Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
PLoS Comput Biol ; 20(5): e1011200, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38709852

RESUMEN

During the COVID-19 pandemic, forecasting COVID-19 trends to support planning and response was a priority for scientists and decision makers alike. In the United States, COVID-19 forecasting was coordinated by a large group of universities, companies, and government entities led by the Centers for Disease Control and Prevention and the US COVID-19 Forecast Hub (https://covid19forecasthub.org). We evaluated approximately 9.7 million forecasts of weekly state-level COVID-19 cases for predictions 1-4 weeks into the future submitted by 24 teams from August 2020 to December 2021. We assessed coverage of central prediction intervals and weighted interval scores (WIS), adjusting for missing forecasts relative to a baseline forecast, and used a Gaussian generalized estimating equation (GEE) model to evaluate differences in skill across epidemic phases that were defined by the effective reproduction number. Overall, we found high variation in skill across individual models, with ensemble-based forecasts outperforming other approaches. Forecast skill relative to the baseline was generally higher for larger jurisdictions (e.g., states compared to counties). Over time, forecasts generally performed worst in periods of rapid changes in reported cases (either in increasing or decreasing epidemic phases) with 95% prediction interval coverage dropping below 50% during the growth phases of the winter 2020, Delta, and Omicron waves. Ideally, case forecasts could serve as a leading indicator of changes in transmission dynamics. However, while most COVID-19 case forecasts outperformed a naïve baseline model, even the most accurate case forecasts were unreliable in key phases. Further research could improve forecasts of leading indicators, like COVID-19 cases, by leveraging additional real-time data, addressing performance across phases, improving the characterization of forecast confidence, and ensuring that forecasts were coherent across spatial scales. In the meantime, it is critical for forecast users to appreciate current limitations and use a broad set of indicators to inform pandemic-related decision making.


Asunto(s)
COVID-19 , Predicción , Pandemias , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/transmisión , Humanos , Predicción/métodos , Estados Unidos/epidemiología , Pandemias/estadística & datos numéricos , Biología Computacional , Modelos Estadísticos
2.
Acta Neuropathol Commun ; 12(1): 65, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649962

RESUMEN

The progressive and irreversible degeneration of retinal ganglion cells (RGCs) and their axons is the major characteristic of glaucoma, a leading cause of irreversible blindness worldwide. Nicotinamide adenine dinucleotide (NAD) is a cofactor and metabolite of redox reaction critical for neuronal survival. Supplementation with nicotinamide (NAM), a precursor of NAD, can confer neuroprotective effects against glaucomatous damage caused by an age-related decline of NAD or mitochondrial dysfunction, reflecting the high metabolic activity of RGCs. However, oral supplementation of drug is relatively less efficient in terms of transmissibility to RGCs compared to direct delivery methods such as intraocular injection or delivery using subconjunctival depots. Neither method is ideal, given the risks of infection and subconjunctival scarring without novel techniques. By contrast, extracellular vesicles (EVs) have advantages as a drug delivery system with low immunogeneity and tissue interactions. We have evaluated the EV delivery of NAM as an RGC protective agent using a quantitative assessment of dendritic integrity using DiOlistics, which is confirmed to be a more sensitive measure of neuronal health in our mouse glaucoma model than the evaluation of somatic loss via the immunostaining method. NAM or NAM-loaded EVs showed a significant neuroprotective effect in the mouse retinal explant model. Furthermore, NAM-loaded EVs can penetrate the sclera once deployed in the subconjunctival space. These results confirm the feasibility of using subconjunctival injection of EVs to deliver NAM to intraocular targets.


Asunto(s)
Vesículas Extracelulares , Glaucoma , Ratones Endogámicos C57BL , Fármacos Neuroprotectores , Niacinamida , Células Ganglionares de la Retina , Animales , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/efectos de los fármacos , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/metabolismo , Niacinamida/administración & dosificación , Niacinamida/farmacología , Ratones , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/farmacología , Glaucoma/metabolismo , Glaucoma/tratamiento farmacológico , Neuroprotección/efectos de los fármacos , Esclerótica/metabolismo , Esclerótica/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Masculino
3.
bioRxiv ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38617262

RESUMEN

Spatial transcriptomics (ST) technologies represent a significant advance in gene expression studies, aiming to profile the entire transcriptome from a single histological slide. These techniques are designed to overcome the constraints faced by traditional methods such as immunostaining and RNA in situ hybridization, which are capable of analyzing only a few target genes simultaneously. However, the application of ST in histopathological analysis is also limited by several factors, including low resolution, a limited range of genes, scalability issues, high cost, and the need for sophisticated equipment and complex methodologies. Seq-Scope-a recently developed novel technology-repurposes the Illumina sequencing platform for high-resolution, high-content spatial transcriptome analysis, thereby overcoming these limitations. Here we provide a detailed step-by-step protocol to implement Seq-Scope with an Illumina NovaSeq 6000 sequencing flow cell that allows for the profiling of multiple tissue sections in an area of 7 mm × 7 mm or larger. In addition to detailing how to prepare a frozen tissue section for both histological imaging and sequencing library preparation, we provide comprehensive instructions and a streamlined computational pipeline to integrate histological and transcriptomic data for high-resolution spatial analysis. This includes the use of conventional software tools for single cell and spatial analysis, as well as our recently developed segmentation-free method for analyzing spatial data at submicrometer resolution. Given its adaptability across various biological tissues, Seq-Scope establishes itself as an invaluable tool for researchers in molecular biology and histology.

4.
BMC Ophthalmol ; 24(1): 132, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528463

RESUMEN

BACKGROUND: To analyze the morphologic and functional change in traumatic optic neuropathy (TON) divided by the mechanism of optic nerve injury. METHODS: A retrospective analysis of 58 patients who were diagnosed as monocular TON from February 2015 to August 2021 was conducted at in CHA Bundang Medical Center in Seongnam, South Korea. The patients visited the clinic of the department of ophthalmology for more than 6 months and at least 4 times during this period. RESULTS: 44 patients were classified as blunt TON patients, and 14 patients were surgical TON patients. The visual acuity showed significant decrease in traumatic eyes at the first visit after injury compared to fellow eyes and maintained the injured status during the 1-year follow-up period in blunt TON. In surgical TON, the visual acuity slightly improved during 1 month follow-up period. RNFL thickness tended to be decreased at 1 month after first visit blunt TON patients, which was earlier than surgical TON patients. GCIPL thickness showed earlier decreased than RNFL thickness in both blunt and surgical TON patients. CONCLUSIONS: In both blunt and surgical TON eyes, there was a notable thinning in both RNFL and GCIPL, with particularly remarkable reduction in GCIPL in early phase. Therefore, analyzing each retinal layer thickness using OCT in conjunction with assessing visual function would be necessary. This combined approach is not only crucial for understanding clinical courses of each TON, but also predicting the morphological and functional deteriorations in TON.


Asunto(s)
Traumatismos del Nervio Óptico , Humanos , Células Ganglionares de la Retina , Estudios Retrospectivos , Tomografía de Coherencia Óptica , Retina
5.
bioRxiv ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38464282

RESUMEN

Skeletal muscle is essential for both movement and metabolic processes, characterized by a complex and ordered structure. Despite its importance, a detailed spatial map of gene expression within muscle tissue has been challenging to achieve due to the limitations of existing technologies, which struggle to provide high-resolution views. In this study, we leverage the Seq-Scope technique, an innovative method that allows for the observation of the entire transcriptome at an unprecedented submicron spatial resolution. By applying this technique to the mouse soleus muscle, we analyze and compare the gene expression profiles in both healthy conditions and following denervation, a process that mimics aspects of muscle aging. Our approach reveals detailed characteristics of muscle fibers, other cell types present within the muscle, and specific subcellular structures such as the postsynaptic nuclei at neuromuscular junctions, hybrid muscle fibers, and areas of localized expression of genes responsive to muscle injury, along with their histological context. The findings of this research significantly enhance our understanding of the diversity within the muscle cell transcriptome and its variation in response to denervation, a key factor in the decline of muscle function with age. This breakthrough in spatial transcriptomics not only deepens our knowledge of muscle biology but also sets the stage for the development of new therapeutic strategies aimed at mitigating the effects of aging on muscle health, thereby offering a more comprehensive insight into the mechanisms of muscle maintenance and degeneration in the context of aging and disease.

6.
Foods ; 13(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38397584

RESUMEN

Both the roots and leaves of American ginseng contain ginsenosides and polyphenols. The impact of thermal processing on enhancing the biological activities of the root by altering its component composition has been widely reported. However, the effects of far-infrared irradiation (FIR), an efficient heat treatment method, on the bioactive components of the leaves remain to be elucidated. In the present study, we investigated the effects of FIR heat treatment between 160 and 200 °C on the deglycosylation and dehydration rates of the bioactive components in American ginseng leaves. As the temperature was increased, the amounts of common ginsenosides decreased while those of rare ginsenosides increased. After FIR heat treatment of American ginseng leaves at an optimal 190 °C, the highest total polyphenolic content and kaempferol content were detected, the antioxidant activity was significantly enhanced, and the amounts of the rare ginsenosides F4, Rg6, Rh4, Rk3, Rk1, Rg3, and Rg5 were 41, 5, 37, 64, 222, 17, and 266 times higher than those in untreated leaves, respectively. Moreover, the radical scavenging rates for 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) and the reducing power of the treated leaf extracts were 2.17, 1.86, and 1.77 times higher, respectively. Hence, FIR heat treatment at 190 °C is an efficient method for producing beneficial bioactive components from American ginseng leaves.

7.
Haematologica ; 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38205555

RESUMEN

Osteolytic bone lesion is a major cause of decreased quality of life and poor prognosis in patients with multiple myeloma (MM), but molecular pathogenesis of the osteolytic process in MM remains elusive. Fms-like tyrosine kinase 3 ligand (FLT3L) was reported to be elevated in bone marrow and blood of patients with advanced MM who often show osteolysis. Here, we investigated a functional link of FLT3L to osteolytic process in MM. We recruited 86, 306 and 52 patients with MM, acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL), respectively. FLT3L levels of patients with hematologic malignancies were measured in bone marrow-derived plasma and found to be significantly elevated in MM than in AML or ALL that rarely show osteolysis. FLT3L levels were further elevated in MM patients with bone lesion compared with patients without bone lesion. In vitro cell-based assays showed that the administration of FLT3L to HEK293T, HeLa and U2OS cells led to an increase in the DKK1 transcript level through STAT3 phosphorylation at tyrosine 705. WNT reporter assay showed that FLT3L treatment reduced WNT signaling, and nuclear translocation of ß-catenin. These results collectively show that FLT3L-STAT3-DKK1 pathway inhibits WNT signaling-mediated bone formation in MM, which can cause osteolytic bone lesion. Finally, transcriptomic profiles revealed that FLT3L and DKK1 were predominantly elevated in the hyperdiploidy subtype of MM. Taken together, FLT3L can serve as a promising biomarker for predicting osteolytic bone lesion and also a potential therapeutic target to prohibit the progression of osteolytic process in MM with hyperdiploidy.

8.
Eur J Med Chem ; 262: 115860, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37866334

RESUMEN

The FMS-like tyrosine kinase 3 (FLT3) gene encodes a class III receptor tyrosine kinase that is expressed in hematopoietic stem cells. The mutations of FLT3 gene found in 30% of acute myeloid leukemia (AML), leads to an abnormal constitutive activation of FLT3 kinase of the receptor and results in immature myeloblast cell proliferation. Although small molecule drugs targeting the FLT3 kinase have been approved, new FLT3 inhibitors are needed owing to the side effects and drug resistances arising from kinase domain mutations, such as D835Y and F691L. In this study, we have developed benzimidazole-indazole based novel inhibitors targeting mutant FLT3 kinases through the optimization of diverse chemical moieties substituted around the core skeleton. The most optimized compound 22f exhibited potent inhibitory activities against FLT3 and FLT3/D835Y, with IC50 values of 0.941 and 0.199 nM, respectively. Furthermore, 22f exhibited strong antiproliferative activity against an AML cell line, MV4-11 cells with a GI50 of 0.26 nM. More importantly, 22f showed single-digit nanomolar GI50 values in the mutant FLT kinase expressed Ba/F3 cell lines including FLT-D835Y (GI50 = 0.29 nM) and FLT3-F691L (GI50 = 2.87 nM). Molecular docking studies indicated that the compound exhibits a well-fitted binding mode as a type 1 inhibitor in the homology model of active conformation of FLT3 kinase.


Asunto(s)
Leucemia Mieloide Aguda , Tirosina Quinasa 3 Similar a fms , Humanos , Tirosina Quinasa 3 Similar a fms/genética , Indazoles/farmacología , Simulación del Acoplamiento Molecular , Línea Celular Tumoral , Mutación , Leucemia Mieloide Aguda/metabolismo , Inhibidores de Proteínas Quinasas/química
9.
Ophthalmol Ther ; 12(6): 3281-3294, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37792244

RESUMEN

INTRODUCTION: This study reports the long-term intraocular pressure (IOP)-lowering efficacy and safety of a single trabecular microbypass stent (iStent®; Glaukos Corp., San Clemente, CA, USA) for medically controlled open-angle glaucoma in Korean patients. METHODS: This retrospective observational study included 42 eyes of 35 patients with primary open-angle glaucoma (POAG). All subjects underwent single first-generation iStent® implantation with phacoemulsification by a single surgeon with 5 years follow-up. The primary outcomes were changes in IOP and the number of antiglaucoma medications compared to the preoperative values. The secondary outcome was the proportion of eyes with IOP ≤ 18 mmHg without medication, ≤ 15 mmHg without medication, and ≤ 18 mmHg with or without medication. Adverse events and need for secondary glaucoma surgery were also recorded. RESULTS: The mean IOP decreased from 15.8 ± 2.8 to 13.8 ± 1.7 mmHg and the mean number of medications was reduced from 2.24 ± 1.18 to 0.83 ± 1.12, respectively, at year 5. At 3 and 5 years, 80.6% and 78.6% of eyes, respectively, were receiving fewer medications than preoperative numbers. In contrast, only 50% of eyes on four preoperative medications showed medication reductions at 5 years. At years 3 and 5, 61.3% and 53.5% of eyes achieved IOP ≤ 18 mmHg without medication, whereas 90.3% and 89.3% of eyes achieved ≤ 18 mmHg regardless of medication use, respectively. Four eyes required additional glaucoma surgery (two Ahmed glaucoma valve implantations, one trabeculectomy, and one XEN 45 Gel Stent implantation), and all were receiving four preoperative antiglaucoma medications. Transient IOP elevation (14.3%) was the most common complication, followed by five hyphema, one stent obstruction, one stent malposition, and one severe anterior chamber reaction. CONCLUSION: This study demonstrated a good safety profile and sustained IOP reduction after the implantation of a single trabecular microbypass stent (iStent®) with phacoemulsification in Korean patients. The majority of subjects with POAG showed a relatively good response; however, eyes receiving a higher number of medications preoperatively (especially four medications) had difficulty achieving a low target IOP.

10.
Proc Natl Acad Sci U S A ; 120(39): e2220556120, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37722048

RESUMEN

Mammalian FNDC5 encodes a protein precursor of Irisin, which is important for exercise-dependent regulation of whole-body metabolism. In a genetic screen in Drosophila, we identified Iditarod (Idit), which shows substantial protein homology to mouse and human FNDC5, as a regulator of autophagy acting downstream of Atg1/Atg13. Physiologically, Idit-deficient flies showed reduced exercise performance and defective cold resistance, which were rescued by exogenous expression of Idit. Exercise training increased endurance in wild-type flies, but not in Idit-deficient flies. Conversely, Idit is induced upon exercise training, and transgenic expression of Idit in wild-type flies increased endurance to the level of exercise trained flies. Finally, Idit deficiency prevented both exercise-induced increase in cardiac Atg8 and exercise-induced cardiac stress resistance, suggesting that cardiac autophagy may be an additional mechanism by which Idit is involved in the adaptive response to exercise. Our work suggests an ancient role of an Iditarod/Irisin/FNDC5 family of proteins in autophagy, exercise physiology, and cold adaptation, conserved throughout metazoan species.


Asunto(s)
Proteínas de Drosophila , Fibronectinas , Animales , Humanos , Ratones , Animales Modificados Genéticamente , Autofagia , Drosophila , Fibronectinas/metabolismo , Mamíferos , Factores de Transcripción , Proteínas de Drosophila/metabolismo
11.
J Appl Stat ; 50(11-12): 2408-2434, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37529572

RESUMEN

Over the past few months, the outbreak of Coronavirus disease (COVID-19) has been expanding over the world. A reliable and accurate dataset of the cases is vital for scientists to conduct related research and policy-makers to make better decisions. We collect the United States COVID-19 daily reported data from four open sources: the New York Times, the COVID-19 Data Repository by Johns Hopkins University, the COVID Tracking Project at the Atlantic, and the USAFacts, then compare the similarities and differences among them. To obtain reliable data for further analysis, we first examine the cyclical pattern and the following anomalies, which frequently occur in the reported cases: (1) the order dependencies violation, (2) the point or period anomalies, and (3) the issue of reporting delay. To address these detected issues, we propose the corresponding repairing methods and procedures if corrections are necessary. In addition, we integrate the COVID-19 reported cases with the county-level auxiliary information of the local features from official sources, such as health infrastructure, demographic, socioeconomic, and environmental information, which are also essential for understanding the spread of the virus.

12.
Front Cardiovasc Med ; 10: 1163052, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37534274

RESUMEN

Background: Non-alcoholic fatty liver disease (NAFLD) is common and is associated with cardiovascular (CV) disease and mortality. The Framingham steatosis index (FSI) was recently proposed as a diagnostic marker of NAFLD and was calculated from age, body mass index, triglyceride, aspartate aminotransferase, alanine aminotransferase, diabetes history, and hypertension status. We aimed to evaluate the predictive ability of FSI for CV risk using a large-scale population dataset from the Korean National Health Insurance Service-National Health Screening Cohort (NHIS-HEALS). Methods: Among 514,866 individuals in the NHIS-HEALS, we excluded those who died, had a history of admission due to a CV event, and were heavy drinkers. The final study cohort comprised 283,427 participants. We employed both unadjusted and covariate-adjusted models in Cox proportional hazards regression analyses to determine the association between FSI and major adverse cardiovascular events (MACEs), CV events, and CV mortality. Results: During a median follow-up of 5.9 years, we documented 9,674, 8,798, and 1,602 cases of MACEs, CV events, and CV mortality, respectively. The incidence of MACEs was 1.28%, 2.99%, 3.94%, and 4.82% in the first to fourth quartiles of FSI, respectively. The adjusted hazard ratios (95% confidence interval) for MACEs gradually and significantly increased with the FSI quartiles [1.302 (1.215-1.395) in Q2, 1.487 (1.390-1.590) in Q3, and 1.792 (1.680-1.911) in Q4], following an adjustment for conventional CV risk factors, including age, sex, smoking, drinking, physical activities, low-density lipoprotein cholesterol, estimated glomerular filtration rate, and waist circumference. Participants in the higher quartiles of FSI exhibited a noteworthy increase in the occurrence of CV event. However, upon adjusting for relevant risk factors, the association between FSI and CV mortality did not reach statistical significance. Conclusion: Our study suggests that the FSI, which is a surrogate marker of NAFLD, has a prognostic value for detecting individuals at higher risk of CV events.

13.
J Craniofac Surg ; 34(8): 2297-2301, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37449576

RESUMEN

The purpose of this study was to classify the skeletal phenotypes of adult patients with skeletal class III (C-III) malocclusion and unilateral or bilateral cleft lip and palate using principal component analysis and cluster analysis. The samples consisted of 81 adult C-III patients with cleft lip and palate (CLP) who underwent orthognathic surgery (OGS) or distraction osteogenesis (59 males and 22 females; 50 unilateral cleft lip and palate and 31 bilateral cleft lip and palate; mean age when lateral cephalograms were taken, 22.2±4.6 y). Thirteen angular and one ratio cephalometric variables were measured. Using 4 representative variables obtained from principal component analysis (SNA, SNB, Gonial angle, and Bjork sum), K-means cluster analysis was performed to classify the phenotypes. Then, statistical analysis was conducted to characterize the differences in the variables among the clusters. Five clusters were obtained from 3 groups: severely retrusive maxilla and moderately retrusive mandible group: cluster-1 (23.5%, severely hyperdivergent pattern), cluster-4 (27.2%, moderately hyperdivergent pattern), and cluster-5 (11.1%, normodivergent pattern); moderately retrusive maxilla and normal mandible group: cluster-2 (30.9%, normodivergent pattern); normal maxilla and moderately protrusive mandible group: cluster-3 (7.4%, normodivergent pattern). Although skeletal phenotypes were diverse, distribution of sex and cleft type did not differ among 5 clusters ( P >0.05). Sixty-two percent of cleft patients showed a severely retrusive maxilla and moderately retrusive mandible (cluster-1, cluster-4, and cluster-5), which indicated that these are the main cause of skeletal C-III malocclusion in CLP patients who were treated with OGS. Therefore, it is necessary to consider presurgical orthodontic treatment and surgical planning based on the skeletal phenotypes of CLP patients.


Asunto(s)
Labio Leporino , Fisura del Paladar , Maloclusión de Angle Clase III , Masculino , Femenino , Humanos , Adulto , Labio Leporino/cirugía , Labio Leporino/complicaciones , Fisura del Paladar/cirugía , Fisura del Paladar/complicaciones , Análisis de Componente Principal , Maloclusión de Angle Clase III/cirugía , Maloclusión de Angle Clase III/etiología , Mandíbula/cirugía , Maxilar/cirugía , Cefalometría
14.
J Clin Med ; 12(13)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37445328

RESUMEN

This case report describes the successful use of a XEN gel stent for controlling intraocular pressure (IOP) in a patient who had previously undergone scleral encircling for rhegmatogenous retinal detachment. The patient had very limited mobile conjunctiva due to scarring caused by the earlier surgery, which limited their options for glaucoma surgery. The XEN gel stent, a minimally invasive glaucoma surgery (MIGS) procedure that does not require opening the conjunctiva, was implanted in the subconjunctival space using an ab interno approach. Postoperative blebs were imaged using anterior segment optical coherence tomography, and IOP was monitored over six months. This study found that the XEN gel stent effectively controlled the IOP, and there were no complications during or after surgery. This case report may expand the indication for the XEN gel stent, which could be considered a viable option for patients who have undergone scleral buckling and have limited mobile conjunctiva.

15.
Biomolecules ; 13(5)2023 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-37238592

RESUMEN

Sestrins are a family of stress-inducible proteins that are critical for stress adaptation and the maintenance of metabolic homeostasis. High expression of Sestrins is observed in skeletal and cardiac muscle tissues, suggesting their significance in the physiological homeostasis of these organs. Furthermore, expression of Sestrins is dynamically controlled in the tissues, based on the level of physical activity and the presence or absence of stress insults. Genetic studies in model organisms have shown that muscular Sestrin expression is critical for metabolic homeostasis, exercise adaptation, stress resistance, and repair and may mediate the beneficial effects of some available therapeutics. The current minireview summarizes and discusses recent findings that shed light on the role of Sestrins in regulating muscle physiology and homeostasis.


Asunto(s)
Ejercicio Físico , Sestrinas , Sestrinas/metabolismo , Músculo Esquelético/metabolismo
16.
J Clin Med ; 12(7)2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37048722

RESUMEN

(1) Background: We constructed scores for moderate-to-severe and muscle-predominant types of Graves' orbitopathy (GO) risk prediction based on initial ophthalmic findings. (2) Methods: 400 patients diagnosed with GO and followed up at both endocrinology and ophthalmology clinics with at least 6 months of follow-up. The Score for Moderate-to-Severe type of GO risk Prediction (SMSGOP) and the Score for Muscle-predominant type of GO risk Prediction (SMGOP) were constructed using the machine learning-based automatic clinical score generation algorithm. (3) Results: 55.3% were classified as mild type and 44.8% were classified as moderate-to-severe type. In the moderate-to-severe type group, 32.3% and 12.5% were classified as fat-predominant and muscle-predominant type, respectively. SMSGOP included age, central diplopia, thyroid stimulating immunoglobulin, modified NOSPECS classification, clinical activity score and ratio of the inferior rectus muscle cross-sectional area to total orbit in initial examination. SMGOP included age, central diplopia, amount of eye deviation, serum FT4 level and the interval between diagnosis of GD and GO in initial examination. Scores ≥46 and ≥49 had predictive value, respectively. (4) Conclusions: This is the first study to analyze factors in initial findings that can predict the severity of GO and to construct scores for risk prediction for Korean. We set the predictive scores using initial findings.

17.
J Craniofac Surg ; 34(3): e314-e319, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36939920

RESUMEN

The purpose of this study was to classify and characterize facial asymmetry (FA) phenotypes in adult patients with unilateral cleft lip and palate (UCLP) and skeletal class III malocclusion. The samples comprised 52 adult UCLP patients (36 men and 16 women; mean age, 22.43 y) who had undergone orthognathic surgery for correction of class III malocclusion. After measurement of 22 cephalometric parameters in posteroanterior cephalograms taken 1 month before orthognathic surgery, principal component analysis was performed to obtain 5 representative parameters [deviation (mm) of ANS (ANS-dev), maxillary central incisor contact point (Mx1-dev), and menton (Me-dev); cant (degree) of the maxillary anterior occlusal plane (MxAntOP-cant) and mandibular border (MnBorder-cant)]. K-means cluster analysis was conducted using these representative parameters. The differences in cephalometric parameters among the clusters were statistically analyzed. The FA phenotypes were classified into 4 types: No-cant-and-No-deviation type (cluster-4, n=16, 30.8%); MxMn-cant-MxMn-dev to the cleft-side type (cluster-3, n=4, 7.7%); Mx-cant-Mn-shift to the cleft-side type (cluster-2, n=15, 28.8%); and Mn-cant-Mn-dev to the noncleft-side type (cluster-1, n=17, 32.7%). Asymmetry in the maxilla and/or mandible were observed in 70% of patients. One third of patients (cluster-2 and cluster-3; sum, 36.5%) exhibited significant cant of MxAntOP induced by cleft and cant or shift of the mandible to the cleft side. Another one third of patients (cluster-1, 32.7%) demonstrated significant deviation and cant of the mandible to the noncleft-side despite cleft in the maxilla. This FA phenotype classification might be a basic guideline for diagnosis and treatment planning for UCLP patients.


Asunto(s)
Labio Leporino , Fisura del Paladar , Maloclusión de Angle Clase III , Femenino , Humanos , Labio Leporino/cirugía , Asimetría Facial/cirugía , Fisura del Paladar/cirugía , Análisis de Componente Principal , Estudios Retrospectivos , Maloclusión de Angle Clase III/diagnóstico por imagen , Maloclusión de Angle Clase III/cirugía , Maxilar/cirugía , Cefalometría
18.
J Med Virol ; 95(2): e28538, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36722456

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with increased levels of autoantibodies targeting immunological proteins such as cytokines and chemokines. Reports further indicate that COVID-19 patients may develop a broad spectrum of autoimmune diseases due to reasons not fully understood. Even so, the landscape of autoantibodies induced by SARS-CoV-2 infection remains uncharted territory. To gain more insight, we carried out a comprehensive assessment of autoantibodies known to be linked to diverse autoimmune diseases observed in COVID-19 patients in a cohort of 231 individuals, of which 161 were COVID-19 patients (72 with mild, 61 moderate, and 28 with severe disease) and 70 were healthy controls. Dysregulated IgG and IgA autoantibody signatures, characterized mainly by elevated concentrations, occurred predominantly in patients with moderate or severe COVID-19 infection. Autoantibody levels often accompanied anti-SARS-CoV-2 antibody concentrations while stratifying COVID-19 severity as indicated by random forest and principal component analyses. Furthermore, while young versus elderly COVID-19 patients showed only slight differences in autoantibody levels, elderly patients with severe disease presented higher IgG autoantibody concentrations than young individuals with severe COVID-19. This work maps the intersection of COVID-19 and autoimmunity by demonstrating the dysregulation of multiple autoantibodies triggered during SARS-CoV-2 infection. Thus, this cross-sectional study suggests that SARS-CoV-2 infection induces autoantibody signatures associated with COVID-19 severity and several autoantibodies that can be used as biomarkers of COVID-19 severity, indicating autoantibodies as potential therapeutical targets for these patients.


Asunto(s)
Enfermedades Autoinmunes , COVID-19 , Anciano , Humanos , Autoanticuerpos , Estudios Transversales , SARS-CoV-2 , Inmunoglobulina G
19.
Case Rep Nephrol ; 2023: 9160326, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36644340

RESUMEN

PD-1/PD-L1 inhibitors such as pembrolizumab have radically improved the prognosis for many patients with advanced malignancies. Although revolutionary, its use can be complicated and limited by various immune-related adverse effects. Effective management depends on early recognition and prompt intervention. Herein, we describe a unique syndrome of hypercalcemia, with associated acute renal injury and hypoxic respiratory failure that was responsive to corticosteroids suggestive of immunotoxicity from pembrolizumab.

20.
Nucleic Acids Res ; 51(2): 631-649, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36594163

RESUMEN

TRAIP is a key factor involved in the DNA damage response (DDR), homologous recombination (HR) and DNA interstrand crosslink (ICL) repair. However, the exact functions of TRAIP in these processes in mammalian cells are not fully understood. Here we identify the zinc finger protein 212, ZNF212, as a novel binding partner for TRAIP and find that ZNF212 colocalizes with sites of DNA damage. The recruitment of TRAIP or ZNF212 to sites of DNA damage is mutually interdependent. We show that depletion of ZNF212 causes defects in the DDR and HR-mediated repair in a manner epistatic to TRAIP. In addition, an epistatic analysis of Zfp212, the mouse homolog of human ZNF212, in mouse embryonic stem cells (mESCs), shows that it appears to act upstream of both the Neil3 and Fanconi anemia (FA) pathways of ICLs repair. We find that human ZNF212 interacted directly with NEIL3 and promotes its recruitment to ICL lesions. Collectively, our findings identify ZNF212 as a new factor involved in the DDR, HR-mediated repair and ICL repair though direct interaction with TRAIP.


Asunto(s)
Reparación del ADN , Anemia de Fanconi , Animales , Ratones , Humanos , Reparación del ADN/genética , Daño del ADN , Replicación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Genómica , Anemia de Fanconi/genética , Mamíferos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas del Tejido Nervioso/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...