Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Metab ; 19(2): 272-84, 2014 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-24506868

RESUMEN

The homeostatic balance of hepatic glucose utilization, storage, and production is exquisitely controlled by hormonal signals and hepatic carbon metabolism during fed and fasted states. How the liver senses extracellular glucose to cue glucose utilization versus production is not fully understood. We show that the physiologic balance of hepatic glycolysis and gluconeogenesis is regulated by Bcl-2-associated agonist of cell death (BAD), a protein with roles in apoptosis and metabolism. BAD deficiency reprograms hepatic substrate and energy metabolism toward diminished glycolysis, excess fatty acid oxidation, and exaggerated glucose production that escapes suppression by insulin. Genetic and biochemical evidence suggests that BAD's suppression of gluconeogenesis is actuated by phosphorylation of its BCL-2 homology (BH)-3 domain and subsequent activation of glucokinase. The physiologic relevance of these findings is evident from the ability of a BAD phosphomimic variant to counteract unrestrained gluconeogenesis and improve glycemia in leptin-resistant and high-fat diet models of diabetes and insulin resistance.


Asunto(s)
Metabolismo Energético/fisiología , Gluconeogénesis/fisiología , Hígado/metabolismo , Proteína Letal Asociada a bcl/metabolismo , Animales , Metabolismo Energético/genética , Gluconeogénesis/genética , Ratones , Ratones Mutantes , Fosforilación , Proteína Letal Asociada a bcl/genética
2.
Lipids ; 45(11): 987-95, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20835892

RESUMEN

The pyruvate dehydrogenase complex (PDC) plays a critical role in lipid synthesis and glucose homeostasis in the fed and fasting states. The central role of the liver in the maintenance of glucose homeostasis has been established by studying changes in key enzymes (including PDC) and the carbon-flux via several pathways under different metabolic states. In the present study we have developed a murine model of liver-specific PDC deficiency using Cre-loxP technology to investigate its consequences on lipid and carbohydrate metabolism. There was no incorporation of glucose-carbon into fatty acids by liver in vitro from liver-specific Pdha1 knockout (L-PDHKO) male mice due to absence of hepatic PDC activity. Interestingly, there was a compensatory increase in lipogenic capacity in epididymal adipose tissue from L-PDHKO mice. Both fat and lean body mass were significantly reduced in L-PDHKO mice, which might be explained by an increase in total energy expenditure compared with wild-type littermate mice. Furthermore, both liver and peripheral insulin sensitivities measured during a hyperinsulinemic-euglycemic clamp were improved in L-PDHKO mice. The findings presented here demonstrate (i) the indispensable role of PDC for lipogenesis from glucose in liver and (ii) specific adaptations in lipid and glucose metabolism in the liver and adipose tissue to compensate for loss of PDC activity in liver only.


Asunto(s)
Tejido Adiposo/metabolismo , Insulina/metabolismo , Lipogénesis/genética , Hígado/enzimología , Complejo Piruvato Deshidrogenasa/genética , Animales , Células Cultivadas , Femenino , Regulación Enzimológica de la Expresión Génica/fisiología , Insulina/sangre , Resistencia a la Insulina/genética , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Especificidad de Órganos/genética , Piruvato Deshidrogenasa (Lipoamida)/genética , Piruvato Deshidrogenasa (Lipoamida)/metabolismo , Complejo Piruvato Deshidrogenasa/metabolismo , Enfermedad por Deficiencia del Complejo Piruvato Deshidrogenasa/genética , Enfermedad por Deficiencia del Complejo Piruvato Deshidrogenasa/metabolismo , Regulación hacia Arriba/genética
3.
Proc Natl Acad Sci U S A ; 105(50): 19926-31, 2008 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-19066218

RESUMEN

Peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1alpha has been shown to play critical roles in regulating mitochondria biogenesis, respiration, and muscle oxidative phenotype. Furthermore, reductions in the expression of PGC-1alpha in muscle have been implicated in the pathogenesis of type 2 diabetes. To determine the effect of increased muscle-specific PGC-1alpha expression on muscle mitochondrial function and glucose and lipid metabolism in vivo, we examined body composition, energy balance, and liver and muscle insulin sensitivity by hyperinsulinemic-euglycemic clamp studies and muscle energetics by using (31)P magnetic resonance spectroscopy in transgenic mice. Increased expression of PGC-1alpha in muscle resulted in a 2.4-fold increase in mitochondrial density, which was associated with an approximately 60% increase in the unidirectional rate of ATP synthesis. Surprisingly, there was no effect of increased muscle PGC-1alpha expression on whole-body energy expenditure, and PGC-1alpha transgenic mice were more prone to fat-induced insulin resistance because of decreased insulin-stimulated muscle glucose uptake. The reduced insulin-stimulated muscle glucose uptake could most likely be attributed to a relative increase in fatty acid delivery/triglyceride reesterfication, as reflected by increased expression of CD36, acyl-CoA:diacylglycerol acyltransferase1, and mitochondrial acyl-CoA:glycerol-sn-3-phosphate acyltransferase, that may have exceeded mitochondrial fatty acid oxidation, resulting in increased intracellular lipid accumulation and an increase in the membrane to cytosol diacylglycerol content. This, in turn, caused activation of PKC, decreased insulin signaling at the level of insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation, and skeletal muscle insulin resistance.


Asunto(s)
Glucosa/metabolismo , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Transactivadores/biosíntesis , Animales , Dieta , Metabolismo Energético , Grasas/administración & dosificación , Grasas/metabolismo , Ácidos Grasos/metabolismo , Expresión Génica , Insulina/farmacología , Resistencia a la Insulina , Ratones , Ratones Transgénicos , Mitocondrias Musculares/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/ultraestructura , Oxidación-Reducción , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Factores de Transcripción
4.
Diabetes ; 57(12): 3258-66, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18835937

RESUMEN

OBJECTIVE: White adipose tissue is a critical regulator of whole-body glucose metabolism. Preadipocyte factor-1 (Pref-1) is a secreted protein that inhibits adipocyte differentiation, both in vitro and in vivo. In this study, we have investigated the effects of Pref-1 overexpression on whole-body glucose homeostasis and its contribution to the development of insulin resistance. RESEARCH DESIGN AND METHODS: To gain insight into the role of Pref-1 on the onset of insulin resistance and type 2 diabetes, we measured body composition and whole-body insulin-stimulated glucose metabolism during a hyperinsulinemic-euglycemic clamp in Pref-1 transgenic and wild-type control mice fed a high-fat diet. RESULTS: Mice overexpressing Pref-1 were resistant to high-fat diet-induced obesity, as reflected by a marked reduction in adipose tissue mass. However, Pref-1-overexpressing mice were severely insulin resistant, mainly because of a reduction in insulin-stimulated glucose uptake in skeletal muscle and adipose tissue. The aggravated insulin resistance was associated with impaired insulin signaling and increased diacylglycerol content in skeletal muscle. CONCLUSIONS: Mice overexpressing Pref-1 are insulin resistant despite being protected from diet-induced obesity and may provide a new rodent model for the study of lipodystrophic disorders.


Asunto(s)
Grasas de la Dieta/metabolismo , Resistencia a la Insulina/fisiología , Péptidos y Proteínas de Señalización Intercelular/fisiología , Lipodistrofia Parcial Familiar/fisiopatología , Obesidad/fisiopatología , Adiponectina/fisiología , Animales , Glucemia/metabolismo , Composición Corporal/fisiología , Proteínas de Unión al Calcio , Modelos Animales de Enfermedad , Técnica de Clampeo de la Glucosa , Prueba de Tolerancia a la Glucosa , Insulina/fisiología , Péptidos y Proteínas de Señalización Intercelular/genética , Leptina/fisiología , Lipodistrofia Parcial Familiar/genética , Ratones , Ratones Transgénicos , Obesidad/etiología , Proteínas Recombinantes de Fusión/metabolismo
5.
PLoS Med ; 5(1): e27, 2008 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-18232732

RESUMEN

BACKGROUND: Stored glycogen is an important source of energy for skeletal muscle. Human genetic disorders primarily affecting skeletal muscle glycogen turnover are well-recognised, but rare. We previously reported that a frameshift/premature stop mutation in PPP1R3A, the gene encoding RGL, a key regulator of muscle glycogen metabolism, was present in 1.36% of participants from a population of white individuals in the UK. However, the functional implications of the mutation were not known. The objective of this study was to characterise the molecular and physiological consequences of this genetic variant. METHODS AND FINDINGS: In this study we found a similar prevalence of the variant in an independent UK white population of 744 participants (1.46%) and, using in vivo (13)C magnetic resonance spectroscopy studies, demonstrate that human carriers (n = 6) of the variant have low basal (65% lower, p = 0.002) and postprandial muscle glycogen levels. Mice engineered to express the equivalent mutation had similarly decreased muscle glycogen levels (40% lower in heterozygous knock-in mice, p < 0.05). In muscle tissue from these mice, failure of the truncated mutant to bind glycogen and colocalize with glycogen synthase (GS) decreased GS and increased glycogen phosphorylase activity states, which account for the decreased glycogen content. CONCLUSIONS: Thus, PPP1R3A C1984DeltaAG (stop codon 668) is, to our knowledge, the first prevalent mutation described that directly impairs glycogen synthesis and decreases glycogen levels in human skeletal muscle. The fact that it is present in approximately 1 in 70 UK whites increases the potential biomedical relevance of these observations.


Asunto(s)
Codón sin Sentido , Mutación del Sistema de Lectura , Glucógeno/biosíntesis , Músculo Esquelético/enzimología , Fosfoproteínas Fosfatasas/fisiología , Adulto , Animales , Diabetes Mellitus Tipo 2/enzimología , Femenino , Frecuencia de los Genes , Glucógeno/análisis , Glucógeno Fosforilasa/metabolismo , Glucógeno Sintasa/metabolismo , Humanos , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Datos de Secuencia Molecular , Músculo Esquelético/química , Fosfoproteínas Fosfatasas/genética , Periodo Posprandial , Relación Estructura-Actividad , Reino Unido , Población Blanca/genética
6.
Nat Med ; 14(2): 144-53, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18223655

RESUMEN

The proapoptotic BCL-2 family member BAD resides in a glucokinase-containing complex that regulates glucose-driven mitochondrial respiration. Here, we present genetic evidence of a physiologic role for BAD in glucose-stimulated insulin secretion by beta cells. This novel function of BAD is specifically dependent upon the phosphorylation of its BH3 sequence, previously defined as an essential death domain. We highlight the pharmacologic relevance of phosphorylated BAD BH3 by using cell-permeable, hydrocarbon-stapled BAD BH3 helices that target glucokinase, restore glucose-driven mitochondrial respiration and correct the insulin secretory response in Bad-deficient islets. Our studies uncover an alternative target and function for the BAD BH3 domain and emphasize the therapeutic potential of phosphorylated BAD BH3 mimetics in selectively restoring beta cell function. Furthermore, we show that BAD regulates the physiologic adaptation of beta cell mass during high-fat feeding. Our findings provide genetic proof of the bifunctional activities of BAD in both beta cell survival and insulin secretion.


Asunto(s)
Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteína Letal Asociada a bcl/metabolismo , Secuencia de Aminoácidos , Animales , Glucemia , Calcio/metabolismo , Recuento de Células , Supervivencia Celular/efectos de los fármacos , Dieta , Glucoquinasa/metabolismo , Glucosa/farmacología , Humanos , Hidrocarburos/farmacología , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/enzimología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Modelos Genéticos , Datos de Secuencia Molecular , Péptidos/farmacología , Fosfoserina/metabolismo , Estructura Terciaria de Proteína , Proteína Letal Asociada a bcl/química , Proteína Letal Asociada a bcl/deficiencia
7.
J Clin Invest ; 117(11): 3463-74, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17932564

RESUMEN

The transcriptional coactivator PPARgamma coactivator 1alpha (PGC-1alpha) is a strong activator of mitochondrial biogenesis and oxidative metabolism. While expression of PGC-1alpha and many of its mitochondrial target genes are decreased in the skeletal muscle of patients with type 2 diabetes, no causal relationship between decreased PGC-1alpha expression and abnormal glucose metabolism has been established. To address this question, we generated skeletal muscle-specific PGC-1alpha knockout mice (MKOs), which developed significantly impaired glucose tolerance but showed normal peripheral insulin sensitivity. Surprisingly, MKOs had expanded pancreatic beta cell mass, but markedly reduced plasma insulin levels, in both fed and fasted conditions. Muscle tissue from MKOs showed increased expression of several proinflammatory genes, and these mice also had elevated levels of the circulating IL-6. We further demonstrated that IL-6 treatment of isolated mouse islets suppressed glucose-stimulated insulin secretion. These data clearly illustrate a causal role for muscle PGC-1alpha in maintenance of glucose homeostasis and highlight an unexpected cytokine-mediated crosstalk between skeletal muscle and pancreatic islets.


Asunto(s)
Comunicación Celular/fisiología , Glucosa/metabolismo , Homeostasis , Células Secretoras de Insulina/metabolismo , Músculo Esquelético/metabolismo , Transactivadores/metabolismo , Tejido Adiposo/anatomía & histología , Tejido Adiposo/metabolismo , Animales , Biomarcadores/metabolismo , Peso Corporal , Ayuno , Femenino , Técnica de Clampeo de la Glucosa , Prueba de Tolerancia a la Glucosa , Humanos , Inflamación/genética , Insulina/metabolismo , Células Secretoras de Insulina/citología , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Ratones , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/metabolismo , Músculo Esquelético/citología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Transactivadores/genética , Factores de Transcripción
8.
Proc Natl Acad Sci U S A ; 104(42): 16480-5, 2007 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-17923673

RESUMEN

Acetyl-CoA carboxylase 2 (ACC)2 is a key regulator of mitochondrial fat oxidation. To examine the impact of ACC2 deletion on whole-body energy metabolism, we measured changes in substrate oxidation and total energy expenditure in Acc2(-/-) and WT control mice fed either regular or high-fat diets. To determine insulin action in vivo, we also measured whole-body insulin-stimulated liver and muscle glucose metabolism during a hyperinsulinemic-euglycemic clamp in Acc2(-/-) and WT control mice fed a high-fat diet. Contrary to previous studies that have suggested that increased fat oxidation might result in lower glucose oxidation, both fat and carbohydrate oxidation were simultaneously increased in Acc2(-/-) mice. This increase in both fat and carbohydrate oxidation resulted in an increase in total energy expenditure, reductions in fat and lean body mass and prevention from diet-induced obesity. Furthermore, Acc2(-/-) mice were protected from fat-induced peripheral and hepatic insulin resistance. These improvements in insulin-stimulated glucose metabolism were associated with reduced diacylglycerol content in muscle and liver, decreased PKC activity in muscle and PKCepsilon activity in liver, and increased insulin-stimulated Akt2 activity in these tissues. Taken together with previous work demonstrating that Acc2(-/-) mice have a normal lifespan, these data suggest that Acc2 inhibition is a viable therapeutic option for the treatment of obesity and type 2 diabetes.


Asunto(s)
Acetil-CoA Carboxilasa/genética , Tejido Adiposo/enzimología , Resistencia a la Insulina/genética , Insulina/farmacología , Animales , Citocinas/metabolismo , Metabolismo Energético/genética , Glucosa/metabolismo , Isoenzimas/metabolismo , Hígado/enzimología , Ratones , Ratones Noqueados , Músculo Esquelético/enzimología , Oxidación-Reducción , Proteína Quinasa C/metabolismo , Proteína Quinasa C-epsilon/metabolismo , Proteína Quinasa C-theta
9.
J Clin Invest ; 117(8): 2289-301, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17641777

RESUMEN

Obesity, the metabolic syndrome, and type 2 diabetes mellitus (T2DM) are major global health problems. Insulin resistance is frequently present in these disorders, but the causes and effects of such resistance are unknown. Here, we generated mice with muscle-specific knockout of the major murine atypical PKC (aPKC), PKC-lambda, a postulated mediator for insulin-stimulated glucose transport. Glucose transport and translocation of glucose transporter 4 (GLUT4) to the plasma membrane were diminished in muscles of both homozygous and heterozygous PKC-lambda knockout mice and were accompanied by systemic insulin resistance; impaired glucose tolerance or diabetes; islet beta cell hyperplasia; abdominal adiposity; hepatosteatosis; elevated serum triglycerides, FFAs, and LDL-cholesterol; and diminished HDL-cholesterol. In contrast to the defective activation of muscle aPKC, insulin signaling and actions were intact in muscle, liver, and adipocytes. These findings demonstrate the importance of aPKC in insulin-stimulated glucose transport in muscles of intact mice and show that insulin resistance and resultant hyperinsulinemia owing to a specific defect in muscle aPKC is sufficient to induce abdominal obesity and other lipid abnormalities of the metabolic syndrome and T2DM. These findings are particularly relevant because humans who have obesity, impaired glucose tolerance, and T2DM reportedly have defective activation and/or diminished levels of muscle aPKC.


Asunto(s)
Diabetes Mellitus Tipo 2/enzimología , Glucosa/metabolismo , Isoenzimas/deficiencia , Síndrome Metabólico/enzimología , Miocardio/enzimología , Proteína Quinasa C/deficiencia , Músculo Cuádriceps/enzimología , Animales , Transporte Biológico/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/patología , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Hígado Graso/sangre , Hígado Graso/enzimología , Hígado Graso/genética , Hígado Graso/patología , Transportador de Glucosa de Tipo 4/metabolismo , Heterocigoto , Homocigoto , Hiperplasia/sangre , Hiperplasia/enzimología , Hiperplasia/genética , Hiperplasia/patología , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Isoenzimas/metabolismo , Lípidos/sangre , Síndrome Metabólico/sangre , Síndrome Metabólico/genética , Síndrome Metabólico/patología , Ratones , Ratones Noqueados , Miocardio/patología , Obesidad/sangre , Obesidad/enzimología , Obesidad/genética , Obesidad/patología , Especificidad de Órganos/genética , Proteína Quinasa C/metabolismo , Músculo Cuádriceps/patología , Transducción de Señal/genética
10.
J Clin Invest ; 117(7): 1995-2003, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17571165

RESUMEN

Insulin resistance is a major factor in the pathogenesis of type 2 diabetes and is strongly associated with obesity. Increased concentrations of intracellular fatty acid metabolites have been postulated to interfere with insulin signaling by activation of a serine kinase cascade involving PKCtheta in skeletal muscle. Uncoupling protein 3 (UCP3) has been postulated to dissipate the mitochondrial proton gradient and cause metabolic inefficiency. We therefore hypothesized that overexpression of UCP3 in skeletal muscle might protect against fat-induced insulin resistance in muscle by conversion of intramyocellular fat into thermal energy. Wild-type mice fed a high-fat diet were markedly insulin resistant, a result of defects in insulin-stimulated glucose uptake in skeletal muscle and hepatic insulin resistance. Insulin resistance in these tissues was associated with reduced insulin-stimulated insulin receptor substrate 1- (IRS-1-) and IRS-2-associated PI3K activity in muscle and liver, respectively. In contrast, UCP3-overexpressing mice were completely protected against fat-induced defects in insulin signaling and action in these tissues. Furthermore, these changes were associated with a lower membrane-to-cytosolic ratio of diacylglycerol and reduced PKCtheta activity in whole-body fat-matched UCP3 transgenic mice. These results suggest that increasing mitochondrial uncoupling in skeletal muscle may be an excellent therapeutic target for type 2 diabetes mellitus.


Asunto(s)
Regulación de la Expresión Génica , Resistencia a la Insulina , Canales Iónicos/metabolismo , Metabolismo de los Lípidos , Proteínas Mitocondriales/metabolismo , Músculo Esquelético/metabolismo , Proteínas Quinasas Activadas por AMP , Envejecimiento/fisiología , Animales , Activación Enzimática , Hormonas/sangre , Humanos , Insulina/sangre , Canales Iónicos/genética , Isoenzimas/metabolismo , Masculino , Ratones , Ratones Transgénicos , Proteínas Mitocondriales/genética , Complejos Multienzimáticos/metabolismo , Proteína Quinasa C/metabolismo , Proteína Quinasa C-theta , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Desacopladora 3 , Aumento de Peso
11.
J Biol Chem ; 282(31): 22678-88, 2007 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-17526931

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is a major contributing factor to hepatic insulin resistance in type 2 diabetes. Diacylglycerol acyltransferase (Dgat), of which there are two isoforms (Dgat1 and Dgat2), catalyzes the final step in triglyceride synthesis. We evaluated the metabolic impact of pharmacological reduction of DGAT1 and -2 expression in liver and fat using antisense oligonucleotides (ASOs) in rats with diet-induced NAFLD. Dgat1 and Dgat2 ASO treatment selectively reduced DGAT1 and DGAT2 mRNA levels in liver and fat, but only Dgat2 ASO treatment significantly reduced hepatic lipids (diacylglycerol and triglyceride but not long chain acyl CoAs) and improved hepatic insulin sensitivity. Because Dgat catalyzes triglyceride synthesis from diacylglycerol, and because we have hypothesized that diacylglycerol accumulation triggers fat-induced hepatic insulin resistance through protein kinase C epsilon activation, we next sought to understand the paradoxical reduction in diacylglycerol in Dgat2 ASO-treated rats. Within 3 days of starting Dgat2 ASO therapy in high fat-fed rats, plasma fatty acids increased, whereas hepatic lysophosphatidic acid and diacylglycerol levels were similar to those of control rats. These changes were associated with reduced expression of lipogenic genes (SREBP1c, ACC1, SCD1, and mtGPAT) and increased expression of oxidative/thermogenic genes (CPT1 and UCP2). Taken together, these data suggest that knocking down Dgat2 protects against fat-induced hepatic insulin resistance by paradoxically lowering hepatic diacylglycerol content and protein kinase C epsilon activation through decreased SREBP1c-mediated lipogenesis and increased hepatic fatty acid oxidation.


Asunto(s)
Diacilglicerol O-Acetiltransferasa/fisiología , Hígado Graso/patología , Resistencia a la Insulina , Oligonucleótidos Antisentido/química , Animales , Diacilglicerol O-Acetiltransferasa/metabolismo , Dieta , Ácidos Grasos/metabolismo , Hígado Graso/terapia , Hepatocitos/metabolismo , Hígado/metabolismo , Masculino , Oxígeno/metabolismo , Ratas , Ratas Sprague-Dawley , Triglicéridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...