Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2311736, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38552227

RESUMEN

Nanomaterial-based yarns have been actively developed owing to their advantageous features, namely, high surface-area-to-volume ratios, flexibility, and unusual material characteristics such as anisotropy in electrical/thermal conductivity. The superior properties of the nanomaterials can be directly imparted and scaled-up to macro-sized structures. However, most nanomaterial-based yarns have thus far, been fabricated with only organic materials such as polymers, graphene, and carbon nanotubes. This paper presents a novel fabrication method for fully inorganic nanoribbon yarn, expanding its applicability by bundling highly aligned and suspended nanoribbons made from various inorganic materials (e.g., Au, Pd, Ni, Al, Pt, WO3, SnO2, NiO, In2O3, and CuO). The process involves depositing the target inorganic material on a nanoline mold, followed by suspension through plasma etching of the nanoline mold, and twisting using a custom-built yarning machine. Nanoribbon yarn structures of various functional inorganic materials are utilized for chemical sensors (Pd-based H2 and metal oxides (MOx)-based green gas sensors) and green energy transducers (water splitting electrodes/triboelectric nanogenerators). This method is expected to provide a comprehensive fabrication strategy for versatile inorganic nanomaterials-based yarns.

2.
ACS Nano ; 18(8): 6387-6397, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38364103

RESUMEN

Air pollution by particulate matter (PM) and airborne pathogens causes severe health problems in the human body. Presently, popular disposable air filters yield huge waste and have a fatal impact on the environment. Postuse cleaning of air filters also leads to secondary air and water pollution. Here, we report a sunlight-driven self-cleaning PM filter by coupling a full-solar-spectrum-active photocatalyst comprising up-conversion nanoparticles (UCNPs) decorated with semiconductor iron(III) oxide (UCNP@α-Fe2O3) shells stabilized upon graphene functionalized borosilicate fibrous membrane (rGO-BF). While rGO-BF ensures high PM adsorption, UCNP@α-Fe2O3 (NP) enables self-photodegradation of adsorbed PM under abundant sunlight and subsequent membrane regeneration, while preventing secondary air or water pollution. Rational surface chemistry and optimal microstructure enable our filters to remove >99% of PM2.5 under deplorable air-quality conditions. Moreover, our filter shows excellent antibacterial activity toward E. coli and S. aureus, demonstrating its potential for practical utilization in face masks, air filtering devices, and protective medical wear. This work successfully suggests an intriguing design platform for self-sustainable zero-waste air filter membranes.


Asunto(s)
Filtros de Aire , Material Particulado , Humanos , Material Particulado/química , Escherichia coli , Compuestos Férricos , Staphylococcus aureus
3.
Adv Mater ; 36(11): e2307689, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37777874

RESUMEN

Recent consecutive discoveries of various 2D materials have triggered significant scientific and technological interests owing to their exceptional material properties, originally stemming from 2D confined geometry. Ever-expanding library of 2D materials can provide ideal solutions to critical challenges facing in current technological trend of the fourth industrial revolution. Moreover, chemical modification of 2D materials to customize their physical/chemical properties can satisfy the broad spectrum of different specific requirements across diverse application areas. This review focuses on three particular emerging application areas of 2D materials: smart fibers, soft robotics, and single atom catalysts (SACs), which hold immense potentials for academic and technological advancements in the post-artificial intelligence (AI) era. Smart fibers showcase unconventional functionalities including healthcare/environmental monitoring, energy storage/harvesting, and antipathogenic protection in the forms of wearable fibers and textiles. Soft robotics aligns with future trend to overcome longstanding limitations of hard-material based mechanics by introducing soft actuators and sensors. SACs are widely useful in energy storage/conversion and environmental management, principally contributing to low carbon footprint for sustainable post-AI era. Significance and unique values of 2D materials in these emerging applications are highlighted, where the research group has devoted research efforts for more than a decade.

4.
Polymers (Basel) ; 15(19)2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37836063

RESUMEN

To fabricate multilayer ceramic capacitors (MLCCs) that can withstand external impacts, technologies to achieve excellent adhesion and mechanical strength of the cover layer should be essentially developed. Low adhesion and strength of the cover layer can lead to delamination and cracks in the MLCC, respectively. In this study, we present a method for applying polydopamine (PDA), a mussel-inspired adhesive protein, for as robust cover layer on an MLCC. Barium titanate (BT) particles treated with PDA increase the dispersion stability of the BT/PDA slurry, preventing re-agglomeration of the particles and enhancing the adhesiveness and strength owing to the cohesive properties of PDA. Compared to the BT layer, the adhesion of the BT/PDA layer was significantly enhanced by 217%; consequently, the compression modulus of the BT/PDA cover layer increased by 29.4%. After firing, the N-doped graphitic PDA played an important role in producing an MLCC cover layer with increased hardness and toughness. Furthermore, the N-doped graphitic PDA with a hydrophobic surface forms tortuous moisture paths in the cover layer, preventing the degradation of insulation resistance of the MLCC.

5.
ACS Sens ; 8(10): 3687-3692, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37721017

RESUMEN

We present a thermally stable, mechanically compliant, and sensitive polymer-based NO2 gas sensor design. Interconnected nanoscale morphology driven from spinodal decomposition between conjugated polymers tethered with polar side chains and thermally stable matrix polymers offers judicious design of NO2-sensitive and thermally tolerant thin films. The resulting chemiresitive sensors exhibit stable NO2 sensing even at 170 °C over 6 h. Controlling the density of polar side chains along conjugated polymer backbone enables optimal design for coupling high NO2 sensitivity, selectivity, and thermal stability of polymer sensors. Lastly, thermally stable films are used to implement chemiresistive sensors onto flexible and heat-resistant substrates and demonstrate a reliable gas sensing response even after 500 bending cycles at 170 °C. Such unprecedented sensor performance as well as environmental stability are promising for real-time monitoring of gas emission from vehicles and industrial chemical processes.


Asunto(s)
Calor , Dióxido de Nitrógeno , Polímeros
6.
Chemistry ; 29(61): e202301744, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37537970

RESUMEN

2H phase tungsten diselenide (WSe2 ) is a p-type 2D semiconductor from the transition metal dichalcogenides (TMDs) family with unique optoelectrical properties. Solution phase production of atomically thin WSe2 is challenging due to its instability under ambient conditions. We present a highly efficient and scalable solution method for simultaneously exfoliating and functionalizing WSe2 by leveraging the non-covalent interaction between mercapto-group and bulk WSe2 . Single and few-layer 2H phase pure WSe2 sheets of lateral size up to 5 µm with minimal basal plane defects, as revealed by XPS, Raman and FTIR spectroscopy, are produced in a water-ethanol mixture. Remarkably, WSe2 dispersion remains stable even at high concentrations (10 mg/mL) and exhibited high colloidal stability with a shelf-life exceeding a year. The findings from our study suggest that through precise manipulation of intercalation chemistry, mass production of solution-processable phase-sensitive 2D materials such as WSe2 can be achieved. This advancement holds great potential for facilitating their practical utilization in various real-world applications.

7.
Adv Mater ; 35(35): e2302625, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37327064

RESUMEN

Bifunctional catalysts can facilitate two different electrochemical reactions with conflicting characteristics. Here, a highly reversible bifunctional electrocatalyst for rechargeable zinc-air batteries (ZABs) is reported featuring a "core-shell structure" in which N-doped graphene sheets wrap around vanadium molybdenum oxynitride nanoparticles. Single Mo atoms are released from the particle core during synthesis and anchored to electronegative N-dopant species in the graphitic shell. The resultant Mo single-atom catalysts excel as active oxygen evolution reaction (OER) sites in pyrrolic-N and as active oxygen reduction reaction (ORR) sites in pyridinic-N environments. ZABs with such bifunctional and multicomponent single-atom catalysts deliver high power density (≈376.4 mW cm-2 ) and long cycle life of over 630 h, outperforming noble-metal-based benchmarks. Flexible ZABs that can tolerate a wide range of temperatures (-20 to 80 °C) under severe mechanical deformation are also demonstrated.

8.
ACS Appl Mater Interfaces ; 15(27): 32707-32716, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37377389

RESUMEN

Two-dimensional (2D) siloxene is attracting considerable research interest recently principally owing to its inherent compatibility with silicon-based semiconductor technology. -The synthesis of siloxene has been mostly limited to multilayered structures using traditional topochemical reaction procedures. Herein, we report high-yield synthesis of single to few-layer siloxene nanosheets by developing a two-step interlayer expansion and subsequent liquid phase exfoliation procedure. Our protocol enables high-yield production of few-layer siloxene nanosheets with a lateral dimension of up to 4 µm and thickness ranging from 0.8 to 4.8 nm, corresponding to single to a few layers, well stabilized in water. The atomically flat nature of exfoliated siloxene can be exploited for the construction of 2D/2D heterostructure membranes via typical solution processing. We demonstrate highly ordered graphene/siloxene heterostructure films with synergistic mechanical and electrical properties, which deliver noticeably high device capacitance when assembled into a coin cell symmetric supercapacitor device structures. Additionally, we demonstrate that the mechanically flexible exfoliated siloxene-graphene heterostructure enables its direct use in flexible and wearable supercapacitor applications.

9.
Adv Mater ; 35(3): e2207338, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36300610

RESUMEN

Nanoscale shape engineering is an essential requirement for the practical use of 2D materials, aiming at precisely customizing optimal structures and properties. In this work, sub-10-nm-scale block copolymer (BCP) self-assembled nanopatterns finely aligned along the atomic edge of 2D flakes, including graphene, MoS2 , and h-BN, are exploited for reliable nanopatterning of 2D materials. The underlying mechanism for the alignment of the self-assembled nanodomains is elucidated based on the wetting layer alternation of the BCP film in the presence of intermediate 2D flakes. The resultant highly aligned nanocylinder templates with remarkably low levels of line edge roughness (LER) and line-width roughness (LWR) yield a sub-10-nm-wide graphene nanoribbon (GNR) array with noticeable switching characteristics (on-to-off ratio up to ≈6 × 104 ).

10.
ACS Nano ; 16(11): 18767-18776, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36374261

RESUMEN

The recent emerging significance of the Internet of Things (IoT) demands sensor devices to be integrated with many different functional structures and devices while conserving their original functionalities. To this end, optical transparency and mechanical flexibility of sensor devices are critical requirements for optimal integration as well as high sensitivity. In this work, a transparent, flexible, and sensitive gas sensor building platform is introduced by using multilevel self-assembly of block copolymers (BCPs) and polystyrene (PS) colloids. For the demonstration of an H2 gas sensor, a hierarchically porous Pd metal mesh structure is obtained by overlaying the two different patterned template structures with synergistic, distinctive characteristic length scales. The hierarchical Pd mesh shows not only high transparency over 90% but also superior sensing performance in terms of response and recovery time owing to enhanced Pd-to-hydride ratio and short H2 diffusion lengths from the enlarged active surface areas. The hierarchical morphology also endows high mechanical flexibility while securing reliable sensing performance even under severe mechanical deformation cycles. Our scalable self-assembly based multiscale nanopatterning offers an intriguing generalized platform for many different multifunctional devices requiring hidden in situ monitoring of environmental signals.

11.
ACS Nano ; 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36354742

RESUMEN

Air pollution is on the priority list of global safety issues, with the concern of fatal environmental and public health deterioration. 2D materials are potential adsorbent materials for environmental decontamination, owing to their high surface area, manageable interlayer binding, large surface-to-volume ratio, specific binding capability, and chemical, thermal, and mechanistic stability. Specifically, graphene oxide and reduced graphene oxide have been attracting attention, taking advantage of their low cost synthesis, excessive oxygen containing surface functionalities, and intrinsic aqueous dispersibility, making them desirable for the development of cost-effective, high performance air filters. Many different material designs have been proposed to expand their filtration capability, including the functionalization and integration with other metals and metal oxides, which act not only as binding agents to the target pollutants but also as antimicrobial agents. This review highlights the advantages and drawbacks of 2D materials for air filtration and summarizes the interrelationships among various strategies and the resultant filtration performance in terms of structural engineering, morphology control, and material compositions. Finally, potential future directions are suggested toward the idealized designs of 2D material based air filters.

12.
Nat Nanotechnol ; 17(11): 1198-1205, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36302962

RESUMEN

Artificial muscles are indispensable components for next-generation robotics capable of mimicking sophisticated movements of living systems. However, an optimal combination of actuation parameters, including strain, stress, energy density and high mechanical strength, is required for their practical applications. Here we report mammalian-skeletal-muscle-inspired single fibres and bundles with large and strong contractive actuation. The use of exfoliated graphene fillers within a uniaxial liquid crystalline matrix enables photothermal actuation with large work capacity and rapid response. Moreover, the reversible percolation of graphene fillers induced by the thermodynamic conformational transition of mesoscale structures can be in situ monitored by electrical switching. Such a dynamic percolation behaviour effectively strengthens the mechanical properties of the actuator fibres, particularly in the contracted actuation state, enabling mammalian-muscle-like reliable reversible actuation. Taking advantage of a mechanically compliant fibre structure, smart actuators are readily integrated into strong bundles as well as high-power soft robotics with light-driven remote control.


Asunto(s)
Grafito , Robótica , Animales , Humanos , Grafito/química , Mamíferos
13.
J Chromatogr A ; 1681: 463475, 2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36088778

RESUMEN

Graphene oxide (GO)-a chemical derivative of graphene with numerous oxygen functional groups on its surface-has attracted considerable interest because of its intriguing properties in relation to those of pristine graphene. In addition to the inherent wide lateral size distribution of GO sheets arising from the typical oxidative exfoliation of graphite, control of the lateral size of GO is critical for desired GO-based applications. Herein, flow/hyperlayer field-flow fractionation (flow/hyperlayer FFF) is optimized to separate GO sheets by lateral dimensions. Optimized fractionation is achieved by investigating the influences of carrier solvent, channel thickness, and flow rate conditions on the steric/hyperlayer separation of GO sheets by flow FFF. Due to the strong hydrodynamic lift forces of extremely thin GO sheets, a thick flow FFF channel (w = 350 µm) and a very low field strength are required to retain the GO sheets within the channel. GO sheets with narrow size fractions are successfully collected from two different graphite sources during flow/hyperlayer FFF runs and are examined to verify the size evolution. Considering the average lateral diameter of the GO fraction calculated on the basis of the assumption of a circular disk shape, the retention of the GO sheets is 2.2-5.0 times faster than that of spherical particles of the same diameter. This study demonstrates that through flow/hyperlayer FFF, the size distribution of GO sheets can be determined and narrow size fractions can be collected (which is desirable for GO-based applications), which are commonly influenced by the GO lateral dimension.

14.
Adv Mater ; 34(34): e2203992, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35773228

RESUMEN

A novel strategy for robust and ultrathin (<1 µm) multilayered protective structures to address uncontrolled Lithium (Li) dendrite growth at Li-metal battery anodes is reported. Synergetic interaction among Ag nanoparticles (Ag NPs), reduced graphene oxide (rGO) films, and self-assembled block-copolymer (BCP) layers enables effective suppression of dendritic Li growth. While Ag NP layer confines the growth of Li metal underneath the rGO layer, BCP layer facilitates the fast and uniformly distributed flux of Li-ion transport and mechanically supports the rGO layer. Notably, highly aligned nanochannels with ≈15 nm diameter and ≈600 nm length scale interpenetrating within the BCP layer offer reversible well-defined pathways for Li-ion transport. Dramatic stress relaxation with the multilayered structure is confirmed via structural simulation considering the mechanical stress induced by filamentary-growth of Li metal. Li-metal anodes modified with the protective layer well-maintain stable reaction interfaces with limited solid-electrolyte interphase formation, yielding outstanding cycling stability and enhanced rate capability, as demonstrated by the full-cells paired with high-loading of LiFePO4 cathodes. The idealized design of multilayer protective layer provides significant insight for advanced Li-metal anodes.

15.
ACS Nano ; 16(6): 9172-9182, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35679534

RESUMEN

Many interesting properties of 2D materials and their assembled structures are strongly dependent on the lateral size and size distribution of 2D materials. Accordingly, effective size separation of polydisperse 2D sheets is critical for desirable applications. Here, we introduce flow field-flow fractionation (FlFFF) for a wide-range size fractionation of graphene oxide (GO) up to 100 µm. Two different separation mechanisms are identified for FlFFF, including normal mode and steric/hyperlayer mode, to size fractionate wide size-distributed GOs while employing a crossflow field for either diffusion or size-controlled migration of GO. Obviously, the 2D GO sheet reveals size separation behavior distinctive from typical spherical particles arising from its innate planar geometry. We also investigate 2D sheet size-dependent mechanical and electrical properties of three different graphene fibers produced from size-fractionated GOs. This FlFFF-based size selection methodology can be used as a generic approach for effective wide-range size separation for 2D materials, including rGO, TMDs, and MXene.

16.
ACS Appl Mater Interfaces ; 14(11): 13601-13610, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35255687

RESUMEN

Graphene fiber is emerging as a new class of carbon-based fiber with distinctive material properties particularly useful for electroconductive components for wearable devices. Presently, stretchable and bendable graphene fibers are principally employing soft dielectric additives, such as polymers, which can significantly deteriorate the genuine electrical properties of pristine graphene-based structures. We report molecular-level lubricating nanodiamonds as an effective physical property modifier to improve the mechanical flexibility of graphene fibers by relieving the tight interlayer stacking among graphene sheets. Nanoscale-sized NDs effectively increase the tensile strain and bending strain of graphene/nanodiamond composite fibers while maintaining the genuine electrical conductivity of pristine graphene-based fibers. The molecular-level lubricating mechanism is elucidated by friction force microscopy on the nanoscale as well as by shear stress measurement on the macroscopic scale. The resultant highly bendable graphene/nanodiamond composite fiber is successfully weaved into all graphene fiber-based textiles and wearable Joule heaters, proposing the potential for reliable wearable applications.

17.
ACS Appl Mater Interfaces ; 14(10): 12011-12037, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35230079

RESUMEN

Block copolymer (BCP) nanopatterning has emerged as a versatile nanoscale fabrication tool for semiconductor devices and other applications, because of its ability to organize well-defined, periodic nanostructures with a critical dimension of 5-100 nm. While the most promising application field of BCP nanopatterning has been semiconductor devices, the versatility of BCPs has also led to enormous interest from a broad spectrum of other application areas. In particular, the intrinsically low cost and straightforward processing of BCP nanopatterning have been widely recognized for their large-area parallel formation of dense nanoscale features, which clearly contrasts that of sophisticated processing steps of the typical photolithographic process, including EUV lithography. In this Review, we highlight the recent progress in the field of BCP nanopatterning for various nonsemiconductor applications. Notable examples relying on BCP nanopatterning, including nanocatalysts, sensors, optics, energy devices, membranes, surface modifications and other emerging applications, are summarized. We further discuss the current limitations of BCP nanopatterning and suggest future research directions to open up new potential application fields.

18.
Adv Mater ; 34(15): e2110454, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35085406

RESUMEN

A reliable method for preparing a conformal amorphous carbon (a-C) layer with a thickness of 1-nm-level, is tested as a possible Cu diffusion barrier layer for next-generation ultrahigh-density semiconductor device miniaturization. A polystyrene brush of uniform thickness is grafted onto 4-inch SiO2 /Si wafer substrates with "self-limiting" chemistry favoring such a uniform layer. UV crosslinking and subsequent carbonization transforms this polymer film into an ultrathin a-C layer without pinholes or hillocks. The uniform coating of nonplanar regions or surfaces is also possible. The Cu diffusion "blocking ability" is evaluated by time-dependent dielectric breakdown (TDDB) tests using a metal-oxide-semiconductor (MOS) capacitor structure. A 0.82 nm-thick a-C barrier gives TDDB lifetimes 3.3× longer than that obtained using the conventional 1.0 nm-thick TaNx diffusion barrier. In addition, this exceptionally uniform ultrathin polymer and a-C film layers hold promise for selective ion permeable membranes, electrically and thermally insulating films in electronics, slits of angstrom-scale thickness, and, when appropriately functionalized, as a robust ultrathin coating with many other potential applications.

19.
Adv Sci (Weinh) ; 9(3): e2103561, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34821483

RESUMEN

3D printing of fiber-reinforced composites is expected to be the forefront technology for the next-generation high-strength, high-toughness, and lightweight structural materials. The intrinsic architecture of 3D-printed composites closely represents biomimetic micro/macrofibril-like hierarchical structure composed of intermediate filament assembly among the micron-sized reinforcing fibers, and thus contributes to a novel mechanism to simultaneously improve mechanical properties and structural features. Notably, it is found that an interfacial heterogeneity between numerous inner interfaces in the hierarchical structure enables an exceptional increase in the toughness of composites. The strong interfacial adhesion between the fibers and matrix, with accompanying the inherently weak interfacial adhesion between intermediate filaments and the resultant interfacial voids, provide a close representation of the toughness behavior of natural architectures relying on the localized heterogeneity. Given the critical embedment length of fiber reinforcement, extraordinary improvement has been attained not only in the strength but also in toughness taking advantage of the synergy effect from the aforementioned nature-inspired features. Indeed, the addition of a small amount of short fiber to the brittle bio-filaments results in a noticeable increase of more than 200% in the tensile strength and modulus with further elongation increment. This article highlights the inherent structural hierarchy of 3D-printed composites and the relevant sophisticated mechanism for anomalous mechanical reinforcement.


Asunto(s)
Biomimética/métodos , Ensayo de Materiales/métodos , Impresión Tridimensional , Estrés Mecánico , Resistencia a la Tracción , Propiedades de Superficie
20.
ACS Appl Mater Interfaces ; 13(51): 61215-61226, 2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-34905920

RESUMEN

Two-dimensional (2D) materials are promising components for defect passivation of metal halide perovskites. Unfortunately, commonly used polydisperse liquid-exfoliated 2D materials generally suffer from heterogeneous structures and properties while incorporated into perovskite films. We introduce monodisperse multifunctional 2D crystalline carbon nitride, poly(triazine imide) (PTI), as an effective defect passivation agent in perovskite films via typical solution processing. Incorporation of PTI into perovskite film can be readily attained by simple solution mixing of PTI dispersions with perovskite precursor solutions, resulting in the highly selective distribution of PTI localized at the defective crystal grain boundaries and layer interfaces in the functional perovskite layer. Several chemical, optical, and electronic characterizations, in conjunction with density functional theory calculations, reveal multiple beneficial roles from PTI: passivation of undercoordinated organic cations at the surface of perovskite crystal, suppression of ion migration by blocking diffusion channels, and prevention of hole quenching at perovskite/SnO2 interfaces. Consequently, a noticeably improved power conversion efficiency is achieved in perovskite solar cells, accompanied with promoted stability under humid air and thermal stress. Our strategy highlights the potential of judiciously designed 2D materials as a simple-to-implement material for various optoelectronic devices, including solar cells, based on hybrid perovskites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...