays an intermediary role for effects of VSG on the bone marrow niche.


Asunto(s)
Adipocitos/metabolismo , Células de la Médula Ósea/metabolismo , Resorción Ósea/sangre , Gastroplastia , Factor Estimulante de Colonias de Granulocitos/sangre , Obesidad/sangre , Complicaciones Posoperatorias/sangre , Adipocitos/patología , Adolescente , Adulto , Animales , Médula Ósea/patología , Células de la Médula Ósea/patología , Resorción Ósea/etiología , Resorción Ósea/genética , Resorción Ósea/patología , Femenino , Gastrectomía , Humanos , Estudios Longitudinales , Ratones , Ratones Noqueados , Obesidad/genética , Obesidad/patología , Obesidad/cirugía , Complicaciones Posoperatorias/genética , Complicaciones Posoperatorias/patología
19.
Food Chem Toxicol ; 123: 50-56, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30339957

RESUMEN

The embryoid body test (EBT) is a developmental toxicity test method that assesses the half inhibitory concentrations of substances in the area of embryoid bodies (EBs), and in the viability of mouse embryonic stem cells (ESCs) and fibroblasts (3T3 cells) following chemical exposure for three and four days, respectively. In the previous study, the EBT showed more advanced than the embryonic stem cell test (EST) from the European Centre for the Validation of Alternative Methods (ECVAM) applying cardiac differentiation of mouse ESCs, because the EBT greatly reduced the exposure time, labor, and amount of materials required, and misclassification of embryotoxic potential. This pre-validation study evaluated the predictive accuracy of the EBT using 26 coded test substances by two steps: intra-laboratory and inter-laboratory reproducibility tests. Since some substances have different embryotoxic potentials at different pregnancy periods, in this study, a new prediction model consisting of non-toxic and toxic classes was used, instead of the existing prediction model assessing embryotoxicants in four classes. The results of the intra- and inter-laboratory tests were highly accurate (above 80%) when substances were classified using the predictive model. In conclusion, EBT can accurately classify various embryotoxicants in a short time with less effort and greater validation.


Asunto(s)
Cuerpos Embrioides/efectos de los fármacos , Células Madre Embrionarias de Ratones/efectos de los fármacos , Pruebas de Toxicidad/métodos , Células 3T3 , Animales , Supervivencia Celular/efectos de los fármacos , Cuerpos Embrioides/citología , Concentración 50 Inhibidora , Ratones , Células Madre Embrionarias de Ratones/citología , Reproducibilidad de los Resultados , Pruebas de Toxicidad/instrumentación
20.
Exp Mol Med ; 50(7): 1-14, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29968707

RESUMEN

The present study examined the neuroprotective effects of capsaicin (CAP) and explored their underlying mechanisms in a lipopolysaccharide (LPS)-lesioned inflammatory rat model of Parkinson's dieases (PD). LPS was unilaterally injected into the substantia nigra (SN) in the absence or presence of CAP or capsazepine (CZP, a TRPV1 antagonist). The SN tissues were prepared for immunohistochemical staining, reverse transcriptase-polymerase chain reaction (RT-PCR) analysis, western blot analysis, blood-brain barrier (BBB) permeability evaluation, and reactive oxygen species (ROS) detection. We found that CAP prevented the degeneration of nigral dopamine neurons in a dose-dependent manner and inhibited the expression of proinflammatory mediators in the LPS-lesioned SN. CAP shifted the proinflammatory M1 microglia/macrophage population to an anti-inflammatory M2 state as demonstrated by decreased expression of M1 markers (i.e., inducible nitric oxide synthase; iNOS and interleukin-6) and elevated expression of M2 markers (i.e., arginase 1 and CD206) in the SN. RT-PCR, western blotting, and immunohistochemical analysis demonstrated decreased iNOS expression and increased arginase 1 expression in the CAP-treated LPS-lesioned SN. Peroxynitrate production, reactive oxygen species levels and oxidative damage were reduced in the CAP-treated LPS-lesioned SN. The beneficial effects of CAP were blocked by CZP, indicating TRPV1 involvement. The present data indicate that CAP regulated the M1 and M2 activation states of microglia/macrophage in the LPS-lesioned SN, which resulted in the survival of dopamine neurons. It is therefore likely that TRPV1 activation by CAP has therapeutic potential for treating neurodegenerative diseases, that are associated with neuroinflammation and oxidative stress, such as PD.


Asunto(s)
Capsaicina/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Macrófagos/efectos de los fármacos , Microglía/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Enfermedad de Parkinson/metabolismo , Sustancia Negra/efectos de los fármacos , Animales , Arginasa/genética , Arginasa/metabolismo , Diferenciación Celular , Neuronas Dopaminérgicas/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Lipopolisacáridos/toxicidad , Macrófagos/citología , Macrófagos/metabolismo , Receptor de Manosa , Lectinas de Unión a Manosa/genética , Lectinas de Unión a Manosa/metabolismo , Microglía/citología , Microglía/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Estrés Oxidativo , Enfermedad de Parkinson/etiología , Ratas , Ratas Sprague-Dawley , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Canales Catiónicos TRPV/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...