Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(17): 21915-21923, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38642042

RESUMEN

In this study, we present a novel method for controlling the growth of perovskite crystals in the vacuum thermal evaporation process by utilizing a vacuum-processable additive, propylene urea (PU). By coevaporation of perovskite precursors with PU to form the perovskite layer, PU, acting as a Lewis base additive, retards the direct reaction between the perovskite precursors. This facilitates a larger domain size and reduced defect density. Following the removal of the residual additive, the perovskite layer, exhibiting improved crystallinity, demonstrates reduced charge recombination, as confirmed by a time-resolved microwave conductivity analysis. Consequently, there is a notable enhancement in open-circuit voltage and power conversion efficiency, increasing from 1.05 to 1.15 V and from 17.17 to 18.31%, respectively. The incorporation of a vacuum-processable and removable Lewis base additive into the fabrication of vacuum-processed perovskite solar cells offers new avenues for optimizing these devices.

2.
ACS Appl Mater Interfaces ; 15(16): 20151-20158, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37062884

RESUMEN

The development of organic photovoltaic (OPV) devices based on non-fullerene acceptors (NFAs) has led to a rapid improvement in their efficiency. Despite these improvements, significant performance degradation in the early stages of operation, known as burn-in, remains a challenge for NFA-based OPVs. To address this challenge, this study demonstrates a stable NFA-based OPV fabricated using sequential deposition (SqD) and a quasi-orthogonal solvent. The quasi-orthogonal solvent, which is prepared by incorporating 1-chloronaphthalene (1-CN) into dichloromethane (DCM), reduces the vapor pressure of the solvent and allows for the efficient dissolution and penetration of the Y6 (one of efficient NFAs) into a PM6 polymer-donor layer without damaging the latter. The resulting bulk heterojunction (BHJ) is characterized by a higher degree of crystallinity in the PM6 domains than that prepared using a conventional single-step deposition (SD) process. The OPV fabricated using the SqD process exhibits a PCE of 14.1% and demonstrates superior thermal stability to the SD-processed OPV. This study conclusively reveals that the formation of a thermally stable interface between the photoactive layer and the electron-transport layer (ETL) is the primary factor contributing to the high thermal stability observed in the SqD-processed OPV.

3.
Polymers (Basel) ; 15(6)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36987135

RESUMEN

Organic solar cells (OSCs) demonstrating high power conversion efficiencies have been mostly fabricated using halogenated solvents, which are highly toxic and harmful to humans and the environment. Recently, non-halogenated solvents have emerged as a potential alternative. However, there has been limited success in attaining an optimal morphology when non-halogenated solvents (typically o-xylene (XY)) were used. To address this issue, we studied the dependence of the photovoltaic properties of all-polymer solar cells (APSCs) on various high-boiling-point non-halogenated additives. We synthesized PTB7-Th and PNDI2HD-T polymers that are soluble in XY and fabricated PTB7-Th:PNDI2HD-T-based APSCs using XY with five additives: 1,2,4-trimethylbenzene (TMB), indane (IN), tetralin (TN), diphenyl ether (DPE), and dibenzyl ether (DBE). The photovoltaic performance was determined in the following order: XY + IN < XY + TMB < XY + DBE ≤ XY only < XY + DPE < XY + TN. Interestingly, all APSCs processed with an XY solvent system had better photovoltaic properties than APSCs processed with chloroform solution containing 1,8-diiodooctane (CF + DIO). The key reasons for these differences were unraveled using transient photovoltage and two-dimensional grazing incidence X-ray diffraction experiments. The charge lifetimes of APSCs based on XY + TN and XY + DPE were the longest, and their long lifetime was strongly associated with the polymer blend film morphology; the polymer domain sizes were in the nanoscale range, and the blend film surfaces were smoother, as the PTB7-Th polymer domains assumed an untangled, evenly distributed, and internetworked morphology. Our results demonstrate that the use of an additive with an optimal boiling point facilitates the development of polymer blends with a favorable morphology and can contribute to the widespread use of eco-friendly APSCs.

4.
Artículo en Inglés | MEDLINE | ID: mdl-35575207

RESUMEN

To commercialize organic solar cells (OSCs), changes in the optimized morphology of the photoactive layer caused by external stimuli that cause degradation must be addressed. This work improves OSC stability by utilizing the cross-linking additive 1,8-dibromooctane (DBO) and a sequential deposition process (XSqD) to fabricate the photoactive layer. The cross-linking additive in the donor polymer (PTB7-Th) improves polymer crystallinity and immobilizes the crystalline morphology by partial photo-cross-linking. Ellipsometry experiments confirm the increase in the glass transition temperature of cross-linked PTB7-Th. The polymer crystallinity is further improved after removal of non-cross-linked polymer and residual additive by chlorobenzene. The cross-linked polymer layer forms an efficient and stable heterojunction with a nonfullerene acceptor (IEICO-4F) layer via an XSqD process. The OSC based on the immobilized PTB7-Th exhibits excellent stability against light soaking and thermal aging.

5.
Sci Rep ; 11(1): 13833, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34226592

RESUMEN

A luminescent solar concentrator (LSC) is a solar-light harvesting device that concentrates light on a photovoltaic cell placed at the edge of an LSC panel to convert it into electricity. The nano-sized inorganic-organic cluster complex (dMDAEMA)4[Re6S8(NCS)6] (this refers to RMC where dMDAEMA is 2-dimethyl amino ethyl methacrylate) is a promising candidate for LSC luminophores due to its downshifted broad photoluminescence suitable for photovoltaic cells. However, the low quantum yield (QY) of RMC limits the performance. Here, zinc-doped CuGaS/ZnS core/shell quantum dots (ZQD) were used as energy transferring donor with high QY to improve the performance of the LSC. The two metal chalcogenide luminophores, RMC and ZQD, are chemically suitable for dispersion in an amphiphilic polymer matrix, producing a transparent waveguide with suppressed reabsorption and extended harvesting coverage of the solar spectrum. We achieved an ηopt of 3.47% and a PCE of 1.23% while maintaining greater than 80% transparency in the visible range. The high performance of this dual-dye LSC with suppressed reabsorption, and scattering losses is not only due to uniform dispersion of dyes in a polymer matrix, but also energy transfer from ZQD to RMC. This report suggests a new possibility for promising various multi-dye LSCs for use in building-integrated photovoltaic windows.

6.
Nanotechnology ; 32(46)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34256361

RESUMEN

Colorful indoor organic photovoltaics (OPVs) have attracted considerable attention in recent years for their autonomous function in internet-of-things (IoT) devices. In this study, a solution-processed TiO2layer in a metal-oxide-metal (MOM) color filter electrode is used for light energy recycling in P3HT:ICBA-based indoor OPVs. The MOM electrode allows for tuning of the optical cavity mode to maximize photocurrent production by modulating the thickness of the TiO2layer in the sandwich structure. This approach preserves the OPVs' optoelectronic properties without damaging the photoactive layer and enables them to display a suitable range of vivid colors. The optimized MOM-OPVs demonstrated an excellent power conversion efficiency (PCE) of 8.8% ± 0.2%, which is approximately 20% higher than that of reference opaque OPVs under 1000 lx light emitting diode illumination. This can be attributed to the high photocurrent density due to the nonresonant light reflected from metals into the photoactive layer. Additionally, the proposed MOM-OPVs exhibited high external quantum efficiency and large parasitic shunt resistances, leading to improved fill factor and PCE values. Thus, the study's MOM electrode provides excellent feasibility for realizing colorful and efficient indoor OPVs for IoT applications.

7.
Polymers (Basel) ; 12(11)2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33167422

RESUMEN

Photostability of small-molecule (SM)-based organic photovoltaics (SM-OPVs) is greatly improved by utilizing a ternary photo-active layer incorporating a small amount of a conjugated polymer (CP). Semi-crystalline poly[(2,5-bis(2-hexyldecyloxy)phenylene)-alt-(5,6-difluoro-4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole)] (PPDT2FBT) and amorphous poly[(2,5-bis(2-decyltetradecyloxy)phenylene)-alt-(5,6-dicyano-4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole)] (PPDT2CNBT) with similar chemical structures were used for preparing SM:fullerene:CP ternary photo-active layers. The power conversion efficiency (PCE) of the ternary device with PPDT2FBT (Ternary-F) was higher than those of the ternary device with PPDT2CNBT (Ternary-CN) and a binary SM-OPV device (Binary) by 15% and 17%, respectively. The photostability of the SM-OPV was considerably improved by the addition of the crystalline CP, PPDT2FBT. Ternary-F retained 76% of its initial PCE after 1500 h of light soaking, whereas Ternary-CN and Binary retained only 38% and 17% of their initial PCEs, respectively. The electrical and morphological analyses of the SM-OPV devices revealed that the addition of the semi-crystalline CP led to the formation of percolation pathways for charge transport without disturbing the optimized bulk heterojunction morphology. The CP also suppressed trap-assisted recombination and enhanced the hole mobility in Ternary-F. The percolation pathways enabled the hole mobility of Ternary-F to remain constant during the light-soaking test. The photostability of Ternary-CN did not improve because the addition of the amorphous CP inhibited the formation of ordered SM domains.

8.
ACS Appl Mater Interfaces ; 12(47): 53012-53020, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33172259

RESUMEN

Organic photodiodes (OPDs) are emerging as potential candidates in image sensors owing to their high sensitivity and submicron photoactive layer thickness. For OPDs to be more competitive, it is necessary to develop an economical fabrication process and improve their narrowband spectral response from visible to near-infrared (NIR). In this study, panchromatic OPDs with a remarkable narrowband response from visible to NIR are developed by integrating a solution-processed optical filter-electrode (OF-electrode) and a panchromatic organic photoactive layer. Solution-processable TiO2 nanoparticles (sTNPs) bound to an acetylacetone ligand are used to construct the OF-electrode, which had the structure Ag/sTNP/Ag, and a ternary blend of a polymer donor, a nonfullerene acceptor, and a fullerene acceptor is used for preparing the panchromatic organic photoactive layer. Direct integration of the OF-electrode with the organic photoactive layer eliminates the need for additional OF installation, without damaging the underlying organic photoactive layer. Variation of the sTNP layer thickness controls the color filtering wavelength to vary from visible to NIR, with exceptionally narrow full width at half-maximum (fwhm) values of 48-82 nm and transparency values of 50-70%. Owing to their selective response for the desired color and their capability to minimize noise from other colors, the OPDs exhibit high sensitivity values of 2.82 × 1012, 3.02 × 1012, and 3.94 × 1012 cm Hz0.5/W (Jones) with narrow fwhm values of 110, 91, and 75 nm at a peak transmittance exceeding 65% for blue, green, and red, respectively. Furthermore, they detect NIR light at a wavelength of 950 nm with a narrow fwhm value of 51 nm and a high sensitivity of 3.78 × 1012 cm Hz0.5/W (Jones).

9.
BMB Rep ; 53(11): 576-581, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32684241

RESUMEN

Dimethylation of the histone H3 protein at lysine residue 9 (H3K9) is mediated by euchromatin histone methyltransferase II (EHMT2) and results in transcriptional repression of target genes. Recently, chemical inhibition of EHMT2 was shown to induce various physiological outcomes, including endoplasmic reticulum stress-associated genes transcription in cancer cells. To identify genes that are transcriptionally repressed by EHMT2 during apoptosis, and cell stress responses, we screened genes that are upregulated by BIX-01294, a chemical inhibitor of EHMT2. RNA sequencing analyses revealed 77 genes that were upregulated by BIX-01294 in all four hepatic cell carcinoma (HCC) cell lines. These included genes that have been implicated in apoptosis, the unfolded protein response (UPR), and others. Among these genes, the one encoding the stress-response protein Ras-related GTPase C (RRAGC) was upregulated in all BIX-01294-treated HCC cell lines. We confirmed the regulatory roles of EHMT2 in RRAGC expression in HCC cell lines using proteomic analyses, chromatin immune precipitation (ChIP) assay, and small guide RNA-mediated loss-of-function experiments. Upregulation of RRAGC was limited by the reactive oxygen species (ROS) scavenger N-acetyl cysteine (NAC), suggesting that ROS are involved in EHMT2-mediated transcriptional regulation of stress-response genes in HCC cells. Finally, combined treatment of cells with BIX-01294 and 5- Aza-cytidine induced greater upregulation of RRAGC protein expression. These findings suggest that EHMT2 suppresses expression of the RRAGC gene in a ROS-dependent manner and imply that EHMT2 is a key regulator of stress-responsive gene expression in liver cancer cells. [BMB Reports 2020; 53(11): 576-581].


Asunto(s)
Antígenos de Histocompatibilidad/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Apoptosis/genética , Azepinas/farmacología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Inmunoprecipitación de Cromatina/métodos , Eucromatina/genética , Expresión Génica/genética , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Antígenos de Histocompatibilidad/fisiología , Histona Metiltransferasas/genética , Histona Metiltransferasas/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/fisiología , Histonas/genética , Histonas/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas de Unión al GTP Monoméricas/fisiología , Proteómica , Quinazolinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico/genética , Transcriptoma/genética
10.
Nanomaterials (Basel) ; 9(9)2019 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-31527441

RESUMEN

An efficient hole-transporting layer (HTL) based on functionalized two-dimensional (2D) MoS2-poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) composites has been developed for use in organic solar cells (OSCs). Few-layer, oleylamine-functionalized MoS2 (FMoS2) nanosheets were prepared via a simple and cost-effective solution-phase exfoliation method; then, they were blended into PEDOT:PSS, a conducting conjugated polymer, and the resulting hybrid film (PEDOT:PSS/FMoS2) was tested as an HTL for poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) OSCs. The devices using this hybrid film HTL showed power conversion efficiencies up to 3.74%, which is 15.08% higher than that of the reference ones having PEDOT:PSS as HTL. Atomic force microscopy and contact angle measurements confirmed the compatibility of the PEDOT:PSS/FMoS2 surface for active layer deposition on it. The electrical impedance spectroscopy analysis revealed that their use minimized the charge-transfer resistance of the OSCs, consequently improving their performance compared with the reference cells. Thus, the proposed fabrication of such HTLs incorporating 2D nanomaterials could be further expanded as a universal protocol for various high-performance optoelectronic devices.

11.
ACS Appl Mater Interfaces ; 11(21): 18887-18895, 2019 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-31081315

RESUMEN

Semitransparent colorful organic solar cells (OSC) provide exciting opportunities for harnessing sunlight as colored windows. Previously, color filter (CF) electrodes on (OSC) were demonstrated via vacuum-deposition techniques, resulting in deposition-induced damage. Thus, we present CF integrated organic photovoltaics (CF-OPVs) using solution-processed TiO2-AcAc as the dielectric component. The noninvasive processing substantially expands the range of usable active materials, allowing the device to display pure and vibrant colors that are independent of the inherent color of the active material and show superior optical and photovoltaic characteristics. These results provide practical pathways to realizing colored semitransparent solar cells.

12.
Hum Mol Genet ; 27(22): 3901-3910, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30084967

RESUMEN

Crohn's disease (CD) and ulcerative colitis (UC) are the major types of chronic inflammatory bowel disease (IBD) characterized by recurring episodes of inflammation of the gastrointestinal tract. Although it is well established that human leukocyte antigen (HLA) is a major risk factor for IBD, it is yet to be determined which HLA alleles or amino acids drive the risks of CD and UC in Asians. To define the roles of HLA for IBD in Asians, we fine-mapped HLA in 12 568 individuals from Korea and Japan (3294 patients with CD, 1522 patients with UC and 7752 controls). We identified that the amino acid position 37 of HLA-DRß1 plays a key role in the susceptibility to CD (presence of serine being protective, P = 3.6 × 10-67, OR = 0.48 [0.45-0.52]). For UC, we confirmed the known association of the haplotype spanning HLA-C*12:02, HLA-B*52:01 and HLA-DRB1*1502 (P = 1.2 × 10-28, OR = 4.01 [3.14-5.12]).


Asunto(s)
Colitis Ulcerosa/genética , Enfermedad de Crohn/genética , Predisposición Genética a la Enfermedad , Cadenas HLA-DRB1/genética , Enfermedades Inflamatorias del Intestino/genética , Alelos , Sustitución de Aminoácidos/genética , Aminoácidos/química , Aminoácidos/genética , Pueblo Asiatico/genética , Colitis Ulcerosa/patología , Enfermedad de Crohn/patología , Femenino , Estudios de Asociación Genética , Genotipo , Cadenas HLA-DRB1/química , Haplotipos/genética , Humanos , Enfermedades Inflamatorias del Intestino/patología , Japón , Masculino , Conformación Proteica , República de Corea
13.
ACS Appl Mater Interfaces ; 10(33): 27757-27763, 2018 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-30058325

RESUMEN

Binary organic photovoltaics (OPVs) fabricated by single-step (SS) deposition of a binary blend of polymer (or small molecule) donor and fullerene acceptor (SS binary OPV) are widely utilized. To improve the OPV performance, SS ternary OPVs utilizing a ternary blend consisting of two (or one) electron donor(s) and one (or two) electron acceptor(s) have been studied. SS ternary OPVs require more sensitive and complex optimization processes to optimize bulk heterojunctions with bicontinuous nanoscale phase separation of the donor and acceptor. We demonstrated a novel ternary OPV fabricated by sequential (SQ) deposition of a single polymer donor and a binary mixture consisting of a phenyl-C71-butyric acid methyl ester (PCBM) and nonfullerene acceptor, 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3- d:2,3'- d']- s-indaceno[1,2- b:5,6- b']dithiophene (ITIC). In the SQ ternary OPV, PCBM effectively created a bicontinuous pathway for charge transport with a polymer, and ITIC mainly enhanced light absorption and photovoltage. This complementary effect was not observed in an SS ternary OPV utilizing the same donor and acceptors. Due to these complementary effects, the SQ ternary OPV exhibited a power conversion efficiency of 6.22%, which was 52 and 37% higher than that of the SQ binary OPV and the SS ternary OPV, respectively. In addition, the thermal stability of the SQ ternary OPV was found to be superior to that of the SS ternary OPV.

14.
ACS Appl Mater Interfaces ; 10(11): 9390-9397, 2018 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-29380593

RESUMEN

An efficient CH3NH3PbI3 perovskite solar cell whose performance is reproducible and shows reduced dependence on the processing conditions is fabricated using the cyclic urea compound 1,3-dimethyl-2-imidazolidinone (DMI) as an additive to the precursor solution of CH3NH3PbI3. X-ray diffraction analysis reveals that DMI weakly coordinates with PbI2 and forms a CH3NH3PbI3 film (film-DMI) with no intermediate phase. The surface of annealed film-DMI (film-DMI-A) was smooth, with an average crystal size of 1 µm. Photoluminescence and transient photovoltage measurements show that film-DMI-A exhibits a longer carrier lifetime than a CH3NH3PbI3 film prepared using the strongly coordinating additive dimethyl sulfoxide (DMSO) (film-DMSO-A) because of the reduced number of defect sites in film-DMI-A. A solar cell based on film-DMI-A exhibits a higher power conversion efficiency (17.6%) than that of a cell based on film-DMSO-A (15.8%). Furthermore, the performance of the film-DMI-A solar cell is less sensitive to the ratio between PbI2 and DMI, and film-DMI can be fabricated under a high relative humidity of 55%.

15.
Macromol Rapid Commun ; 39(5)2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29218755

RESUMEN

The performance of organic photovoltaics (OPVs) based on the small-molecule organic semiconductor p-DTS(FBTTh2 )2 is greatly improved by the addition of a conjugated block copolymer composed of difluoroquinoxaline and thienopyrrolodione blocks (D130). The power conversion efficiency (PCE) of the p-DTS(FBTTh2 )2 -based OPV is improved from 5.08% to 6.75% by the addition of 5 wt% D130 to the photoactive layer, which is composed of p-DTS(FBTTh2 )2 and a fullerene derivative. Current-voltage and grazing incidence wide-angle X-ray scattering analyses revealed that the addition of D130 significantly reduces the trap density of the device and changes the packing orientation of p-DTS(FBTTh2 )2 from mostly edge-on to partially face-on. These changes greatly improve the charge carrier mobility of the OPV, indicating that D130 is highly compatible with p-DTS(FBTTh2 )2 . Furthermore, the addition of D130 improve the photostability of the OPV by reducing the burn-in loss under a light soaking intensity of 1 sun. The D130-based OPV maintained 34% of its initial PCE after a light soaking test for 858 h. In contrast, the PCE of the OPV without D130 reduced to 14% of its initial efficiency in the same time period.


Asunto(s)
Suministros de Energía Eléctrica , Compuestos Orgánicos/química , Polímeros/química , Semiconductores , Algoritmos , Luz , Estructura Molecular , Energía Solar
16.
Sci Rep ; 7(1): 9690, 2017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28851926

RESUMEN

A morphologically stable bulk heterojunction (BHJ) with a large heterojunction area is prepared by reducing the portion of the small band gap polymer (PTB7) and fullerene intermixture through a sequential deposition (SqD) of the nanostructured PTB7 and the fullerene layer. The nanostructured PTB7 layer is prepared using a ternary solvent composed of chlorobenzene, 1,8-diiodooctane (DIO) and 1-chloronaphthalene (1-CN). Adding DIO and 1-CN enhances the ordering of PTB7 chains and results in a nanostructured polymer surface. The grazing incidence X-ray diffraction results reveal that the SqD of the nanostructured PTB7 and fullerene layers forms the BHJ with little intermixing between the polymer and the fullerene domains compared to the BHJ formed by the deposition of the blended PTB7 and fullerene solution (BSD). The OPV utilizing the SqD processed BHJ (SqD-OPV) exhibits a power conversion efficiency (PCE) of 7.43%, which is similar to that when the BSD processed BHJ (BSD-OPV) is utilized. Furthermore, the SqD-OPV exhibits an excellent thermal stability. The SqD-OPV maintains its initial PCE even after thermal annealing at 140 °C for 10 days, whereas the BSD-OPV maintains 78% of its initial efficiency under the same condition.

17.
Polymers (Basel) ; 9(9)2017 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-30965759

RESUMEN

A morphologically-stable polymer/fullerene heterojunction has been prepared by minimizing the intermixing between polymer and fullerene via sequential deposition (SqD) of a polymer and a fullerene solution. A low crystalline conjugated polymer of PCPDTBT (poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta [2,1-b;3,4-b']dithiophene)-alt-4,7(2,1,3-benzothiadiazole)]) has been utilized for the polymer layer and PC71BM (phenyl-C71-butyric-acid-methyl ester) for the fullerene layer, respectively. Firstly, a nanostructured PCPDTBT bottom layer was developed by utilizing various additives to increase the surface area of the polymer film. The PC71BM solution was prepared by dissolving it in the 1,2-dichloroethane (DCE), exhibiting a lower vapor pressure and slower diffusion into the polymer layer. The deposition of the PC71BM solution on the nanostructured PCPDTBT layer forms an inter-digitated bulk heterojunction (ID-BHJ) with minimized intermixing. The organic photovoltaic (OPV) device utilizing the ID-BHJ photoactive layer exhibits a highly reproducible solar cell performance. In spite of restricted intermixing between the PC71BM and the PCPDTBT, the efficiency of ID-BHJ OPVs (3.36%) is comparable to that of OPVs (3.87%) prepared by the conventional method (deposition of a blended solution of polymer:fullerene). The thermal stability of the ID-BHJ is superior to the bulk heterojunction (BHJ) prepared by the conventional method. The ID-BHJ OPV maintains 70% of its initial efficiency after thermal stress application for twelve days at 80 °C, whereas the conventional BHJ OPV maintains only 40% of its initial efficiency.

18.
Phys Chem Chem Phys ; 19(2): 1143-1150, 2017 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-27942651

RESUMEN

A ternary solvent system consisting of dimethyl sulfoxide (DMSO), γ-butyrolactone (GBL) and N-methyl-2-pyrrolidone (NMP) has been developed to improve the uniformity of CH3NH3PbI3 (MAPbI3) perovskite domains. Compared to MAPbI3 perovskite films prepared using a binary solvent consisting of DMSO and GBL, the surface roughness and uniformity of MAPbI3 films fabricated by using the ternary solvent system are greatly improved. The thermogravimetric analysis reveals that a NMP-PbI2-MAI intermediate, a DMSO-PbI2-MAI intermediate and MAPbI3 crystals co-existed in the as-cast MAPbI3 films. Furthermore, it is found that the thermal stability of intermediate phases and the solvent evaporation rate are critical for the nucleation of the perovskite crystals during the thermal annealing treatment. The thermally stable intermediates prepared with the ternary solvent are converted to MAPbI3 films with a highly uniform and smooth surface. The film forms an intimate contact with the charge transporting layer when the layer is applied as a photoactive layer in the solar cell. As a result, the power conversion efficiency of ternary solvent processed solar cells is enhanced by 38.2% compared to that of the binary solvent processed one. Furthermore, the stability of the ternary processed perovskite solar cells is greatly improved, as well. This investigation provides a better understanding about the role of different processing solvents or additives in effecting the perovskite film quality.

19.
Opt Express ; 24(22): 25308-25316, 2016 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-27828469

RESUMEN

A near infrared organic photodiode (OPD) utilizing a double electron blocking layer (EBL) fabricated by the sequential deposition of molybdenum (VI) oxide (MoO3) and poly(3,4ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) is reported. The double EBL improves the on/off current ratio of OPD up to 1.36 x 104 at -1V, which is one order of magnitude higher than PEDOT:PSS single EBL (2.45 x 103) and three orders of magnitude higher than that of MoO3 single EBL (7.86). The detectivity at near infrared (800 nm) at -1V is 4.90 x 1011 Jones, which is 2.83 times higher than the PEDOT:PSS single EBL and 2 magnitudes higher compared to the MoO3 single EBL.

20.
Nanoscale ; 8(45): 18938-18944, 2016 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-27740663

RESUMEN

Transparent conductive electrodes (TCEs) are widely used in a wide range of optical-electronic devices. Recently, metal nanowires (NWs), e.g. Ag and Cu, have drawn attention as promising flexible materials for TCEs. Although the study of core-shell metal NWs, and the encapsulation/overcoating of the surface of single-metal NWs have separately been an object of focus in the literature, herein for the first time we simultaneously applied both strategies in the fabrication of highly stable Ag-Cu NW-based TCEs by the utilization of Ag nanoparticles covered with reduced graphene oxide (rGO). The incorporation of Ag nanoparticles by galvanic displacement reaction was shown to significantly increase the long term stability of the electrode. Upon comparison with a CuNW reference, our novel rGO/Cu-AgNW-based TCEs unveiled remarkable opto-electrical properties, with a 3-fold sheet resistance decrease (from 29.8 Ω sq-1 to 10.0 Ω sq-1) and an impressive FOM value (139.4). No detrimental effect was noticed in the relatively high transmittance value (T = 77.6% at 550 nm) characteristic of CuNWs. In addition, our rGO/Cu-AgNW-based TCEs exhibited outstanding thermal stability up to 20 days at 80 °C in air, as well as improved mechanical flexibility. The superior performance herein reported compared with both CuNWs and AgNWs, and with a current conventional ITO reference, is believed to highlight the great potential of these novel materials as promising alternatives in optical-electronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...