Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38686544

RESUMEN

Melatonin, a product of tryptophan metabolism via serotonin, is a molecule with an indole backbone that is widely produced by bacteria, unicellular eukaryotic organisms, plants, fungi and all animal taxa. Aside from its role in the regulation of circadian rhythms, it has diverse biological actions including regulation of cytoprotective responses and other functions crucial for survival across different species. The latter properties are also shared by its metabolites including kynuric products generated by reactive oxygen species or phototransfomation induced by ultraviolet radiation. Vitamins D and related photoproducts originate from phototransformation of ∆5,7 sterols, of which 7-dehydrocholesterol and ergosterol are examples. Their ∆5,7 bonds in the B ring absorb solar ultraviolet radiation [290-315 nm, ultraviolet B (UVB) radiation] resulting in B ring opening to produce previtamin D, also referred to as a secosteroid. Once formed, previtamin D can either undergo thermal-induced isomerization to vitamin D or absorb UVB radiation to be transformed into photoproducts including lumisterol and tachysterol. Vitamin D, as well as the previtamin D photoproducts lumisterol and tachysterol, are hydroxylated by cyochrome P450 (CYP) enzymes to produce biologically active hydroxyderivatives. The best known of these is 1,25-dihydroxyvitamin D (1,25(OH)2D) for which the major function in vertebrates is regulation of calcium and phosphorus metabolism. Herein we review data on melatonin production and metabolism and discuss their functions in insects. We discuss production of previtamin D and vitamin D, and their photoproducts in fungi, plants and insects, as well as mechanisms for their enzymatic activation and suggest possible biological functions for them in these groups of organisms. For the detection of these secosteroids and their precursors and photoderivatives, as well as melatonin metabolites, we focus on honey produced by bees and on body extracts of Drosophila melanogaster. Common biological functions for melatonin derivatives and secosteroids such as cytoprotective and photoprotective actions in insects are discussed. We provide hypotheses for the photoproduction of other secosteroids and of kynuric metabolites of melatonin, based on the known photobiology of ∆5,7 sterols and of the indole ring, respectively. We also offer possible mechanisms of actions for these unique molecules and summarise differences and similarities of melatoninergic and secosteroidogenic pathways in diverse organisms including insects.

2.
Int J Mol Sci ; 24(20)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37895177

RESUMEN

Melatonin is widely present in Nature. It has pleiotropic activities, in part mediated by interactions with high-affinity G-protein-coupled melatonin type 1 and 2 (MT1 and MT2) receptors or under extreme conditions, e.g., ischemia/reperfusion. In pharmacological concentrations, it is given to counteract the massive damage caused by MT1- and MT2-independent mechanisms. The aryl hydrocarbon receptor (AhR) is a perfect candidate for mediating the latter effects because melatonin has structural similarity to its natural ligands, including tryptophan metabolites and indolic compounds. Using a cell-based Human AhR Reporter Assay System, we demonstrated that melatonin and its indolic and kynuric metabolites act as agonists on the AhR with EC50's between 10-4 and 10-6 M. This was further validated via the stimulation of the transcriptional activation of the CYP1A1 promoter. Furthermore, melatonin and its metabolites stimulated AhR translocation from the cytoplasm to the nucleus in human keratinocytes, as demonstrated by ImageStream II cytometry and Western blot (WB) analyses of cytoplasmic and nuclear fractions of human keratinocytes. These functional analyses are supported by in silico analyses. We also investigated the peroxisome proliferator-activated receptor (PPAR)γ as a potential target for melatonin and metabolites bioregulation. The binding studies using a TR-TFRET kit to assay the interaction of the ligand with the ligand-binding domain (LBD) of the PPARγ showed agonistic activities of melatonin, 6-hydroxymelatonin and N-acetyl-N-formyl-5-methoxykynuramine with EC50's in the 10-4 M range showing significantly lower affinities that those of rosiglitazone, e.g., a 10-8 M range. These interactions were substantiated by stimulation of the luciferase activity of the construct containing PPARE by melatonin and its metabolites at 10-4 M. As confirmed by the functional assays, binding mode predictions using a homology model of the AhR and a crystal structure of the PPARγ suggest that melatonin and its metabolites, including 6-hydroxymelatonin, 5-methoxytryptamine and N-acetyl-N-formyl-5-methoxykynuramine, are excellent candidates to act on the AhR and PPARγ with docking scores comparable to their corresponding natural ligands. Melatonin and its metabolites were modeled into the same ligand-binding pockets (LBDs) as their natural ligands. Thus, functional assays supported by molecular modeling have shown that melatonin and its indolic and kynuric metabolites can act as agonists on the AhR and they can interact with the PPARγ at high concentrations. This provides a mechanistic explanation for previously reported cytoprotective actions of melatonin and its metabolites that require high local concentrations of the ligands to reduce cellular damage under elevated oxidative stress conditions. It also identifies these compounds as therapeutic agents to be used at pharmacological doses in the prevention or therapy of skin diseases.


Asunto(s)
Melatonina , Receptores de Hidrocarburo de Aril , Humanos , Queratinocitos/metabolismo , Ligandos , Melatonina/metabolismo , PPAR gamma/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo
3.
J Steroid Biochem Mol Biol ; 233: 106370, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37499840

RESUMEN

Lumisterol2 (L2) is a photoproduct of UVB action on the fungal membrane sterol, ergosterol. Like vitamin D2, it is present in edible mushrooms, especially after UV irradiation. Lumisterol3 is similarly produced in human skin from 7-dehydrocholesterol by UVB and can be converted to hydroxy-metabolites by CYP27A1 and CYP11A1. These products are biologically active on human cells with actions that include photoprotection and inhibition of proliferation. The aim of this study was to test the ability of CYP11A1 and CYP27A1 to metabolise L2. Purified CYP27A1 was found to efficiently metabolise L2 to three major products and several minor products, whilst CYP11A1 did not act appreciably on L2. The three major products of CYP27A1 action on L2 were identified by mass spectrometry and NMR as 24-hydroxyL2, 27-hydroxyL2 and 28-hydroxyL2. Minor products included two dihydroxy L2 species, one which was identified as 24,27(OH)2L2, and another metabolite with one oxo and one hydroxyl group added. A comparison on the kinetics of the metabolism of L2 by CYP27A1 with that of the structurally similar compounds, L3 and ergosterol, was carried out with substrates incorporated into phospholipid vesicles. CYP27A1 displayed a 12-fold lower Km with L2 as substrate compared to L3 and a 5-fold lower turnover number (kcat), resulting in a 2.2 fold higher catalytic efficiency (kcat/Km) for L2 metabolism. L2 was a much better substrate for CYP27A1 than its precursor, ergosterol, with a catalytic efficiency 18-fold higher. The major CYP27A1-derived hydroxy-L2 products, 24-hydroxyL2, 27-hydroxyL2 and 28-hydroxyL2, inhibited the proliferation of melanoma and epidermoid cancer cell lines. In conclusion, this study shows that L2 is not metabolized appreciably by CYP11A1, but it is a good substrate for CYP27A1 which hydroxylates its side chain to produce 3 major products that display anti-proliferative activity on skin-cancer cell lines.


Asunto(s)
Enzima de Desdoblamiento de la Cadena Lateral del Colesterol , Ergosterol , Humanos , Ergosterol/metabolismo , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Hidroxilación , Espectrometría de Masas , Ergocalciferoles , Colestanotriol 26-Monooxigenasa/metabolismo
4.
Int J Oncol ; 61(2)2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35775377

RESUMEN

Hydroxyderivatives of vitamin D3, including classical 1,25(OH)2D3 and novel CYP11A1­derived hydroxyderivatives, exert their biological activity by acting as agonists on the vitamin D receptor (VDR) and inverse agonists on retinoid­related orphan receptors (ROR)α and γ. The anticancer activities of CYP11A1­derived hydroxyderivatives were tested using cell biology, tumor biology and molecular biology methods in human A431 and SCC13 squamous (SCC)­ and murine ASZ001 basal (BCC)­cell carcinomas, in comparison with classical 1,25(OH)2D3. Vitamin D3­hydroxyderivatives with or without a C1α(OH) inhibited cell proliferation in a dose­dependent manner. While all the compounds tested had similar effects on spheroid formation by A431 and SCC13 cells, those with a C1α(OH) group were more potent in inhibiting colony and spheroid formation in the BCC line. Potent anti­tumorigenic activity against the BCC line was exerted by 1,25(OH)2D3, 1,20(OH)2D3, 1,20,23(OH)3D3, 1,20,24(OH)3D3, 1,20,25(OH)3D3 and 1,20,26(OH)3D3, with smaller effects seen for 25(OH)D3, 20(OH)D3 and 20,23(OH)2D3. 1,25(OH)2D3, 1,20(OH)2D3 and 20(OH)D3 inhibited the expression of GLI1 and ß­catenin in ASZ001 cells. In A431 cells, these compounds also decreased the expression of GLI1 and stimulated involucrin expression. VDR, RORγ, RORα and CYP27B1 were detected in A431, SCC13 and ASZ001 lines, however, with different expression patterns. Immunohistochemistry performed on human skin with SCC and BCC showed nuclear expression of all three of these receptors, as well as megalin (transmembrane receptor for vitamin D­binding protein), the level of which was dependent on the type of cancer and antigen tested in comparison with normal epidermis. Classical and CYP11A1­derived vitamin D3­derivatives exhibited anticancer­activities on skin cancer cell lines and inhibited GLI1 and ß­catenin signaling in a manner that was dependent on the position of hydroxyl groups. The observed expression of VDR, RORγ, RORα and megalin in human SCC and BCC suggested that they might provide targets for endogenously produced or exogenously applied vitamin D hydroxyderivatives and provide excellent candidates for anti­cancer therapy.


Asunto(s)
Carcinoma Basocelular , Carcinoma de Células Escamosas , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol , Vitamina D , Animales , Carcinoma Basocelular/tratamiento farmacológico , Carcinoma Basocelular/metabolismo , Carcinoma Basocelular/patología , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Colecalciferol/farmacología , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/farmacología , Humanos , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad , Ratones , Receptores de Calcitriol/metabolismo , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Vitamina D/análogos & derivados , Vitamina D/farmacología , Proteína con Dedos de Zinc GLI1/genética , beta Catenina/metabolismo
5.
FASEB J ; 36(8): e22451, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35838947

RESUMEN

CYP11A1 and CYP27A1 hydroxylate tachysterol3 , a photoproduct of previtamin D3 , producing 20S-hydroxytachysterol3 [20S(OH)T3 ] and 25(OH)T3 , respectively. Both metabolites were detected in the human epidermis and serum. Tachysterol3 was also detected in human serum at a concentration of 7.3 ± 2.5 ng/ml. 20S(OH)T3 and 25(OH)T3 inhibited the proliferation of epidermal keratinocytes and dermal fibroblasts and stimulated the expression of differentiation and anti-oxidative genes in keratinocytes in a similar manner to 1,25-dihydroxyvitamin D3 [1,25(OH)2 D3 ]. They acted on the vitamin D receptor (VDR) as demonstrated by image flow cytometry and the translocation of VDR coupled GFP from the cytoplasm to the nucleus of melanoma cells, as well as by the stimulation of CYP24A1 expression. Functional studies using a human aryl hydrocarbon receptor (AhR) reporter assay system revealed marked activation of AhR by 20S(OH)T3 , a smaller effect by 25(OH)T3 , and a minimal effect for their precursor, tachysterol3 . Tachysterol3 hydroxyderivatives showed high-affinity binding to the ligan-binding domain (LBD) of the liver X receptor (LXR) α and ß, and the peroxisome proliferator-activated receptor γ (PPARγ) in LanthaScreen TR-FRET coactivator assays. Molecular docking using crystal structures of the LBDs of VDR, AhR, LXRs, and PPARγ revealed high docking scores for 20S(OH)T3 and 25(OH)T3 , comparable to their natural ligands. The scores for the non-genomic-binding site of the VDR were very low indicating a lack of interaction with tachysterol3 ligands. Our identification of endogenous production of 20S(OH)T3 and 25(OH)T3 that are biologically active and interact with VDR, AhR, LXRs, and PPARγ, provides a new understanding of the biological function of tachysterol3 .


Asunto(s)
Colecalciferol , PPAR gamma , Receptores de Calcitriol , Activación Metabólica , Colecalciferol/análogos & derivados , Colecalciferol/metabolismo , Colecalciferol/farmacocinética , Humanos , Receptores X del Hígado/metabolismo , Simulación del Acoplamiento Molecular , PPAR gamma/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Receptores de Calcitriol/metabolismo
6.
Int J Biol Macromol ; 209(Pt A): 1111-1123, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35421413

RESUMEN

To better understand the molecular and structural basis underlying the interaction of vitamin D3 hydroxyderivatives with AhR, molecular simulation was used to probe the binding of 1,20(OH)2D3, 1,25(OH)2D3, 20,23(OH)2D3 and 20(OH)D3 to AhR. qPCR showed that vitamin D3 derivatives stimulate expression of cyp1A1 and cyp1B1 genes that are downstream targets of AhR signaling. These secosteroids stimulated the translocation of the AhR to the nucleus, as measured by flow cytometry and western blotting. Molecular dynamics simulations were used to model the binding of vitamin D3 derivatives to AhR to examine their influence on the structure, conformation and dynamics of the AhR ligand binding domain (LBD). Binding thermodynamics, conformation, secondary structure, dynamical motion and electrostatic potential of AhR were analyzed. The molecular docking scores and binding free energy were all favorable for the binding of D3 derivatives to the AhR. These established ligands and the D3 derivatives are predicted to have different patterns of hydrogen bond formation with the AhR, and varied residue conformational fluctuations and dynamical motion for the LBD. These changes could alter the shape, size and electrostatic potential distribution of the ligand binding pocket, contributing to the different binding affinities of AhR for the natural ligands and D3 derivatives.


Asunto(s)
Colecalciferol , Receptores de Hidrocarburo de Aril , Colecalciferol/química , Ligandos , Simulación del Acoplamiento Molecular , Estructura Secundaria de Proteína , Receptores de Hidrocarburo de Aril/química , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo
7.
Bioorg Chem ; 121: 105660, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35168121

RESUMEN

New and more efficient routes of chemical synthesis of vitamin D3 (D3) hydroxy (OH) metabolites, including 20S(OH)D3, 20S,23S(OH)2D3 and 20S,25(OH)2D3, that are endogenously produced in the human body by CYP11A1, and of 20S,23R(OH)2D3 were established. The biological evaluation showed that these compounds exhibited similar properties to each other regarding inhibition of cell proliferation and induction of cell differentiation but with subtle and quantitative differences. They showed both overlapping and differential effects on T-cell immune activity. They also showed similar interactions with nuclear receptors with all secosteroids activating vitamin D, liver X, retinoic acid orphan and aryl hydrocarbon receptors in functional assays and also as indicated by molecular modeling. They functioned as substrates for CYP27B1 with enzymatic activity being the highest towards 20S,25(OH)2D3 and the lowest towards 20S(OH)D3. In conclusion, defining new routes for large scale synthesis of endogenously produced D3-hydroxy derivatives by pathways initiated by CYP11A1 opens an exciting era to analyze their common and differential activities in vivo, particularly on the immune system and inflammatory diseases.


Asunto(s)
Enzima de Desdoblamiento de la Cadena Lateral del Colesterol , Vitaminas , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Humanos , Receptores de Calcitriol/metabolismo , Receptores Citoplasmáticos y Nucleares , Vitamina D/metabolismo
8.
Int J Mol Sci ; 23(3)2022 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-35163162

RESUMEN

The skin, being the largest organ in the human body, is exposed to the environment and suffers from both intrinsic and extrinsic aging factors. The skin aging process is characterized by several clinical features such as wrinkling, loss of elasticity, and rough-textured appearance. This complex process is accompanied with phenotypic and functional changes in cutaneous and immune cells, as well as structural and functional disturbances in extracellular matrix components such as collagens and elastin. Because skin health is considered one of the principal factors representing overall "well-being" and the perception of "health" in humans, several anti-aging strategies have recently been developed. Thus, while the fundamental mechanisms regarding skin aging are known, new substances should be considered for introduction into dermatological treatments. Herein, we describe melatonin and its metabolites as potential "aging neutralizers". Melatonin, an evolutionarily ancient derivative of serotonin with hormonal properties, is the main neuroendocrine secretory product of the pineal gland. It regulates circadian rhythmicity and also exerts anti-oxidative, anti-inflammatory, immunomodulatory, and anti-tumor capacities. The intention of this review is to summarize changes within skin aging, research advances on the molecular mechanisms leading to these changes, and the impact of the melatoninergic anti-oxidative system controlled by melatonin and its metabolites, targeting the prevention or reversal of skin aging.


Asunto(s)
Antioxidantes/farmacología , Melatonina/farmacología , Sustancias Protectoras/farmacología , Envejecimiento de la Piel/efectos de los fármacos , Animales , Humanos
9.
Exp Dermatol ; 31(5): 781-788, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34995387

RESUMEN

The pathogenesis of inflammatory skin diseases is associated with the abnormal activity of keratinocytes and immune cells infiltrate. Vitamin D3 deficiency can correlate with the increased incidence, severity and duration of inflammatory skin disorders. The exact mechanism on how vitamin D3 influences inflammatory skin diseases still requires clarification. However, it can be associated with the disturbances in transmembrane glycoprotein-LRP2/megalin, which is implicated in vitamin D3 transport to the cell, and defects in vitamin D-signalling through the nuclear receptors. Therefore, by using immunohistochemistry, we analysed the expression of LRP2/megalin, VDR, RORα and RORγ in allergic contact dermatitis, lichen simplex chronicus, sarcoidosis and psoriasis in comparison with the normal skin. We observed decreased expression of LRP2/megalin in all inflammatory lesions in comparison with the normal skin. Significant differences were also noticed in VDR, RORα and RORγ levels between inflammatory lesions and normal skin. Our research indicates disturbed expression of LRP2/megalin, VDR, RORα and RORγ in inflammatory skin lesions in comparison with normal skin. Therefore, we suggest that changes in the activity of these proteins may play role in pathogenesis of inflammatory skin disorders. Furthermore, we suggest that LRP2/megalin, VDR, RORα and RORy may serve as targets in therapy of these diseases.


Asunto(s)
Dermatitis , Vitamina D , Humanos , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares , Receptores de Calcitriol/metabolismo , Receptor alfa de Ácido Retinoico , Tretinoina , Vitamina D/metabolismo , Vitaminas
10.
Melatonin Res ; 5(3): 374-380, 2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37007214

RESUMEN

We are commenting recent discoveries on the presence of L-DOPA, dopamine, 5-hydroxytryptophan, tryptamine, serotonin, N-acetylserotonin, melatonin, 2-hydroxymelatonin, AFMK and AMK in honey. Serotonin and melatonin, products of the tryptophan metabolism, are widely produced in nature, serving as hormones, neurotransmitters, biological regulators, neurotransmitters and antioxidants, in a context dependent fashion. Dopamine and tryptamine are important neurotransmitters across different species. Honey is used as one of the most popular healthy food substances. Detection of above molecules in honey accompanied by detection of vitamin D3 and its hydroxyderivatives, is consistent with their detection in insects and plants. Their presence in honey enhances spectrum of its beneficial effects for human health and implicates that these molecules must play important role in social insects physiology, bees development and colony functions.

11.
Int J Mol Sci ; 22(16)2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34445632

RESUMEN

Systemic sclerosis (SSc; scleroderma) is a chronic fibrotic disease involving TGF-ß1. Low serum vitamin D (vit D) correlates with the degree of fibrosis and expression of TGF-ß1. This study was designed to determine whether the noncalcemic vit D analog, 17,20S(OH)2pD, suppresses fibrosis and mediators of the TGF-ß1 pathway in the bleomycin (BLM) model of fibrosis. Fibrosis was induced into the skin of female C57BL/6 mice by repeated injections of BLM (50 µg/100 µL) subcutaneously. Mice received daily oral gavage with either vehicle (propylene glycol) or 17,20S(OH)2pD using 5, 15, or 30 µg/kg for 21 days. The injected skin was biopsied; analyzed histologically; examined for total collagen by Sircol; and examined for mRNA expression of MMP-13, BMP-7, MCP-1, Gli1, and Gli2 by TR-PCR. Spleen was analyzed for lymphocytes using flow cytometry. Serum was analyzed for cytokines using a multiplexed ELISA. Results showed that all three doses of 17,20S(OH)2pD suppressed net total collagen production, dermal thickness, and total collagen content in the BLM fibrosis model. 17,20S(OH)2pD also increased MMP-13 expression, decreased MCP-1 and Gli-2 expression in vivo, and suppressed serum levels of IL-13, TNF-α, IL-6, IL-10, IL-17, and IL-12p70. In summary, 17,20S(OH)2pD modulates the mediators of fibrosis in vivo and suppresses total collagen production and dermal thickness. This antifibrotic property of 17,20S(OH)2pD offers new therapeutic approaches for fibrotic disorders.


Asunto(s)
Bleomicina/toxicidad , Colecalciferol/análogos & derivados , Modelos Animales de Enfermedad , Fibrosis/tratamiento farmacológico , Esclerodermia Sistémica/complicaciones , Enfermedades de la Piel/tratamiento farmacológico , Animales , Antibióticos Antineoplásicos/toxicidad , Colecalciferol/farmacología , Citocinas/metabolismo , Femenino , Fibrosis/etiología , Fibrosis/patología , Ratones , Ratones Endogámicos C57BL , Esclerodermia Sistémica/inducido químicamente , Esclerodermia Sistémica/patología , Enfermedades de la Piel/etiología , Enfermedades de la Piel/patología
12.
Cancers (Basel) ; 13(13)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206371

RESUMEN

Vitamin D3 is not only involved in calcium and phosphate metabolism in humans, but it can also affect proliferation and differentiation of normal and cancer cells, including melanoma. The mechanism of the anti-cancer action of vitamin D3 is not fully understood. The nuclear vitamin D receptor (VDR) is crucial for the phenotypic effects of vitamin D hydroxyderivatives. VDR expression shows an inverse correlation with melanoma progression and poor outcome of the disease. In this study we knocked out the VDR in a human melanoma cell line using CRISPR methodology. This enhanced the proliferation of melanoma cells grown in monolayer culture, spheroids or colonies and their migration. Activated forms of vitamin D, including classical 1,25(OH)2D3, 20(OH)D3 and 1,20(OH)2D3, inhibited cell proliferation, migration rate and the ability to form colonies and spheroids in the wild-type melanoma cell line, while VDR KO cells showed a degree of resistance to their action. These results indicate that expression of VDR is important for the inhibition of melanoma growth induced by activated forms of vitamin D. In conclusion, based on our previous clinicopathological analyses and the current study, we suggest that the VDR can function as a melanoma tumor suppressor gene.

13.
Front Immunol ; 12: 678487, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276665

RESUMEN

The ability to use large doses of vitamin D3 (D3) to chronically treat autoimmune diseases such as rheumatoid arthritis (RA) is prohibitive due to its calcemic effect which can damage vital organs. Cytochrome P450scc (CYP11A1) is able to convert D3 into the noncalcemic analog 20S-hydroxyvitamin D3 [20S(OH)D3]. We demonstrate that 20S(OH)D3 markedly suppresses clinical signs of arthritis and joint damage in a mouse model of RA. Furthermore, treatment with 20S(OH)D3 reduces lymphocyte subsets such as CD4+ T cells and CD19+ B cells leading to a significant reduction in inflammatory cytokines. The ratio of T reg cells (CD4+CD25+Foxp3+ T cells) to CD3+CD4+ T cells is increased while there is a decrease in critical complement-fixing anti-CII antibodies. Since pro-inflammatory cytokines and antibodies against type II collagen ordinarily lead to destruction of cartilage and bone, their decline explains why arthritis is attenuated by 20(OH) D3. These results provide a basis for further consideration of 20S(OH)D3 as a potential treatment for RA and other autoimmune disorders.


Asunto(s)
Antiinflamatorios/farmacología , Artritis/etiología , Artritis/metabolismo , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/metabolismo , Calcifediol/análogos & derivados , Animales , Artritis/tratamiento farmacológico , Artritis/patología , Enfermedades Autoinmunes/tratamiento farmacológico , Enfermedades Autoinmunes/patología , Biomarcadores , Calcifediol/farmacología , Citocinas/metabolismo , Manejo de la Enfermedad , Modelos Animales de Enfermedad , Duración de la Terapia , Humanos , Recuento de Linfocitos , Linfocitos/efectos de los fármacos , Linfocitos/inmunología , Linfocitos/metabolismo , Ratones , Resultado del Tratamiento
14.
Antioxidants (Basel) ; 10(4)2021 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-33920561

RESUMEN

We investigated the effects of melatonin and its selected metabolites, i.e., N1-Acetyl-N2-formyl-5-methoxykynurenamine (AFMK) and 6-hydroxymelatonin (6(OH)Mel), on cultured human epidermal keratinocytes (HEKs) to assess their homeostatic activities with potential therapeutic implications. RNAseq analysis revealed a significant number of genes with distinct and overlapping patterns, resulting in common regulation of top diseases and disorders. Gene Set Enrichment Analysis (GSEA), Reactome FIViZ, and Ingenuity Pathway Analysis (IPA) showed overrepresentation of the p53-dependent G1 DNA damage response gene set, activation of p53 signaling, and NRF2-mediated antioxidative pathways. Additionally, GSEA exhibited an overrepresentation of circadian clock and antiaging signaling gene sets by melatonin derivatives and upregulation of extension of telomere signaling in HEKs, which was subsequently confirmed by increased telomerase activity in keratinocytes, indicating possible antiaging properties of metabolites of melatonin. Furthermore, Gene Ontology (GO) showed the activation of a keratinocyte differentiation program by melatonin, and GSEA indicated antitumor and antilipidemic potential of melatonin and its metabolites. IPA also indicated the role of Protein Kinase R (PKR) in interferon induction and antiviral response. In addition, the test compounds decreased lactate dehydrogenase A (LDHA) and lactate dehydrogenase C (LDHC) gene expression. These results were validated by qPCR and by Seahorse metabolic assay with significantly decreased glycolysis and lactate production under influence of AFMK or 6(OH)Mel in cells with a low oxygen consumption rate. In summary, melatonin and its metabolites affect keratinocytes' functions via signaling pathways that overlap for each tested molecule with some distinctions.

15.
Sci Rep ; 11(1): 8002, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33850196

RESUMEN

The interactions of derivatives of lumisterol (L3) and vitamin D3 (D3) with liver X receptors (LXRs) were investigated. Molecular docking using crystal structures of the ligand binding domains (LBDs) of LXRα and ß revealed high docking scores for L3 and D3 hydroxymetabolites, similar to those of the natural ligands, predicting good binding to the receptor. RNA sequencing of murine dermal fibroblasts stimulated with D3-hydroxyderivatives revealed LXR as the second nuclear receptor pathway for several D3-hydroxyderivatives, including 1,25(OH)2D3. This was validated by their induction of genes downstream of LXR. L3 and D3-derivatives activated an LXR-response element (LXRE)-driven reporter in CHO cells and human keratinocytes, and by enhanced expression of LXR target genes. L3 and D3 derivatives showed high affinity binding to the LBD of the LXRα and ß in LanthaScreen TR-FRET LXRα and ß coactivator assays. The majority of metabolites functioned as LXRα/ß agonists; however, 1,20,25(OH)3D3, 1,25(OH)2D3, 1,20(OH)2D3 and 25(OH)D3 acted as inverse agonists of LXRα, but as agonists of LXRß. Molecular dynamics simulations for the selected compounds, including 1,25(OH)2D3, 1,20(OH)2D3, 25(OH)D3, 20(OH)D3, 20(OH)L3 and 20,22(OH)2L3, showed different but overlapping interactions with LXRs. Identification of D3 and L3 derivatives as ligands for LXRs suggests a new mechanism of action for these compounds.


Asunto(s)
Ergosterol/farmacología , Receptores X del Hígado/metabolismo , Vitamina D/farmacología , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Animales , Animales Recién Nacidos , Células CHO , Calcitriol , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Biología Computacional , Cricetulus , Dermis/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Enlace de Hidrógeno , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Ligandos , Receptores X del Hígado/química , Receptores X del Hígado/genética , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Secundaria de Proteína , Transporte de Proteínas/efectos de los fármacos , RNA-Seq , Electricidad Estática , Termodinámica
16.
ACS Food Sci Technol ; 1(7): 1228-1235, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-35449872

RESUMEN

Melatonin and serotonin, products of tryptophan metabolism, are endogenous neurotransmitters and hormones. We have identified and quantified these metabolites in natural honey from Australia, USA, and Poland using a Xevo G2 XS qTof LC-MS. To help ensure correct product identification, some samples were prepurified by RP-HPLC based on the retention times of standards, prior to LC-MS. The concentrations of the metabolites of interest depended on the source of the honey. For Australian honey, levels for melatonin and 2-hydroxymelatonin were 0.91 and 0.68 ng/g, respectively. Melatonin was detected in one brand of US commercial honey at 0.48 ng/g, while a second brand contained serotonin at 88.2 ng/g. In Polish natural honey, 20.6 ng/g of serotonin and 40.8 ng/g of N-acetylserotonin (NAS) were detected, while in Polish commercial honey 25.9 ng/g of serotonin and 7.30 ng/g of NAS were present. We suggest that addictive and health-related properties of honey may be in part dependent on the presence of serotonin, melatonin, and their metabolites, and that these compounds may play a role in the colony activities of bees.

17.
Int J Mol Sci ; 23(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35008794

RESUMEN

We previously demonstrated that the non-calcemic pregnacalciferol (pD) analog 17,20S (OH)2pD suppressed TGF-ß1-induced type I collagen production in cultured normal human dermal fibroblasts. In the present studies, we examined fibroblasts cultured from the lesional skin of patients with systemic sclerosis (scleroderma (SSc)) and assessed the effects of 17,20S(OH)2pD on fibrosis-related mediators. Dermal fibroblast lines were established from skin biopsies from patients with SSc and healthy controls. Fibroblasts were cultured with either 17,20S(OH)2pD or 1,25(OH)2D3 (positive control) with/without TGF-ß1 stimulation and extracted for protein and/or mRNA for collagen synthesis and mediators of fibrosis (MMP-1, TIMP-1, PAI-1, BMP-7, PGES, GLI1, and GLI2). 1 7,20S(OH)2pD (similar to 1,25(OH)2D3) significantly suppressed net total collagen production in TGF-ß1-stimulated normal donor fibroblast cultures and in cultures of SSc dermal fibroblasts. 17,20S(OH)2pD (similar to 1,25(OH)2D3) also increased MMP-1, BMP-7, and PGES and decreased TIMP-1 and PAI1 expression in SSc fibroblasts. Although 17,20S(OH)2pD had no effect on Gli1 or Gli2 in SSc fibroblasts, it increased Gli2 expression when cultured with TGF-ß1 in normal fibroblasts. These studies demonstrated that 17,20S(OH)2pD modulates mediators of fibrosis to favor the reduction of fibrosis and may offer new noncalcemic secosteroidal therapeutic approaches for treating SSc and fibrosis.


Asunto(s)
Dermis/patología , Ergocalciferoles/farmacología , Fibroblastos/patología , Esclerodermia Sistémica/patología , Donantes de Tejidos , Proteína Morfogenética Ósea 7/metabolismo , Línea Celular , Cadena alfa 1 del Colágeno Tipo I/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibrosis , Humanos , Metaloproteinasa 1 de la Matriz , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Inhibidor 1 de Activador Plasminogénico/genética , Inhibidor 1 de Activador Plasminogénico/metabolismo , Prostaglandina-E Sintasas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Proteína Gli2 con Dedos de Zinc/genética , Proteína Gli2 con Dedos de Zinc/metabolismo
18.
Endocrinology ; 162(1)2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33107570

RESUMEN

Previous studies showed that noncalcemic 20(OH)D3, a product of CYP11A1 action on vitamin D3, has antifibrotic activity in human dermal fibroblasts and in a bleomycin mouse model of scleroderma. In this study, we tested the role of retinoic acid-related orphan receptor γ (RORγ), which is expressed in skin, in the action of CYP11A1-derived secosteroids using murine fibroblasts isolated from the skin of wild-type (RORγ +/+), knockout (RORγ -/-), and heterozygote (RORγ +/-) mice. CYP11A1-derived 20(OH)D3, 20,23(OH)2D3, 1,20(OH)2D3, and 1,20,23(OH)3D3 inhibited proliferation of RORγ +/+ fibroblasts in a dose-dependent manner with a similar potency to 1,25(OH)2D3. Surprisingly, this effect was reversed in RORγ +/- and RORγ -/- fibroblasts, with the most pronounced stimulatory effect seen in RORγ -/- fibroblasts. All analogs tested inhibited TGF-ß1-induced collagen synthesis in RORγ +/+ fibroblasts and the expression of other fibrosis-related genes. This effect was curtailed or reversed in RORγ -/- fibroblasts. These results show that the antiproliferative and antifibrotic activities of the vitamin D hydroxy derivatives are dependent on a functional RORγ. The dramatic changes in the transcriptomes of fibroblasts of RORγ -/- versus wild-type mice following treatment with 20(OH)D3 or 1,20(OH)2D3 provide a molecular basis to explain, at least in part, the observed phenotypic differences.


Asunto(s)
Colecalciferol/análogos & derivados , Colecalciferol/farmacología , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Animales , Animales Recién Nacidos , Bleomicina/toxicidad , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Reducción Gradual de Medicamentos , Femenino , Fibroblastos/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Esclerodermia Limitada
19.
Int J Mol Sci ; 21(24)2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33317048

RESUMEN

Lumisterol (L3) is a stereoisomer of 7-dehydrocholesterol and is produced through the photochemical transformation of 7-dehydrocholesteol induced by high doses of UVB. L3 is enzymatically hydroxylated by CYP11A1, producing 20(OH)L3, 22(OH)L3, 20,22(OH)2L3, and 24(OH)L3. Hydroxylumisterols function as reverse agonists of the retinoic acid-related orphan receptors α and γ (RORα/γ) and can interact with the non-genomic binding site of the vitamin D receptor (VDR). These intracellular receptors are mediators of photoprotection and anti-inflammatory activity. In this study, we show that L3-hydroxyderivatives significantly increase the expression of VDR at the mRNA and protein levels in keratinocytes, both non-irradiated and after UVB irradiation. L3-hydroxyderivatives also altered mRNA and protein levels for RORα/γ in non-irradiated cells, while the expression was significantly decreased in UVB-irradiated cells. In UVB-irradiated keratinocytes, L3-hydroxyderivatives inhibited nuclear translocation of NFκB p65 by enhancing levels of IκBα in the cytosol. This anti-inflammatory activity mediated by L3-hydroxyderivatives through suppression of NFκB signaling resulted in the inhibition of the expression of UVB-induced inflammatory cytokines, including IL-17, IFN-γ, and TNF-α. The L3-hydroxyderivatives promoted differentiation of UVB-irradiated keratinocytes as determined from upregulation of the expression at the mRNA of involucrin (IVL), filaggrine (FLG), and keratin 14 (KRT14), downregulation of transglutaminase 1 (TGM1), keratins including KRT1, and KRT10, and stimulation of ILV expression at the protein level. We conclude that CYP11A1-derived hydroxylumisterols are promising photoprotective agents capable of suppressing UVB-induced inflammatory responses and restoring epidermal function through targeting the VDR and RORs.


Asunto(s)
Ergosterol/farmacología , Queratinocitos/efectos de los fármacos , Provitaminas/farmacología , Tolerancia a Radiación , Rayos Ultravioleta , Células Cultivadas , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Ergosterol/análogos & derivados , Proteínas Filagrina , Humanos , Interferón gamma/genética , Interferón gamma/metabolismo , Queratinocitos/metabolismo , Queratinocitos/efectos de la radiación , Queratinas/genética , Queratinas/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Transglutaminasas/genética , Transglutaminasas/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
20.
Nutrients ; 12(11)2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33227893

RESUMEN

Vitamin D and its derivatives, acting via the vitamin D receptor (VDR) and retinoic acid-related orphan receptors γ and α (RORγ and RORα), show anticancer properties. Since pathological conditions are characterized by disturbances in the expression of these receptors, in this study, we investigated their expression in ovarian cancers (OCs), as well as explored the phenotypic effects of vitamin D hydroxyderivatives and RORγ/α agonists on OC cells. The VDR and RORγ showed both a nuclear and a cytoplasmic location, and their expression levels were found to be reduced in the primary and metastatic OCs in comparison to normal ovarian epithelium, as well as correlated to the tumor grade. This reduction in VDR and RORγ expression correlated with a shorter overall disease-free survival. VDR, RORγ, and RORα were also detected in SKOV-3 and OVCAR-3 cell lines with increased expression in the latter line. 20-Hydroxy-lumisterol3 (20(OH)L3) and synthetic RORα/RORγ agonist SR1078 inhibited proliferation only in the OVCAR-3 line, while 20-hydroxyvitamin-D3 (20(OH)D3) only inhibited SKOV-3 cell proliferation. 1,25(OH)2D3, 20(OH)L3, and SR1078, but not 20(OH)D3, inhibited spheroid formation in SKOV-3 cells. In summary, decreases in VDR, RORγ, and RORα expression correlated with an unfavorable outcome for OC, and compounds targeting these receptors had a context-dependent anti-tumor activity in vitro. We conclude that VDR and RORγ expression can be used in the diagnosis and prognosis of OC and suggest their ligands as potential candidates for OC therapy.


Asunto(s)
Neoplasias Ováricas/metabolismo , Receptores de Ácido Retinoico/metabolismo , Receptor alfa de Ácido Retinoico/metabolismo , Vitamina D/metabolismo , Vitaminas/metabolismo , Adulto , Anciano , Femenino , Humanos , Persona de Mediana Edad , Receptor de Ácido Retinoico gamma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...