Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Front Pharmacol ; 15: 1362391, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38464716

RESUMEN

Introduction: Non-alcoholic fatty liver disease (NAFLD) is difficult to manage because of its complex pathophysiological mechanism. There is still no effective treatment other than lifestyle modification (LM) such as dietary modifications, regular physical activity, and gradual weight loss. Herbal medicines from traditional Chinese Medicine and Korean Medicine have been shown to be effective in the treatment of NAFLD based on many randomized controlled trials. This systematic review and meta-analysis aims to evaluate the additive effects of herbal medicines on LM in the treatment of NAFLD. Methods: Two databases (PubMed and Cochrane library) were searched using keywords related to NAFLD and herbal medicines. Then the randomized controlled trials (RCTs) evaluating the therapeutic effects of herbal medicines combined with LM were selected. The pooled results were analyzed as mean difference (MD) with 95% confidence interval (CI) for continuous data, and risk ratio (RR) with 95% CI for dichotomous data. Results and Discussion: Eight RCTs with a total of 603 participants were included for this review study. Participants were administered with multi-herbal formulas (Yiqi Sanju Formula, Tiaogan Lipi Recipe, and Lingguizhugan Decoction) or single-herbal extracts (Glycyrrhiza glabra L., Magnoliae offcinalis, Trigonella Foenum-graecum L. semen, Portulaca oleracea L., and Rhus Coriaria L. fructus) along with LM for 12 weeks. The meta-analysis showed a significant improvement in ultrasoundbased liver steatosis measured by odds ratio (OR) in the herbal medicine group than those with LM alone (OR = 7.9, 95% CI 0.7 to 95.2, p < 0.1). In addition, herbal medicines decreased the levels of aspartate transferase (MD -7.5, 95% CI -13.4 to -1.7, p = 0.01) and total cholesterol (MD -16.0, 95% CI -32.7 to 0.7, p = 0.06) more than LM alone. The meta-analysis partially showed clinical evidence supporting the additive benefits of herbal medicines for NAFLD in combination with LM. Whereas, it is necessary to provide a solid basis through higher-quality studies using a specific herbal medicine.

2.
J Ginseng Res ; 48(1): 89-97, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38223828

RESUMEN

Background: Ginsenoside F2 (GF2), the protopanaxadiol-type constituent in Panax ginseng, has been reported to attenuate metabolic dysfunction-associated steatotic liver disease (MASLD). However, the mechanism of action is not fully understood. Here, this study investigates the molecular mechanism by which GF2 regulates MASLD progression through liver X receptor (LXR). Methods: To demonstrate the effect of GF2 on LXR activity, computational modeling of protein-ligand binding, Time-resolved fluorescence resonance energy transfer (TR-FRET) assay for LXR cofactor recruitment, and luciferase reporter assay were performed. LXR agonist T0901317 was used for LXR activation in hepatocytes and macrophages. MASLD was induced by high-fat diet (HFD) feeding with or without GF2 administration in WT and LXRα-/- mice. Results: Computational modeling showed that GF2 had a high affinity with LXRα. LXRE-luciferase reporter assay with amino acid substitution at the predicted ligand binding site revealed that the S264 residue of LXRα was the crucial interaction site of GF2. TR-FRET assay demonstrated that GF2 suppressed LXRα activity by favoring the binding of corepressors to LXRα while inhibiting the accessibility of coactivators. In vitro, GF2 treatments reduced T0901317-induced fat accumulation and pro-inflammatory cytokine expression in hepatocytes and macrophages, respectively. Consistently, GF2 administration ameliorated hepatic steatohepatitis and improved glucose or insulin tolerance in WT but not in LXRα-/- mice. Conclusion: GF2 alters the binding affinities of LXRα coregulators, thereby interrupting hepatic steatosis and inflammation in macrophages. Therefore, we propose that GF2 might be a potential therapeutic agent for the intervention in patients with MASLD.

3.
Front Med (Lausanne) ; 10: 1095828, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36910479

RESUMEN

Background: This study aimed to investigate the efficacy and safety of subcutaneous injection of peginterferon lambda in patients hospitalized with COVID-19. Methods: In this study (NCT04343976), patients admitted to hospital with COVID-19 confirmed by RT-PCR from nasopharyngeal swab were randomly assigned within 48 h to receive peginterferon lambda or placebo in a 1:1 ratio. Participants were subcutaneously injected with a peginterferon lambda or saline placebo at baseline and day 7 and were followed up until day 14. Results: We enrolled 14 participants; 6 participants (85.7%) in the peginterferon lambda group and 1 participant (14.3%) in the placebo group were treated with remdesivir prior to enrollment. Fifty percent of participants were SARS-CoV-2 RNA negative at baseline although they tested SARS-CoV-2 RNA positive within 48 h of randomization. Among participants who were SARS-CoV-2 positive at baseline, 2 out of 5 participants (40%) in the peginterferon lambda group became negative at day 14, while 0 out of 2 participants (0%) in the placebo group achieved negativity for SARS-CoV-2 by day 14 (p > 0.05). The median change in viral load (log copies per ml) was +1.72 (IQR -2.78 to 3.19) in the placebo group and -2.22 (IQR -3.24 to 0.55) in the peginterferon lambda group at day 14 (p = 0.24). Symptomatic changes did not differ between the two groups. Peginterferon lambda was well tolerated with a few treatment-related adverse effects. Conclusion: Peginterferon lambda appears to accelerate SARS-CoV-2 viral load decline and improve plasma disease progression markers in hospitalized patients with COVID-19.

4.
Clin Transplant ; 37(4): e14926, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36752566

RESUMEN

Our previous Multicenter Trial to Transplant HCV-infected Kidneys (MYTHIC) observed that 100% of hepatitis C virus (HCV)-uninfected patients who received a kidney from an HCV-infected deceased donor were cured of HCV with an 8-week regimen of glecaprevir and pibrentasvir (G/P) initiated 2-5 days after transplantation. Following acute and chronic infection with HCV, immune system perturbations have been reported to persist even after viral clearance. The aim of this study was to determine whether HCV viremic kidney recipients in the MYTHIC study experience sustained changes in the soluble inflammatory milieu associated with HCV infection. Among nine patients with HCV viremia at day 3 post-kidney transplant (post-KT D3), IP-10, IL-10, MIP-1ß, and IL-8 were significantly elevated from baseline. However, over the subsequent visits, there was a rapid, dramatic reduction back to baseline levels. Among seven patients who were not HCV viremic at post-KT D3, the cytokine levels did not significantly change. HCV-uninfected patients who received a kidney from an HCV-viremic deceased donor and were treated with early G/P experienced only transient alterations in the soluble inflammatory milieu. These data provide reassuring evidence that there appear to be no persistent cytokine disturbances with transient HCV viremia accompanying HCV donor positive/recipient negative kidney transplant.


Asunto(s)
Hepatitis C Crónica , Hepatitis C , Humanos , Hepacivirus , Viremia , Antivirales/uso terapéutico , Hepatitis C/tratamiento farmacológico , Riñón , Donantes de Tejidos , Citocinas
5.
Exp Mol Med ; 55(1): 158-170, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36631664

RESUMEN

Chronic alcohol consumption often induces hepatic steatosis but rarely causes severe inflammation in Kupffer cells (KCs) despite the increased hepatic influx of lipopolysaccharide (LPS), suggesting the presence of a veiled tolerance mechanism. In addition to LPS, the liver is affected by several gut-derived neurotransmitters through the portal blood, but the effects of catecholamines on KCs have not been clearly explored in alcohol-associated liver disease (ALD). Hence, we investigated the regulatory roles of catecholamine on inflammatory KCs under chronic alcohol exposure. We discovered that catecholamine levels were significantly elevated in the cecum, portal blood, and liver tissues of chronic ethanol-fed mice. Increased catecholamines induced mitochondrial translocation of cytochrome P450 2E1 in perivenous hepatocytes expressing the ß2-adrenergic receptor (ADRB2), leading to the enhanced production of growth differentiation factor 15 (GDF15). Subsequently, GDF15 profoundly increased ADRB2 expression in adjacent inflammatory KCs to facilitate catecholamine/ADRB2-mediated apoptosis. Single-cell RNA sequencing of KCs confirmed the elevated expression of Adrb2 and apoptotic genes after chronic ethanol intake. Genetic ablation of Adrb2 or hepatic Gdf15 robustly decreased the number of apoptotic KCs near perivenous areas, exacerbating alcohol-associated inflammation. Consistently, we found that blood and stool catecholamine levels and perivenous GDF15 expression were increased in patients with early-stage ALD along with an increase in apoptotic KCs. Our findings reveal a novel protective mechanism against ALD, in which the catecholamine/GDF15 axis plays a critical role in KC apoptosis, and identify a unique neuro-metabo-immune axis between the gut and liver that elicits hepatoprotection against alcohol-mediated pathogenic challenges.


Asunto(s)
Macrófagos del Hígado , Hepatopatías Alcohólicas , Ratones , Animales , Macrófagos del Hígado/metabolismo , Factor 15 de Diferenciación de Crecimiento/metabolismo , Factor 15 de Diferenciación de Crecimiento/farmacología , Lipopolisacáridos/metabolismo , Hepatopatías Alcohólicas/genética , Hepatopatías Alcohólicas/metabolismo , Hígado/metabolismo , Etanol/toxicidad , Etanol/metabolismo , Inflamación/metabolismo , Apoptosis
6.
Hepatol Commun ; 6(9): 2581-2593, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35712812

RESUMEN

Lipophilic but not hydrophilic statins have been shown to be associated with reduced risk for hepatocellular carcinoma (HCC) in patients with chronic viral hepatitis. We investigated differential actions of lipophilic and hydrophilic statins and their ability to modulate a clinical prognostic liver signature (PLS) predicting HCC risk in patients with liver disease. Hepatitis C virus (HCV)-infected Huh7.5.1 cells, recently developed as a model to screen HCC chemopreventive agents, were treated with lipophilic statins (atorvastatin and simvastatin) and hydrophilic statins (rosuvastatin and pravastatin), and then analyzed by RNA sequencing and PLS. Lipophilic statins, particularly atorvastatin, more significantly suppressed the HCV-induced high-risk pattern of PLS and genes in YAP and AKT pathway implicated in fibrogenesis and carcinogenesis, compared with the hydrophilic statins. While atorvastatin inhibited YAP activation through the mevalonate pathway, the distinctive AKT inhibition of atorvastatin was mediated by stabilizing truncated retinoid X receptor alpha, which has been known to enhance AKT activation, representing a target for HCC chemoprevention. In addition, atorvastatin modulated the high-risk PLS in an in vitro model of nonalcoholic fatty liver disease (NAFLD). Conclusion: Atorvastatin distinctively inhibits YAP and AKT activation, which are biologically implicated in HCC development, and attenuates a high-risk PLS in an in vitro model of HCV infection and NAFLD. These findings suggest that atorvastatin is the most potent statin to reduce HCC risk in patients with viral and metabolic liver diseases.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis C , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Atorvastatina/farmacología , Carcinoma Hepatocelular/genética , Hepatitis C/tratamiento farmacológico , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Neoplasias Hepáticas/genética , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Proteínas Proto-Oncogénicas c-akt/genética
7.
Antioxidants (Basel) ; 12(1)2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36670911

RESUMEN

Obesity is a burden to global health. Non-shivering thermogenesis of brown adipose tissue (BAT) and white adipose tissue (WAT) is a novel strategy for obesity treatment. Anmyungambi (AMGB) decoction is a multi-herb decoction with clinical anti-obesity effects. Here, we show the effects of AMGB decoction using high-fat diet (HFD)-fed C57BL6/J mice. All four versions of AMGB decoction (100 mg/kg/day, oral gavage for 28 days) suppressed body weight gain and obesity-related blood parameters in the HFD-fed obese mice. They also inhibited adipogenesis and induced lipolysis in inguinal WAT (iWAT). Especially, the AMGB-4 with 2:1:3:3 composition was the most effective; thus, further studies were performed with the AMGB-4 decoction. The AMGB-4 decoction displayed a dose-dependent body weight gain suppression. Serum triglyceride, total cholesterol, and blood glucose decreased as well. In epididymal WAT, iWAT, and BAT, the AMGB-4 decoction increased lipolysis markers. Additionally, the AMGB-4 decoction-fed mice showed an increased non-shivering thermogenic program in BAT and iWAT. Excessive reactive oxygen species (ROS) and suppressed antioxidative factors induced by the HFD feeding were also altered to normal levels by the AMGB-4 decoction treatment. Overall, our study supports the clinical use of AMGB decoction for obesity treatment by studying its mechanisms. AMGB decoction alleviates obesity through the activation of the lipolysis-thermogenesis program and the elimination of pathological ROS in thermogenic adipose tissues.

8.
J Infect Dis ; 224(5): 777-782, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34467988

RESUMEN

We analyzed plasma levels of interferons (IFNs) and cytokines, and expression of IFN-stimulated genes in peripheral blood mononuclear cells in patients with coronavirus disease 2019 of varying disease severity. Patients hospitalized with mild disease exhibited transient type I IFN responses, while intensive care unit patients had prolonged type I IFN responses. Type II IFN responses were compromised in intensive care unit patients. Type III IFN responses were induced in the early phase of infection, even in convalescent patients. These results highlight the importance of early type I and III IFN responses in controlling coronavirus disease 2019 progression.


Asunto(s)
COVID-19/inmunología , Interferón Tipo I/inmunología , Interferón gamma/inmunología , Interferones/inmunología , COVID-19/sangre , Quimiocinas/sangre , Citocinas/sangre , Humanos , Interferón Tipo I/sangre , Interferón Tipo I/genética , Interferón gamma/sangre , Interferón gamma/genética , Interferones/sangre , Leucocitos Mononucleares/inmunología , SARS-CoV-2/aislamiento & purificación , Interferón lambda
9.
Cell Mol Gastroenterol Hepatol ; 12(4): 1297-1310, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34118488

RESUMEN

BACKGROUND & AIMS: Patients with simple steatosis (SS) and nonalcoholic steatohepatitis can develop progressive liver fibrosis, which is associated with liver-related mortality. The mechanisms contributing to liver fibrosis development in SS, however, are poorly understood. SS is characterized by hepatocellular free fatty acid (FFA) accumulation without lobular inflammation seen in nonalcoholic steatohepatitis. Because the Hippo signaling transcriptional coactivator YAP1 (YAP) has previously been linked with nonalcoholic fatty liver disease (NAFLD)-related fibrosis, we sought to explore how hepatocyte FFAs activate a YAP-mediated profibrogenic program. METHODS: We analyzed RNA sequencing data from a GEO DataSet (accession: GSE162694) consisting of 143 patients with NAFLD. We also performed immunohistochemical, immunofluorescence, immunoblot, and quantitative reverse-transcription polymerase chain reaction analyses (qRT-PCR) in liver specimens from NAFLD subjects, from a murine dietary NAFLD model, and in FFA-treated hepatic spheroids and hepatocytes. RESULTS: YAP-target gene expression correlated with increasing fibrosis stage in NAFLD patients and was associated with fibrosis in mice fed a NAFLD-inducing diet. Hepatocyte-specific YAP deletion in the murine NAFLD model attenuated diet-induced fibrosis, suggesting a causative role of YAP in NAFLD-related fibrosis. Likewise, in hepatic spheroids composed of Huh7 hepatoma cells and primary human hepatic stellate cells, Huh7 YAP silencing reduced FFA-induced fibrogenic gene expression. Notably, inhibition of p38 mitogen-activated protein kinase could block YAP activation in FFA-treated Huh7 cells. CONCLUSIONS: These studies provide further evidence for the pathological role of YAP in NAFLD-associated fibrosis and that YAP activation in NAFLD may be driven by FFA-induced p38 MAPK activation.


Asunto(s)
Ácidos Grasos/metabolismo , Cirrosis Hepática/etiología , Cirrosis Hepática/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Biomarcadores , Biología Computacional/métodos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Susceptibilidad a Enfermedades , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Hepatocitos/metabolismo , Humanos , Inmunohistoquímica , Cirrosis Hepática/patología , Pruebas de Función Hepática , Masculino , Ratones , Modelos Biológicos , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología
10.
Hepatology ; 74(4): 2170-2185, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33932306

RESUMEN

BACKGROUND AND AIMS: The important roles of glutamate and metabotropic glutamate receptor 5 (mGluR5) in HSCs have recently been reported in various liver diseases; however, the mechanism linking the glutamine/glutamate metabolism and mGluR5 in liver fibrosis remains unclear. Here, we report that mGluR5 activation in natural killer (NK) cells attenuates liver fibrosis through increased cytotoxicity and interferon-γ (IFN-γ) production in both mice and humans. APPROACH AND RESULTS: Following 2-week injection of carbon tetrachloride (CCl4 ) or 5-week methionine-deficient and choline-deficient diet, liver fibrosis was more aggravated in mGluR5 knockout mice with significantly decreased frequency of NK cells compared with wild-type mice. Consistently, NK cell-specific mGluR5 knockout mice had aggravated CCl4 -induced liver fibrosis with decreased production of IFN-γ. Conversely, in vitro activation of mGluR5 in NK cells significantly increased the expression of anti-fibrosis-related genes including Ifng, Prf1 (perforin), and Klrk1 (killer cell lectin like receptor K1) and the production of IFN-γ through the mitogen-activated extracellular signal-regulated kinase/extracellular signal-related kinase pathway, contributing to the increased cytotoxicity against activated HSCs. However, we found that the uptake of glutamate was increased in activated HSCs, resulting in shortage of extracellular glutamate and reduced stimulation of mGluR5 in NK cells. Consequently, this could enable HSCs to evade NK cell cytotoxicity in advanced liver fibrosis. In vivo, pharmacologic activation of mGluR5 accelerated CCl4 -induced liver fibrosis regression by restoring NK cell cytotoxicity. In humans, mGluR5 activation enhanced the cytotoxicity of NK cells isolated from healthy donors, but not from patients with cirrhosis with significantly reduced mGluR5 expression in NK cells. CONCLUSIONS: mGluR5 plays important roles in attenuating liver fibrosis by augmenting NK cell cytotoxicity, which could be used as a potential therapeutic target for liver fibrosis.


Asunto(s)
Células Estrelladas Hepáticas/fisiología , Interferón gamma/inmunología , Cirrosis Hepática , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Animales , Células Cultivadas , Citotoxicidad Inmunológica/inmunología , Modelos Animales de Enfermedad , Descubrimiento de Drogas , Humanos , Células Asesinas Naturales/fisiología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Ratones
11.
medRxiv ; 2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33758894

RESUMEN

We analyzed the plasma levels of interferons and cytokines, and the expression of interferon-stimulated genes in peripheral blood mononuclear cells in COVID-19 patients with different disease severity. Mild patients exhibited transient type I interferon responses, while ICU patients had prolonged type I interferon responses with hyper-inflammation mediated by interferon regulatory factor 1. Type II interferon responses were compromised in ICU patients. Type III interferon responses were induced in the early phase of SARS-CoV-2 infection, even in convalescent patients. These results highlight the importance of type I and III interferon responses during the early phase of infection in controlling COVID-19 progression.

12.
J Ginseng Res ; 44(6): 815-822, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33192125

RESUMEN

BACKGROUND: Recently, beneficial roles of ginsenoside F2 (GF2), a minor constituent of Panax ginseng, have been demonstrated in diverse inflammatory diseases. However, its roles in alcoholic liver inflammation and injury have not been clearly understood. Here, we investigated the underlying mechanism by which GF2 ameliorated alcoholic liver injury. METHODS: To induce alcoholic liver injury, C57BL/6J wild type (WT) or interleukin (IL)-10 knockout (KO) mice were orally administered with ethanol (3 g/kg) or ethanol-containing GF2 (50 mg/kg) for 2 wk. Liver injury and infiltration of macrophages and neutrophils were evaluated by serum biochemistry and immunohistochemistry, respectively. The changes of hepatic immune cells were assessed by flow cytometry and polymerase chain reaction analysis. In vitro differentiation of naïve T cells was performed. RESULTS: GF2 treatment significantly attenuated alcoholic liver injury, in which infiltrations of inflammatory macrophages and neutrophils were decreased. Moreover, the frequencies of Foxp3+ regulatory T cells (Tregs) increased but IL-17-producing T (Th17) cells decreased in GF2-treated mice compared to controls. Furthermore, the mRNA expression of IL-10 and Foxp3 was significantly increased, whereas IL-17 mRNA expression was suppressed in GF2-treated mice. However, these beneficial roles of GF2 were not observed in GF2-treated IL-10 KO mice, suggesting a critical role of IL-10. Similarly, GF2 treatment suppressed differentiation of naïve T cells into Th17 cells by inhibiting RORγt expression and stimulating Foxp3 expression. CONCLUSION: The present study suggests that GF2 treatment attenuates alcoholic liver injury by increasing IL-10 expression and Tregs and decreasing IL-17 expression and Th17 cells.

13.
Clin Cancer Res ; 26(1): 265-273, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31573955

RESUMEN

PURPOSE: The identification of novel targets for developing synergistic drug-radiation combinations would pave the way to overcome tumor radioresistance. We conducted cell-based screening of a human kinome siRNA library to identify a radiation-specific kinase that has a synergistic toxic effect with radiation upon inhibition and is not essential for cell survival in the absence of radiation. EXPERIMENTAL DESIGN: Unbiased RNAi screening was performed by transfecting A549 cells with a human kinome siRNA library followed by irradiation. Radiosensitizing effects of a target gene and involved mechanisms were examined. RESULTS: We identified the nonreceptor protein tyrosine kinase FES (FEline Sarcoma oncogene) as a radiosensitizing target. The expression of FES was increased in response to irradiation. Cell viability and clonogenic survival after irradiation were significantly decreased by FES knockdown in lung and pancreatic cancer cell lines. In contrast, FES depletion alone did not significantly affect cell proliferation without irradiation. An inducible RNAi mouse xenograft model verified in vivo radiosensitizing effects. FES-depleted cells showed increased apoptosis, DNA damage, G2-M phase arrest, and mitotic catastrophe after irradiation. FES depletion promoted radiation-induced reactive oxygen species formation, which resulted in phosphorylation of S6K and MDM2. The radiosensitizing effect of FES knockdown was partially reversed by inhibition of S6K activity. Consistent with the increase in phosphorylated MDM2, an increase in nuclear p53 levels was observed, which appears to contribute increased radiosensitivity of FES-depleted cells. CONCLUSIONS: We uncovered that inhibition of FES could be a potential strategy for inducing radiosensitization in cancer. Our results provide the basis for developing novel radiosensitizers.


Asunto(s)
Apoptosis , Daño del ADN , Neoplasias Pulmonares/genética , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas c-fes/antagonistas & inhibidores , Interferencia de ARN , Fármacos Sensibilizantes a Radiaciones/farmacología , Animales , Línea Celular Tumoral , Proliferación Celular , Modelos Animales de Enfermedad , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/radioterapia , Ratones , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/radioterapia , Fosforilación/efectos de la radiación , Proteínas Proto-Oncogénicas c-fes/genética , Proteínas Proto-Oncogénicas c-fes/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Tolerancia a Radiación , Proteína p53 Supresora de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Hepatology ; 72(2): 609-625, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31849082

RESUMEN

BACKGROUND AND AIMS: Mitochondrial double-stranded RNA (mtdsRNA) and its innate immune responses have been reported previously; however, mtdsRNA generation and its effects on alcohol-associated liver disease (ALD) remain unclear. Here, we report that hepatic mtdsRNA stimulates toll-like receptor 3 (TLR3) in Kupffer cells through the exosome (Exo) to enhance interleukin (IL)-17A (IL-17A) production in ALD. APPROACH AND RESULTS: Following binge ethanol (EtOH) drinking, IL-17A production primarily increased in γδ T cells of wild-type (WT) mice, whereas the production of IL-17A was mainly facilitated by CD4+ T cells in acute-on-chronic EtOH consumption. These were not observed in TLR3 knockout (KO) or Kupffer cell-depleted WT mice. The expression of polynucleotide phosphorylase, an mtdsRNA-restricting enzyme, was significantly decreased in EtOH-exposed livers and hepatocytes of WT mice. Immunostaining revealed that mtdsRNA colocalized with the mitochondria in EtOH-treated hepatocytes from WT mice and healthy humans. Bioanalyzer analysis revealed that small-sized RNAs were enriched in EtOH-treated Exos (EtOH-Exos) rather than EtOH-treated microvesicles in hepatocytes of WT mice and humans. Quantitative real-time PCR and RNA sequencing analyses indicated that mRNA expression of mitochondrial genes encoded by heavy and light strands was robustly increased in EtOH-Exos from mice and humans. After direct treatment with EtOH-Exos, IL-1ß expression was significantly increased in WT Kupffer cells but not in TLR3 KO Kupffer cells, augmenting IL-17A production of γδ T cells in mice and humans. CONCLUSIONS: EtOH-mediated generation of mtdsRNA contributes to TLR3 activation in Kupffer cells through exosomal delivery. Consequently, increased IL-1ß expression in Kupffer cells triggers IL-17A production in γδ T cells at the early stage that may accelerate IL-17A expression in CD4+ T cells in the later stage of ALD. Therefore, mtdsRNA and TLR3 may function as therapeutic targets in ALD.


Asunto(s)
Exosomas/genética , Interleucina-17/biosíntesis , Macrófagos del Hígado/metabolismo , Hepatopatías Alcohólicas/genética , Hepatopatías Alcohólicas/metabolismo , ARN Bicatenario/fisiología , ARN Mitocondrial/fisiología , Receptor Toll-Like 3/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
15.
Int J Mol Sci ; 20(24)2019 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-31817146

RESUMEN

Ginsenosides are known to have various highly pharmacological activities, such as anti-cancer and anti-inflammatory effects. However, the search for the most effective ginsenosides against the pathogenesis of atopic dermatitis (AD) and the study of the effects of ginsenosides on specific cytokines involved in AD remain unclear. In this study, ginsenoside Rh2 was shown to exert the most effective anti-inflammatory action on thymic stromal lymphopoietin (TSLP) and interleukin 8 in tumor necrosis factor-alpha and polyinosinic: polycytidylic acid induced normal human keratinocytes by inhibiting proinflammatory cytokines at both protein and transcriptional levels. Concomitantly, Rh2 also efficiently alleviated 2,4-dinitrochlorobenzene-induced AD-like skin symptoms when applied topically, including suppression of immune cell infiltration, cytokine expression, and serum immunoglobulin E levels in NC/Nga mice. In line with the in vitro results, Rh2 inhibited TSLP levels in AD mice via regulation of an underlying mechanism involving the nuclear factor κB pathways. In addition, in regard to immune cells, we showed that Rh2 suppressed not only the expression of TSLP but the differentiation of naïve CD4+ T-cells into T helper type 2 cells and their effector function in vitro. Collectively, our results indicated that Rh2 might be considered as a good therapeutic candidate for the alternative treatment of AD.


Asunto(s)
Citocinas/metabolismo , Dermatitis Atópica/tratamiento farmacológico , Ginsenósidos/uso terapéutico , FN-kappa B/metabolismo , Células Th2/metabolismo , Animales , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular , Citocinas/análisis , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/patología , Dinitroclorobenceno/toxicidad , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Ginsenósidos/farmacología , Humanos , Inmunoglobulina E/sangre , Masculino , Ratones , Piel/metabolismo , Piel/patología , Células Th2/citología , Linfopoyetina del Estroma Tímico
16.
Cell Metab ; 30(5): 877-889.e7, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31474565

RESUMEN

Activation of hepatocyte cannabinoid receptor-1 (CB1R) by hepatic stellate cell (HSC)-derived 2-arachidonoylglycerol (2-AG) drives de novo lipogenesis in alcoholic liver disease (ALD). How alcohol stimulates 2-AG production in HSCs is unknown. Here, we report that chronic alcohol consumption induced hepatic cysteine deficiency and subsequent glutathione depletion by impaired transsulfuration pathway. A compensatory increase in hepatic cystine-glutamate anti-porter xCT boosted extracellular glutamate levels coupled to cystine uptake both in mice and in patients with ALD. Alcohol also induced the selective expression of metabotropic glutamate receptor-5 (mGluR5) in HSCs where mGluR5 activation stimulated 2-AG production. Consistently, genetic or pharmacologic inhibition of mGluR5 or xCT attenuated alcoholic steatosis in mice via the suppression of 2-AG production and subsequent CB1R-mediated de novo lipogenesis. We conclude that a bidirectional signaling operates at a metabolic synapse between hepatocytes and HSCs through xCT-mediated glutamate-mGluR5 signaling to produce 2-AG, which induces CB1R-mediated alcoholic steatosis.


Asunto(s)
Hígado Graso Alcohólico/sangre , Hígado Graso Alcohólico/patología , Ácido Glutámico/metabolismo , Células Estrelladas Hepáticas/metabolismo , Transducción de Señal/genética , Adulto , Anciano , Sistema de Transporte de Aminoácidos y+/antagonistas & inhibidores , Sistema de Transporte de Aminoácidos y+/genética , Sistema de Transporte de Aminoácidos y+/metabolismo , Animales , Ácidos Araquidónicos/metabolismo , Endocannabinoides/metabolismo , Femenino , Glicéridos/metabolismo , Células HEK293 , Células Hep G2 , Hepatocitos/metabolismo , Humanos , Lipogénesis/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Receptor Cannabinoide CB1/metabolismo , Receptor del Glutamato Metabotropico 5/antagonistas & inhibidores , Receptor del Glutamato Metabotropico 5/genética , Receptor del Glutamato Metabotropico 5/metabolismo , Transfección
17.
Mol Cells ; 42(1): 45-55, 2019 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-30665288

RESUMEN

The liver is involved in a wide range of activities in vertebrates and some other animals, including metabolism, protein synthesis, detoxification, and the immune system. Until now, various methods have been devised to study liver diseases; however, each method has its own limitations. In situ liver perfusion machinery, originally developed in rats, has been successfully adapted to mice, enabling the study of liver diseases. Here we describe the protocol, which is a simple but widely applicable method for investigating the liver diseases. The liver is perfused in situ by cannulation of the portal vein and suprahepatic inferior vena cava (IVC), with antegrade closed circuit circulation completed by clamping the infrahepatic IVC. In situ liver perfusion can be utilized to evaluate immune cell migration and function, hemodynamics and related cellular reactions in each type of hepatic cells, and the metabolism of toxic or other compounds by changing the composition of the circulating media. In situ liver perfusion method maintains liver function and cell viability for up to 2 h. This study also describes an optional protocol using density-gradient centrifugation for the separation of different types of hepatic cells, allowing the determination of changes in each cell type. In summary, this method of in situ liver perfusion will be useful for studying liver diseases as a complement to other established methods.


Asunto(s)
Hepatopatías/diagnóstico , Hígado/irrigación sanguínea , Perfusión/métodos , Animales , Supervivencia Celular , Células Endoteliales/metabolismo , Ligandos , Hígado/metabolismo , Hígado/patología , Hepatopatías/patología , Activación de Linfocitos , Masculino , Ratones , Estrés Mecánico
18.
Sci Rep ; 8(1): 15076, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30305672

RESUMEN

The expression of chemokine receptor CX3CR1 is related to migration and signaling in cells of the monocyte-macrophage lineage. The precise roles of CX3CR1 in the liver have been investigated but not clearly elucidated. Here, we investigated the roles of CX3CR1 in hepatic macrophages and liver injury. Hepatic and splenic CX3CR1lowF4/80low monocytes and CX3CR1lowCD16- monocytes were differentiated into CX3CR1highF4/80high or CX3CR1highCD16+ macrophages by co-culture with endothelial cells. Moreover, CX3CL1 deficiency in human umbilical vein endothelial cells (HUVECs) attenuated the expression of interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α), whereas recombinant CX3CL1 treatment reversed this expression in co-cultured monocytes. Upon treatment with clodronate liposome, hepatic F4/80high macrophages were successfully depleted at day 2 and recovered similarly in CX3CR1+/GFP and CX3CR1GFP/GFP mice at week 4, suggesting a CX3CR1-independent replacement. However, F4/80high macrophages of CX3CR1+/GFP showed a stronger pro-inflammatory phenotype than CX3CR1GFP/GFP mice. In clodronate-treated chimeric CX3CR1+/GFP and CX3CR1GFP/GFP mice, CX3CR1+F4/80high macrophages showed higher expression of IL-1ß and TNF-α than CX3CR1-F4/80high macrophages. In alcoholic liver injury, despite the similar frequency of hepatic F4/80high macrophages, CX3CR1GFP/GFP mice showed reduced liver injury, hepatic fat accumulation, and inflammatory responses than CX3CR1+/GFP mice. Thus, CX3CR1 could be a novel therapeutic target for pro-inflammatory macrophage-mediated liver injury.


Asunto(s)
Biomarcadores/metabolismo , Receptor 1 de Quimiocinas CX3C/metabolismo , Diferenciación Celular , Inflamación/patología , Hígado/patología , Macrófagos/metabolismo , Monocitos/metabolismo , Animales , Antígenos CD/metabolismo , Receptor 1 de Quimiocinas CX3C/deficiencia , Etanol , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Macrófagos del Hígado/metabolismo , Hígado/lesiones , Macrófagos/patología , Masculino , Ratones Endogámicos C57BL , Modelos Biológicos , Monocitos/patología , Fenotipo , Bazo/patología , Regulación hacia Arriba
19.
Nat Commun ; 8(1): 2247, 2017 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-29269727

RESUMEN

Reactive oxygen species (ROS) contribute to the development of non-alcoholic fatty liver disease. ROS generation by infiltrating macrophages involves multiple mechanisms, including Toll-like receptor 4 (TLR4)-mediated NADPH oxidase (NOX) activation. Here, we show that palmitate-stimulated CD11b+F4/80low hepatic infiltrating macrophages, but not CD11b+F4/80high Kupffer cells, generate ROS via dynamin-mediated endocytosis of TLR4 and NOX2, independently from MyD88 and TRIF. We demonstrate that differently from LPS-mediated dimerization of the TLR4-MD2 complex, palmitate binds a monomeric TLR4-MD2 complex that triggers endocytosis, ROS generation and increases pro-interleukin-1ß expression in macrophages. Palmitate-induced ROS generation in human CD68lowCD14high macrophages is strongly suppressed by inhibition of dynamin. Furthermore, Nox2-deficient mice are protected against high-fat diet-induced hepatic steatosis and insulin resistance. Therefore, endocytosis of TLR4 and NOX2 into macrophages might be a novel therapeutic target for non-alcoholic fatty liver disease.


Asunto(s)
Endocitosis , Inflamación/metabolismo , Hígado/metabolismo , Antígeno 96 de los Linfocitos/metabolismo , Macrófagos/metabolismo , NADPH Oxidasa 2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Antígeno CD11b/inmunología , Dieta Alta en Grasa , Activación Enzimática , Humanos , Inmunofenotipificación , Hígado/citología , Hígado/enzimología , Macrófagos/efectos de los fármacos , Macrófagos/enzimología , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , NADPH Oxidasa 2/genética , Enfermedad del Hígado Graso no Alcohólico/enzimología , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/terapia , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacología , Células RAW 264.7
20.
Biochem Biophys Res Commun ; 478(4): 1713-9, 2016 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-27596969

RESUMEN

Topical use of ginsenosides, the major bioactive substances in Panax ginseng, has been used for the treatment of irritated skin complaints. However, the protective mechanisms of ginsenosides remain unclear. In the present study, we investigated the anti-inflammatory role of ginsenoside F2 (GF2) on the skin inflammation. To induce irritant dermatitis, 12-O-tetradecanoylphorbol-13-acetate (TPA) was applied on the surface of the mouse ears with or without treatments of GF2 and dexamethasone for 24 h. Protective effects of GF2 on edema and inflammation were assessed by measuring ear thickness, weights of skin punch, and inflammatory responses. In gross findings, treatments with GF2 significantly decreased skin thickness and weight compared to those of TPA-treated groups, which was comparable with the protective effects of dexamethasone. In addition, expression of inflammatory mediators was remarkably reduced in GF2-treated ears compared to that of vehicle-treated ears of mice. Interestingly, immunohistochemistry and flow cytometry analyses revealed that TPA treatment significantly increased infiltration of interleukin-17 (IL-17) producing dermal γδ T cells, while frequencies of γδ T cells was decreased by GF2 treatment, subsequently ameliorating inflammation in skin. Concomitantly, TPA-mediated skin inflammation was significantly ameliorated in IL-17A knock out mice. Furthermore, GF2 treatment inhibited infiltration and generation of reactive oxygen species (ROS) of neutrophils in damaged ears compared with vehicle-treated mice. These results clearly suggest that GF2 treatment ameliorates TPA-induced dermal inflammation by inhibiting production of IL-17 and ROS in γδ T cells and neutrophils, respectively. Therefore, as a natural compound, application of GF2 may be a novel therapeutic approach for treating skin inflammation.


Asunto(s)
Dermatitis/prevención & control , Oído Externo/efectos de los fármacos , Edema/prevención & control , Ginsenósidos/farmacología , Administración Cutánea , Animales , Dermatitis/etiología , Dermatitis/metabolismo , Oído Externo/metabolismo , Oído Externo/patología , Edema/inducido químicamente , Edema/metabolismo , Citometría de Flujo , Expresión Génica/efectos de los fármacos , Ginsenósidos/administración & dosificación , Interleucina-17/genética , Interleucina-17/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Sustancias Protectoras/administración & dosificación , Sustancias Protectoras/farmacología , Especies Reactivas de Oxígeno/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Acetato de Tetradecanoilforbol/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...