Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 99, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38386071

RESUMEN

Proneural genes play a crucial role in neuronal differentiation. However, our understanding of the regulatory mechanisms governing proneural genes during neuronal differentiation remains limited. RFX4, identified as a candidate regulator of proneural genes, has been reported to be associated with the development of neuropsychiatric disorders. To uncover the regulatory relationship, we utilized a combination of multi-omics data, including ATAC-seq, ChIP-seq, Hi-C, and RNA-seq, to identify RFX4 as an upstream regulator of proneural genes. We further validated the role of RFX4 using an in vitro model of neuronal differentiation with RFX4 knock-in and a CRISPR-Cas9 knock-out system. As a result, we found that RFX4 directly interacts with the promoters of POU3F2 and NEUROD1. Transcriptomic analysis revealed a set of genes associated with neuronal development, which are highly implicated in the development of neuropsychiatric disorders, including schizophrenia. Notably, ectopic expression of RFX4 can drive human embryonic stem cells toward a neuronal fate. Our results strongly indicate that RFX4 serves as a direct upstream regulator of proneural genes, a role that is essential for normal neuronal development. Impairments in RFX4 function could potentially be related to the development of various neuropsychiatric disorders. However, understanding the precise mechanisms by which the RFX4 gene influences the onset of neuropsychiatric disorders requires further investigation through human genetic studies.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Proteínas de Homeodominio , Neuronas , Factores del Dominio POU , Factores de Transcripción del Factor Regulador X , Humanos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Perfilación de la Expresión Génica , Regiones Promotoras Genéticas , RNA-Seq , Diferenciación Celular , Proteínas de Homeodominio/genética , Factores del Dominio POU/genética , Factores de Transcripción del Factor Regulador X/genética
2.
Cell Mol Life Sci ; 81(1): 29, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38212474

RESUMEN

Involution of the mammary gland after lactation is a dramatic example of coordinated cell death. Weaning causes distension of the alveolar structures due to the accumulation of milk, which, in turn, activates STAT3 and initiates a caspase-independent but lysosome-dependent cell death (LDCD) pathway. Although the importance of STAT3 and LDCD in early mammary involution is well established, it has not been entirely clear how milk stasis activates STAT3. In this report, we demonstrate that protein levels of the PMCA2 calcium pump are significantly downregulated within 2-4 h of experimental milk stasis. Reductions in PMCA2 expression correlate with an increase in cytoplasmic calcium in vivo as measured by multiphoton intravital imaging of GCaMP6f fluorescence. These events occur concomitant with the appearance of nuclear pSTAT3 expression but prior to significant activation of LDCD or its previously implicated mediators such as LIF, IL6, and TGFß3, all of which appear to be upregulated by increased intracellular calcium. We further demonstrate that increased intracellular calcium activates STAT3 by inducing degradation of its negative regulator, SOCS3. We also observed that milk stasis, loss of PMCA2 expression and increased intracellular calcium levels activate TFEB, an important regulator of lysosome biogenesis through a process involving inhibition of CDK4/6 and cell cycle progression. In summary, these data suggest that intracellular calcium serves as an important proximal biochemical signal linking milk stasis to STAT3 activation, increased lysosomal biogenesis, and lysosome-mediated cell death.


Asunto(s)
Calcio , Leche , Femenino , Animales , Leche/metabolismo , Calcio/metabolismo , Muerte Celular , Lactancia , Lisosomas/metabolismo , Glándulas Mamarias Animales/metabolismo , Factor de Transcripción STAT3/metabolismo
3.
Am J Cancer Res ; 13(9): 4446-4465, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37818060

RESUMEN

Papillary thyroid cancer (PTC) is the most common type of endocrine cancer worldwide. Generally, PTC has an excellent prognosis; however, lymph node metastases and recurrences occur frequently. Over the last decade, circular RNAs (circRNAs), a large class of noncoding RNAs (ncRNAs), have emerged as key regulators of various tumor progression pathways. Here, we aimed to identify novel circRNAs as PTC biomarkers. Differentially expressed circRNAs and mRNAs were analyzed using public datasets from the Gene Expression Omnibus and Cancer Genome Atlas. In addition, we screened for target miRNAs using online prediction databases. Based on these results, we established a circRNA-miRNA-mRNA regulatory network associated with PTC, in which protein-protein interaction networks led to the identification of hub genes. Functional enrichment and survival analyses were performed to gain insights into the biological mechanisms of circRNA involvement. As a result, we found that two circRNAs (hsa_circ_0041829 and has_circ_0092299), four miRNAs (miR-369, miR-486, miR-574, and miR-665), and nine hub genes (BBC3, E2F1, FYN, MAG, SDC1, SDC3, SNAP25, TK1, and TYMS) play significant roles in PTC progression. This study provides a novel framework for understanding the roles of circRNA-miRNA-mediated gene regulation in PTC. It also introduces potential therapeutic targets and prognostic biomarkers, which may serve as a basis for developing targeted therapeutic interventions for PTC.

4.
Res Sq ; 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37398309

RESUMEN

Involution of the mammary gland after lactation is a dramatic example of coordinated cell death. Weaning causes distension of the alveolar structures due to the accumulation of milk, which, in turn, activates STAT3 and initiates a caspase-independent but lysosome-dependent cell death (LDCD) pathway. Although the importance of STAT3 and LDCD in early mammary involution is well established, it has not been entirely clear how milk stasis activates STAT3. In this report, we demonstrate that protein levels of the PMCA2 calcium pump are significantly downregulated within 2-4 hours of experimental milk stasis. Reductions in PMCA2 expression correlate with an increase in cytoplasmic calcium in vivo as measured by multiphoton intravital imaging of GCaMP6f fluorescence. These events occur concomitant with the appearance of nuclear pSTAT3 expression but prior to significant activation of LDCD or its previously implicated mediators such as LIF, IL6 and TGFß3, all of which appear to be upregulated by increased intracellular calcium. We also observed that milk stasis, loss of PMCA2 expression and increased intracellular calcium levels activate TFEB, an important regulator of lysosome biogenesis. This is the result of increased TGFß signaling and inhibition of cell cycle progression. Finally, we demonstrate that increased intracellular calcium activates STAT3 by inducing degradation of its negative regulator, SOCS3, a process which also appears to be mediated by TGFß signaling. In summary, these data suggest that intracellular calcium serves as an important proximal biochemical signal linking milk stasis to STAT3 activation, increased lysosomal biogenesis, and lysosome-mediated cell death.

5.
J Autoimmun ; 133: 102940, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36323068

RESUMEN

Primary biliary cholangitis (PBC) is an autoimmune disease that involves chronic inflammation and injury to biliary epithelial cells. To identify critical genetic factor(s) in PBC patients, we performed whole-exome sequencing of five female siblings, including one unaffected and four affected sisters, in a multi-PBC family, and identified 61 rare heterozygote variants that segregated only within the affected sisters. Among them, we were particularly interested in caspase-10, for although several caspases are involved in cell death, inflammation and autoimmunity, caspase-10 is little known from this perspective. We generated caspase-10 knockout macrophages, and then investigated the obtained phenotypes in comparison to those of its structurally similar protein, caspase-8. Unlike caspase-8, caspase-10 does not play a role during differentiation into macrophages, but after differentiation, it regulates the process of inflammatory cell deaths such as necroptosis and pyroptosis more strongly. Interestingly, caspase-10 displays better protease activity than caspase-8 in the process of RIPK1 cleavage, and an enhanced ability to form a complex with RIPK1 and FADD in human macrophages. Higher inflammatory cell death affected the fibrotic response of hepatic stellate cells; this effect could be recovered by treatment with UDCA and OCA, which are currently approved for PBC patients. Our findings strongly indicate that the defective roles of caspase-10 in macrophages contribute to the pathogenesis of PBC, thereby suggesting a new therapeutic strategy for PBC treatment.


Asunto(s)
Cirrosis Hepática Biliar , Humanos , Femenino , Caspasa 10 , Caspasa 8/genética , Cirrosis Hepática Biliar/genética , Muerte Celular/genética
6.
Exp Mol Med ; 54(2): 156-168, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35169223

RESUMEN

Despite numerous observations regarding the relationship between DNA methylation changes and cancer progression, only a few genes have been verified as diagnostic biomarkers of colorectal cancer (CRC). To more practically detect methylation changes, we performed targeted bisulfite sequencing. Through co-analysis of RNA-seq, we identified cohort-specific DNA methylation markers: CpG islands of the intragenic regions of PDX1, EN2, and MSX1. We validated that these genes have oncogenic features in CRC and that their expression levels are increased in correlation with the hypermethylation of intragenic regions. The reliable depth of the targeted bisulfite sequencing data enabled us to design highly optimized quantitative methylation-specific PCR primer sets that can successfully detect subtle changes in the methylation levels of candidate regions. Furthermore, these methylation levels can divide CRC patients into two groups denoting good and poor prognoses. In this study, we present a streamlined workflow for screening clinically significant differentially methylated regions. Our discovery of methylation markers in the PDX1, EN2, and MSX1 genes suggests their promising performance as prognostic markers and their clinical application in CRC patients.


Asunto(s)
Neoplasias Colorrectales , Metilación de ADN , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Islas de CpG/genética , Proteínas de Homeodominio , Humanos , Factor de Transcripción MSX1/genética , Factor de Transcripción MSX1/metabolismo , Proteínas del Tejido Nervioso , Oncogenes , Transactivadores
7.
BMB Rep ; 55(6): 281-286, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35168700

RESUMEN

Hepatocellular carcinoma is a major health burden, and though various treatments through much research are available, difficulties in early diagnosis and drug resistance to chemotherapy-based treatments render several ineffective. Cancer stem cell model has been used to explain formation of heterogeneous cell population within tumor mass, which is one of the underlying causes of high recurrence rate and acquired chemoresistance, highlighting the importance of CSC identification and understanding the molecular mechanisms of CSC drivers. Extracellular CSCmarkers such as CD133, CD90 and EpCAM have been used successfully in CSC isolation, but studies have indicated that increasingly complex combinations are required for accurate identification. Pseudogene-derived long non-coding RNAs are useful candidates as intracellular CSC markers - factors that regulate pluripotency and self-renewal - given their cancer-specific expression and versatile regulation across several levels. Here, we present the use of microarray data to identify stemness-associated factors in liver cancer, and selection of sole pseudogenederived lncRNA ZNF204P for experimental validation. ZNF204P knockdown impairs cell proliferation and migration/invasion. As the cytosolic ZNF204P shares miRNA binding sites with OCT4 and SOX2, well-known drivers of pluripotency and self-renewal, we propose that ZNF204P promotes tumorigenesis through the miRNA-145-5p/OCT4, SOX2 axis. [BMB Reports 2022; 55(6): 281-286].


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , ARN Largo no Codificante , Dedos de Zinc , Carcinogénesis/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Células Madre Neoplásicas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Dedos de Zinc/genética
8.
Biochem Biophys Res Commun ; 590: 125-131, 2022 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-34974300

RESUMEN

Embryonic stem cells (ESCs) are derived from the inner cell mass of developing blastocysts, which have self-renewal ability and have the potential to develop or reconstitute into all embryonic lineages. Selenophosphate synthetase 1 (SEPHS1) is an essential protein in mouse early embryo development. However, the role of SEPHS1 in mouse ESCs remains to be elucidated. In this study, we generated Sephs1 KO ESCs and found that deficiency of SEPSH1 has little effect on pluripotency maintenance and proliferation. Notably, SEPHS1 deficiency impaired differentiation into three germ layers and gastruloid aggregation in vitro. RNA-seq analysis showed SEPHS1 is involved in cardiogenesis, verified by no beating signal in Sephs1 KO embryoid body at d10 and low expression of cardiac-related and contraction markers. Taken together, our results suggest that SPEHS1 is dispensable in ESC self-renewal, but indispensable in subsequent germ layer differentiation especially for functional cardiac lineage.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Miocardio/citología , Fosfotransferasas/metabolismo , Animales , Diferenciación Celular/genética , Cuerpos Embrioides/citología , Gastrulación/genética , Regulación del Desarrollo de la Expresión Génica , Estratos Germinativos/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfotransferasas/deficiencia , Transcripción Genética
9.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34769076

RESUMEN

The primary function of selenophosphate synthetase (SEPHS) is to catalyze the synthesis of selenophosphate that serves as a selenium donor during selenocysteine synthesis. In eukaryotes, there are two isoforms of SEPHS (SEPHS1 and SEPHS2). Between these two isoforms, only SEPHS2 is known to contain selenophosphate synthesis activity. To examine the function of SEPHS1 in endothelial cells, we introduced targeted null mutations to the gene for SEPHS1, Sephs1, in cultured mouse 2H11 endothelial cells. SEPHS1 deficiency in 2H11 cells resulted in the accumulation of superoxide and lipid peroxide, and reduction in nitric oxide. Superoxide accumulation in Sephs1-knockout 2H11 cells is due to the induction of xanthine oxidase and NADPH oxidase activity, and due to the decrease in superoxide dismutase 1 (SOD1) and 3 (SOD3). Superoxide accumulation in 2H11 cells also led to the inhibition of cell proliferation and angiogenic tube formation. Sephs1-knockout cells were arrested at G2/M phase and showed increased gamma H2AX foci. Angiogenic dysfunction in Sephs1-knockout cells is mediated by a reduction in nitric oxide and an increase in ROS. This study shows for the first time that superoxide was accumulated by SEPHS1 deficiency, leading to cell dysfunction through DNA damage and inhibition of cell proliferation.


Asunto(s)
Células Endoteliales/metabolismo , Estrés Oxidativo , Fosfotransferasas/genética , Animales , Línea Celular , Células Endoteliales/patología , Eliminación de Gen , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Peroxidación de Lípido , Ratones , Fosfotransferasas/metabolismo , Especies de Nitrógeno Reactivo/genética , Especies de Nitrógeno Reactivo/metabolismo , Superóxidos/metabolismo
10.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34769078

RESUMEN

Selenophosphate synthetase 1 (SEPHS1) plays an essential role in cell growth and survival. However, the underlying molecular mechanisms remain unclear. In the present study, the pathways regulated by SEPHS1 during gastrulation were determined by bioinformatical analyses and experimental verification using systemic knockout mice targeting Sephs1. We found that the coagulation system and retinoic acid signaling were most highly affected by SEPHS1 deficiency throughout gastrulation. Gene expression patterns of altered embryo morphogenesis and inhibition of Wnt signaling were predicted with high probability at E6.5. These predictions were verified by structural abnormalities in the dermal layer of Sephs1-/- embryos. At E7.5, organogenesis and activation of prolactin signaling were predicted to be affected by Sephs1 knockout. Delay of head fold formation was observed in the Sephs1-/- embryos. At E8.5, gene expression associated with organ development and insulin-like growth hormone signaling that regulates organ growth during development was altered. Consistent with these observations, various morphological abnormalities of organs and axial rotation failure were observed. We also found that the gene sets related to redox homeostasis and apoptosis were gradually enriched in a time-dependent manner until E8.5. However, DNA damage and apoptosis markers were detected only when the Sephs1-/- embryos aged to E9.5. Our results suggest that SEPHS1 deficiency causes a gradual increase of oxidative stress which changes signaling pathways during gastrulation, and afterwards leads to apoptosis.


Asunto(s)
Gastrulación , Regulación del Desarrollo de la Expresión Génica , Ratones/embriología , Fosfotransferasas/genética , Animales , Pérdida del Embrión/genética , Pérdida del Embrión/metabolismo , Pérdida del Embrión/patología , Femenino , Eliminación de Gen , Ratones/genética , Ratones/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfotransferasas/metabolismo , Embarazo , Transducción de Señal
11.
Mol Cells ; 44(9): 658-669, 2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34588321

RESUMEN

Enhancers have been conventionally perceived as cis-acting elements that provide binding sites for trans-acting factors. However, recent studies have shown that enhancers are transcribed and that these transcripts, called enhancer RNAs (eRNAs), have a regulatory function. Here, we identified putative eRNAs by profiling and determining the overlap between noncoding RNA expression loci and eRNA-associated histone marks such as H3K27ac and H3K4me1 in hepatocellular carcinoma (HCC) cell lines. Of the 132 HCC-derived noncoding RNAs, 74 overlapped with the eRNA loci defined by the FANTOM consortium, and 65 were located in the proximal regions of genes differentially expressed between normal and tumor tissues in TCGA dataset. Interestingly, knockdown of two selected putative eRNAs, THUMPD3-AS1 and LINC01572, led to downregulation of their target mRNAs and to a reduction in the proliferation and migration of HCC cells. Additionally, the expression of these two noncoding RNAs and target mRNAs was elevated in tumor samples in the TCGA dataset, and high expression was associated with poor survival of patients. Collectively, our study suggests that noncoding RNAs such as THUMPD3-AS1 and LINC01572 (i.e., putative eRNAs) can promote the transcription of genes involved in cell proliferation and differentiation and that the dysregulation of these noncoding RNAs can cause cancers such as HCC.


Asunto(s)
Carcinoma Hepatocelular/genética , Elementos de Facilitación Genéticos/genética , Neoplasias Hepáticas/genética , ARN no Traducido/metabolismo , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/patología , Humanos , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Análisis de Supervivencia , Transfección
12.
Int J Mol Sci ; 22(15)2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34360546

RESUMEN

Promyelocytic leukemia (PML) protein is the core component of subnuclear structures called PML nuclear bodies that are known to play important roles in cell survival, DNA damage responses, and DNA repair. Fanconi anemia (FA) proteins are required for repairing interstrand DNA crosslinks (ICLs). Here we report a novel role of PML proteins, regulating the ICL repair pathway. We found that depletion of the PML protein led to the significant reduction of damage-induced FANCD2 mono-ubiquitination and FANCD2 foci formation. Consistently, the cells treated with siRNA against PML showed enhanced sensitivity to a crosslinking agent, mitomycin C. Further studies showed that depletion of PML reduced the protein expression of FANCA, FANCG, and FANCD2 via reduced transcriptional activity. Interestingly, we observed that damage-induced CHK1 phosphorylation was severely impaired in cells with depleted PML, and we demonstrated that CHK1 regulates FANCA, FANCG, and FANCD2 transcription. Finally, we showed that inhibition of CHK1 phosphorylation further sensitized cancer cells to mitomycin C. Taken together, these findings suggest that the PML is critical for damage-induced CHK1 phosphorylation, which is important for FA gene expression and for repairing ICLs.


Asunto(s)
Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Proteína del Grupo de Complementación A de la Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación G de la Anemia de Fanconi/metabolismo , Anemia de Fanconi/patología , Regulación de la Expresión Génica , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Daño del ADN , Reparación del ADN , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación A de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación G de la Anemia de Fanconi/genética , Células HeLa , Humanos , Fosforilación , Ubiquitinación
13.
Int J Mol Sci ; 22(14)2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34299245

RESUMEN

Hepatocellular carcinoma (HCC) records the second-lowest 5-year survival rate despite the avalanche of research into diagnosis and therapy. One of the major obstacles in treatment is chemoresistance to drugs such as 5-fluorouracil (5-FU), making identification and elucidation of chemoresistance regulators highly valuable. As the regulatory landscape grows to encompass non-coding genes such as long non-coding RNAs (lncRNAs), a relatively new class of lncRNA has emerged in the form of pseudogene-derived lncRNAs. Through bioinformatics analyses of the TCGA LIHC dataset, we have systematically identified pseudogenes of prognostic value. Initial experimental validation of selected pseudogene-derived lncRNA (PLEKHA8P1) and its parental gene (PLEKHA8), a well-studied transport protein in Golgi complex recently implicated as an oncogene in both colorectal and liver cancer, indicates that the pseudogene/parental gene pair promotes tumor progression and that their dysregulated expression levels affect 5-FU-induced chemoresistance in human HCC cell line FT3-7. Our study has thus confirmed cancer-related functions of PLEKHA8, and laid the groundwork for identification and validation of oncogenic pseudogene-derived lncRNA that shows potential as a novel therapeutic target in circumventing chemoresistance induced by 5-FU.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Carcinoma Hepatocelular/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Biología Computacional/métodos , Bases de Datos Genéticas , Progresión de la Enfermedad , Resistencia a Antineoplásicos/genética , Fluorouracilo/farmacología , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Estimación de Kaplan-Meier , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , MicroARNs/genética , Pronóstico , Seudogenes , ARN Largo no Codificante/genética
14.
Mol Cells ; 43(12): 1011-1022, 2020 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-33293480

RESUMEN

Cell type specification is a delicate biological event in which every step is under tight regulation. From a molecular point of view, cell fate commitment begins with chromatin alteration, which kickstarts lineage-determining factors to initiate a series of genes required for cell specification. Several important neuronal differentiation factors have been identified from ectopic over-expression studies. However, there is scarce information on which DNA regions are modified during induced pluripotent stem cell (iPSC) to neuronal progenitor cell (NPC) differentiation, the cis regulatory factors that attach to these accessible regions, or the genes that are initially expressed. In this study, we identified the DNA accessible regions of iPSCs and NPCs via the Assay for Transposase-Accessible Chromatin sequencing (ATACseq). We identified which chromatin regions were modified after neuronal differentiation and found that the enhancer regions had more active histone modification changes than the promoters. Through motif enrichment analysis, we found that NEUROD1 controls iPSC differentiation to NPC by binding to the accessible regions of enhancers in cooperation with other factors such as the Hox proteins. Finally, by using Hi-C data, we categorized the genes that directly interacted with the enhancers under the control of NEUROD1 during iPSC to NPC differentiation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Diferenciación Celular/genética , Cromatina/metabolismo , Elementos de Facilitación Genéticos , Epigénesis Genética , Humanos , Células-Madre Neurales/metabolismo , Regiones Promotoras Genéticas , Unión Proteica/genética
15.
Genes (Basel) ; 11(10)2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-33050006

RESUMEN

Given the difficulties of obtaining diseased cells, differentiation of neurons from patient-specific human induced pluripotent stem cells (iPSCs) with neural progenitor cells (NPCs) as intermediate precursors is of great interest. While cellular and transcriptomic changes during the differentiation process have been tracked, little attention has been given to examining spatial re-organization, which has been revealed to control gene regulation in various cells. To address the regulatory mechanism by 3D chromatin structure during neuronal differentiation, we examined the changes that take place during differentiation process using two cell types that are highly valued in the study of neurodegenerative disease - iPSCs and NPCs. In our study, we used Hi-C, a derivative of chromosome conformation capture that enables unbiased, genome-wide analysis of interaction frequencies in chromatin. We showed that while topologically associated domains remained mostly the same during differentiation, the presence of differential interacting regions in both cell types suggested that spatial organization affects gene regulation of both pluripotency maintenance and neuroectodermal differentiation. Moreover, closer analysis of promoter-promoter pairs suggested that cell fate specification is under the control of cis-regulatory elements. Our results are thus a resourceful addition in benchmarking differentiation protocols and also provide a greater appreciation of NPCs, the common precursors from which required neurons for applications in neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, schizophrenia and spinal cord injuries are utilized.


Asunto(s)
Biomarcadores/metabolismo , Diferenciación Celular , Reprogramación Celular , Cromatina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células Madre Pluripotentes Inducidas/metabolismo , Células-Madre Neurales/metabolismo , Cromatina/genética , Genoma Humano , Humanos , Células Madre Pluripotentes Inducidas/citología , Células-Madre Neurales/citología
16.
Stem Cell Rev Rep ; 16(6): 1316-1327, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32975781

RESUMEN

The effects of gene body DNA methylation on gene regulation still remains highly controversial. In this study, we generated whole genome bisulfite sequencing (WGBS) data with high sequencing depth in induced pluripotent stem cell (iPSC) and neuronal progentior cell (NPC), and investigated the relationship between DNA methylation changes in CpG islands (CGIs) and corresponding gene expression during NPC differentiation. Interestingly, differentially methylated CGIs were more abundant in intragenic regions compared to promoters and these methylated intragenic CGIs (iCGIs) were associated with neuronal development-related genes. When we compared gene expression level of methylated and unmethylated CGIs in intragenic regions, DNA methylation of iCGI was positively correlated with gene expression in contrast with promoter CGIs (pCGIs). To gain insight into regulatory mechanism mediated by iCGI DNA methylation, we executed motif searching in hypermethylated iCGIs and found NEUROD1 as a hypermethylated iCGI binding transcription factor. This study highlights give rise to possibility of activating role of hypermethylation in iCGIs and involvement of neuronal development related TFs. Graphical Abstract The relationship between iCGI DNA methylation and expression of associated genes in neuronal developmental process. During iPSC to NPCdifferentiation, iCGI containing neural developmental genes show iCGI's DNA hypermethylation which is accompanied by gene activation and NEUROD1which is one of the core neuronal TFs interacts with hypermethylated iCGI regions.


Asunto(s)
Diferenciación Celular/genética , Islas de CpG/genética , Metilación de ADN/genética , Células Madre Pluripotentes Inducidas/citología , Células-Madre Neurales/citología , Linaje de la Célula/genética , Epigénesis Genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Modelos Biológicos , Células-Madre Neurales/metabolismo , Neuronas/citología , Regiones Promotoras Genéticas/genética , Factores de Transcripción/metabolismo
17.
Science ; 367(6483): 1255-1260, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-32165587

RESUMEN

T cells maintain a quiescent state prior to activation. As inappropriate T cell activation can cause disease, T cell quiescence must be preserved. Despite its importance, the mechanisms underlying the "quiescent state" remain elusive. Here, we identify BTG1 and BTG2 (BTG1/2) as factors responsible for T cell quiescence. BTG1/2-deficient T cells show an increased proliferation and spontaneous activation due to a global increase in messenger RNA (mRNA) abundance, which reduces the threshold to activation. BTG1/2 deficiency leads to an increase in polyadenylate tail length, resulting in a greater mRNA half-life. Thus, BTG1/2 promote the deadenylation and degradation of mRNA to secure T cell quiescence. Our study reveals a key mechanism underlying T cell quiescence and suggests that low mRNA abundance is a crucial feature for maintaining quiescence.


Asunto(s)
Proteínas Inmediatas-Precoces/fisiología , Activación de Linfocitos , Proteínas de Neoplasias/fisiología , Estabilidad del ARN , ARN Mensajero/química , Linfocitos T/inmunología , Proteínas Supresoras de Tumor/fisiología , Animales , Células Cultivadas , Proteínas Inmediatas-Precoces/genética , Ratones , Ratones Noqueados , Proteínas de Neoplasias/genética , Poliadenilación , Proteínas Supresoras de Tumor/genética
18.
Oncol Rep ; 42(6): 2686-2693, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31578581

RESUMEN

In recent years, efforts to treat cancer by improving the immune function of patients have received a great deal of attention. As part of the immune system, complement is also under such evaluation. Among the many components of the complement system, complement decay accelerating factor (CD55 or DAF) is known to inhibit complement­mediated cell lysis. However, little is known about the role of CD55 in terms of cancer therapy. The present study aimed to demonstrate that increased levels of CD55 are strongly correlated with the progression of colorectal cancer. A novel CD55 chimeric monoclonal antibody was developed that may boost the immune response, thereby suppressing cancer. The CD55 antibody treatment activated complement and therefore suppressed the proliferation, invasion and migration of colorectal cancer cells. This tumoricidal activity is partly explained by the inflammatory response via the activation of proinflammatory cytokines. In addition, the CD55 antibody treatment synergistically enhanced the tumoricidal activity of 5­FU in colorectal cancer cells, suggesting that combined treatment may be a better strategy in colorectal cancer therapy.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Antígenos CD55/genética , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Antígenos CD55/inmunología , Antígenos CD55/farmacología , Movimiento Celular/efectos de los fármacos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Proteínas del Sistema Complemento/genética , Citotoxicidad Inmunológica/efectos de los fármacos , Sinergismo Farmacológico , Fluorouracilo/farmacología , Células HT29 , Humanos , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Metástasis de la Neoplasia
19.
Yonsei Med J ; 60(5): 407-413, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31016901

RESUMEN

Although chronic obstructive pulmonary disease (COPD) is regarded as a chronic inflammatory lung disease, the disease mechanism is still not known. Intriguingly, aging lungs are quite similar to COPD-affected lungs in many ways, and COPD has been viewed as a disease of accelerated premature aging of the lungs. In this paper, based on a literature review, we would like to propose immunosenescence, age-associated decline in immunity, as a critical mechanism for the development of COPD. Immunosenescence can cause a low-grade, systemic inflammation described as inflammaging. This inflammaging may be directly involved in the COPD pathogenesis. The potential contributors to the development of inflammaging in the lungs possibly leading to COPD are discussed in the review paper. A notable fact about COPD is that only 15% to 20% of smokers develop clinically significant COPD. Given that there is a substantial inter-individual variation in inflammaging susceptibility, which is genetically determined and significantly affected by the history of the individual's exposure to pathogens, immunosenescence and inflammaging may also provide the answer for this unexpectedly low susceptibility of smokers to clinically significant COPD.


Asunto(s)
Inmunosenescencia , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Envejecimiento/patología , Humanos , Inflamación/patología , Pulmón/patología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología
20.
BMB Rep ; 52(2): 127-132, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30463643

RESUMEN

Cells must fine-tune their gene expression programs for optimal cellular activities in their natural growth conditions. Transcriptional memory, a unique transcriptional response, plays a pivotal role in faster reactivation of genes upon environmental changes, and is facilitated if genes were previously in an active state. Hyper-activation of gene expression by transcriptional memory is critical for cellular differentiation, development, and adaptation. TREM (Transcriptional REpression Memory), a distinct type of transcriptional memory, promoting hyper-repression of unnecessary genes, upon environmental changes has been recently reported. These two transcriptional responses may optimize specific gene expression patterns, in rapidly changing environments. Emerging evidence suggests that they are also critical for immune responses. In addition to memory B and T cells, innate immune cells are transcriptionally hyperactivated by restimulation, with the same or different pathogens known as trained immunity. In this review, we briefly summarize recent progress in chromatin-based regulation of transcriptional memory, and its potential role in immune responses. [BMB Reports 2019; 52(2): 127-132].


Asunto(s)
Epigénesis Genética/genética , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Animales , Cromatina , Epigenómica/métodos , Galactoquinasa/genética , Galactoquinasa/fisiología , Expresión Génica/genética , Expresión Génica/fisiología , Humanos , Elementos Reguladores de la Transcripción/genética , Elementos Reguladores de la Transcripción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...