Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Nanosci Nanotechnol ; 16(5): 4643-6, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27483804

RESUMEN

The TiO2 powder was prepared from the spent titanium chips by applying the sol-gel method. The spent titanium chip was dissolved in HCl solution, and then NH4OH solution was added. The molar concentration of NH4OH solution was 2 M, 4 M, 8 M, and 10 M. Obtained TiO2 powders were calcined at 200 degrees C, 400 degrees C, and 600 degrees C. The prepared TiO2 powder was characterized using a particle size analysis, BET surface area, and XRD analysis. The crystal structure of the TiO2 powder was rutile type and anatase. The highest BET surface area of TiO2 powder was 432.8 m2/g. The photocatalytic property of the TiO2 powder was evaluated as decomposition rate of methylene blue(MB) by using a liquid phase stirred reactor. UV source was a UV-A, and concentration of MB in most experiments was 8 ppm. The concentration of MB was measured by absorbance at 664 nm using UV spectroscopy. Photocatalytic efficiency of prepared TiO2 powder depended highly on concentration of NH4OH solution. The TiO2 powder prepared with 8 M-NH4OH solution showed the highest efficiency, the decomposition efficiency at decomposition time of 2 hr and MB concentration of pH 8 was 98%.

2.
J Nanosci Nanotechnol ; 15(7): 5466-70, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26373161

RESUMEN

The TiO2 powder was prepared from the spent titanium chips by applying the sol-gel method with neutralization by NaOH solution. The prepared TiO2 powder was characterized using a particle size analysis, BET surface area, and XRD analysis. The crystal structure of the TiO2 powder was rutile type, and the powder was obtained to be nanosized. BET surface area of TiO2 powder was 118 m2/g, average particle size was 266.5 nm. The photocatalytic property of the TiO2 powder was evaluated as decomposition rate of methylene blue (MB) by using a liquid phase stirred reactor. Decomposition rate on TiO2 powder (P-25) was 1.5 times higher than that of the prepared TiO2 powder. Decomposition rate on the prepared TiO2 powder was linearly increased with increasing the amount of TiO2 powder, and approached to a specific value. MB concentration and decomposition rate was not correlated within the experimental range. The maximum value of decomposition rate at about pH 8 was 62%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA