Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Theor Appl Genet ; 135(7): 2197-2211, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35536305

RESUMEN

KEY MESSAGE: The novel gene CaAN3 encodes an R2R3 MYB transcription factor that regulates fruit-specific anthocyanin accumulation. The key regulatory gene CaAN2 encodes an R2R3 MYB transcription factor that regulates anthocyanin biosynthesis in various tissues in pepper (Capsicum annuum). However, CaAN2 is not expressed in certain pepper accessions showing fruit-specific anthocyanin accumulation. In this study, we identified the novel locus CaAN3 as a regulator of fruit-specific anthocyanin biosynthesis, using an F2 population derived from a hybrid cultivar with purple immature fruits and segregating for CaAN3. We extracted total RNA, assembled two RNA pools according to fruit color, and carried out bulked segregant RNA sequencing. We aligned the raw reads to the pepper reference genome Dempsey and identified 6,672 significant single nucleotide polymorphisms (SNPs) by calculating the Δ(SNP-index) between the two pools. We then conducted molecular mapping to delimit the target region of CaAN3 to the interval 184.6-186.4 Mbp on chromosome 10. We focused on Dem.v1.00043895, encoding an R2R3 MYB transcription factor, as the strongest candidate gene. Sequence analysis revealed four insertion/deletion polymorphisms in the promoter region of the green CaAN3 allele. We employed virus-induced gene silencing and transient overexpression assays to characterize the function of the candidate gene. When Dem.v1.00043895 was silenced in pepper, anthocyanin accumulation decreased in the pericarp, while the transient overexpression of Dem.v1.00043895 in Nicotiana benthamiana leaves resulted in the accumulation of anthocyanins around the infiltration sites. These results showed that Dem.v1.00043895 is CaAN3, an activator of anthocyanin biosynthesis in pepper fruits.


Asunto(s)
Capsicum , Antocianinas , Capsicum/genética , Capsicum/metabolismo , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Adv Sci (Weinh) ; 9(9): e2104938, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35068083

RESUMEN

Ir is one of the most efficient oxygen evolution reaction (OER) catalysts; however, it is also one of the rarest and most expensive elements. Therefore, it is highly desirable to develop Ir catalysts with nanostructures that reduce Ir consumption by maximizing the surface-to-volume ratio without limiting the mass transport of reactants and products of reactions. Ir OER catalysts on a template that consisted of porous nanotubes (PNTs) based on Ni are fabricated. The Ir/Ni PNTs offer multiple benefits, including high catalytic performance (potential of 1.500 V vs. reversible hydrogen electrode (RHE) at an operating current density of 10 mA cm-2 and Tafel slope of 44.34 mV decade-1 ), minimal use of Ir (mass activity of 3273 A g-1 at 1.53 V vs RHE), and facile mass transport through the NT-sidewall pores (stable operation for more than 10 h). The Ir/Ni PNTs are also applied to a tandem device, consisting of a Cu(In,Ga)Se2 -based photocathode and halide perovskite photovoltaic cell, for unassisted water splitting. A solar-to-hydrogen conversion efficiency that exceeded 10% is also demonstrated, which is nearly 1% point greater than when a planar Ir film is used as the anode instead of Ir/Ni PNTs.

3.
Front Plant Sci ; 12: 675474, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34262581

RESUMEN

The orientation of fruits is a distinguishing morphological feature of pepper (Capsicum spp.) varieties. The pendent (downward curved) growth of the fruit stalks, known as pedicels, is highly correlated with fruit weight and pedicel length. A previous genetic analysis revealed that the pendent fruit orientation is governed by a dominant gene, and incomplete inheritance is also observed in some Capsicum accessions. To identify and localize this gene, a single quantitative trait locus (QTL) analysis was performed on one F2 and two recombinant inbred line (RIL) populations, and a genome-wide association study (GWAS) was performed using a core collection. Common QTL regions associated with fruit orientation were detected on chromosome 12. A total of 187,966 SNPs were identified in a genotyping-by-sequencing (GBS) for GWAS analysis of 196 Capsicum annuum, 25 Capsicum baccatum, 21 Capsicum chinense, and 14 Capsicum frutescens accessions, representing the germplasm collection of South Korea. The results of these analyses enabled us to narrow down the CapUp region of interest to 200-250 Mbp on chromosome 12. Seven candidate genes were found to be located between two markers that were completely cosegregated with the fruit orientation phenotype. The findings and markers developed in this study will be helpful for additional understanding of pepper fruit development and breeding for fruit orientation.

4.
Br J Pharmacol ; 178(17): 3414-3427, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33837955

RESUMEN

BACKGROUND AND PURPOSE: Protease-activated receptor 1 (PAR1) is a GPCR expressed in several skin cell types, including keratinocyte and dermal fibroblast. PAR1 activation plays a crucial role in the process of skin wound healing such as thrombosis, inflammation, proliferation and tissue repair. In the present study, we identified a novel positive allosteric modulator of PAR1, GB83, and investigated its effect on skin wound healing. EXPERIMENTAL APPROACH: The enhancement of PAR1 activity by GB83 was measured using Fluo-4 calcium assay. In silico docking analysis of GB83 in PAR1 was performed using dock ligands method (CDOCKER) with CHARMm force field. Effects of GB83 on cell viability and gene expression were observed using MTS assay and quantitative real-time PCRs, respectively. SKH-1 hairless mice were used to investigate the wound healing effect of GB83. KEY RESULTS: We demonstrated that GB83 did not activate PAR1 by itself but strongly enhanced PAR1 activation by thrombin and PAR1-activating peptide (AP). In silico docking analysis revealed that GB83 can bind to the PAR1 binding site of vorapaxar. GB83 significantly promoted PAR1-mediated cell viability and migration. In addition, the enhancement of PAR1 activity by GB83 strongly increased gene expression of TGF-ß, fibronectin and type I collagen in vitro and promoted skin wound healing in vivo. CONCLUSION AND IMPLICATIONS: Our results revealed that GB83 is the first positive allosteric modulator of PAR1 and it can be a useful pharmacological tool for studying PAR1 and a potential therapeutic agent for skin wound healing.


Asunto(s)
Receptor PAR-1 , Cicatrización de Heridas , Animales , Fibroblastos , Queratinocitos , Ratones , Ratones Pelados , Piel
5.
J Periodontal Implant Sci ; 50(5): 291-302, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33124207

RESUMEN

PURPOSE: The objective of this study was to investigate whether phelligridin D could reduce glucose-induced oxidative stress, attenuate the resulting inflammatory response, and restore the function of human periodontal ligament cells (HPDLCs). METHODS: Primary HPDLCs were isolated from healthy human teeth and cultured. To investigate the effect of phelligridin D on glucose-induced oxidative stress, HPDLCs were treated with phelligridin D, various concentrations of glucose, and glucose oxidase. Glucose-induced oxidative stress, inflammatory molecules, osteoblast differentiation, and mineralization of the HPDLCs were measured by hydrogen peroxide (H2O2) generation, cellular viability, alkaline phosphatase (ALP) activity, alizarin red staining, and western blot analyses. RESULTS: Glucose-induced oxidative stress led to increased production of H2O2, with negative impacts on cellular viability, ALP activity, and calcium deposition in HPDLCs. Furthermore, HPDLCs under glucose-induced oxidative stress showed induction of inflammatory molecules (intercellular adhesion molecule-1, vascular cell adhesion protein-1, tumor necrosis factor-alpha, interleukin-1-beta) and disturbances of osteogenic differentiation (bone morphogenetic protein-2, and -7, runt-related transcription factor-2), cementogenesis (cementum protein-1), and autophagy-related molecules (autophagy related 5, light chain 3 I/II, beclin-1). Phelligridin D restored all these molecules and maintained the function of HPDLCs even under glucose-induced oxidative stress. CONCLUSIONS: This study suggests that phelligridin D reduces the inflammation that results from glucose-induced oxidative stress and restores the function of HPDLCs (e.g., osteoblast differentiation) by upregulating autophagy.

6.
Bioorg Chem ; 101: 104000, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32592976

RESUMEN

Chemical territory bearing a 2,2-dimethyl-2H-chromene motif was expanded by utilizing an o-hydroxy aldehyde group of 5-hydroxy-2,2-dimethyl-2H-chromene-6-carbaldehyde as a synthetic handle to install distinctive morphology and functionality of each scaffold. Cell based assays and in silico docking analysis led us to discover that these new compounds exhibit inhibitory effect on anoctamin1 (ANO1). ANO1 is amplified and highly expressed in various carcinomas including prostate cancer, esophageal cancer, breast cancer, and pancreatic cancer. Biological assays revealed that (E)-1-(7,7-dimethyl-7H-furo[2,3-f]chromen-2-yl)-3-(1H-pyrrol-2-yl)prop-2-en-1-one (3n, Ani-FCC) is a novel, potent and selective ANO1 inhibitor with an IC50 value of 1.23 µM. 3n showed 144 times stronger activity on ANO1 inhibition than ANO2 inhibition and did not alter the chloride channel activity of CFTR and the intracellular calcium signaling. Notably, 3n strongly decreased cell viability of PC-3 and FaDu cells expressing high levels of ANO1 with a decrease in ANO1 protein levels. In addition, 3n significantly enhanced apoptosis via activation of caspase 3 and cleavage of PARP in PC-3 and FaDu cells. This study shows that a novel ANO1 inhibitor, 3n, can be a potential candidate for the treatment of cancers overexpressing ANO1, such as prostate cancer and esophageal cancer.


Asunto(s)
Anoctamina-1/antagonistas & inhibidores , Benzopiranos/farmacología , Proteínas de Neoplasias/antagonistas & inhibidores , Anoctamina-1/metabolismo , Apoptosis/efectos de los fármacos , Benzopiranos/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Descubrimiento de Drogas , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Concentración 50 Inhibidora , Proteínas de Neoplasias/metabolismo
7.
Nanotechnology ; 31(19): 195404, 2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-31986507

RESUMEN

As a promising next-generation solar cell, the power conversion efficiency of a silicon quantum dot (Si-QD) solar cell is still low. In this work, the band-gap structure of a Si-QD layer was modified to improve the power conversion efficiency of a Si-QD solar cell. A stepwise band-gap Si-QD (SB Si-QD) layer with a high bandgap top layer (about 2.22 eV) and a low band-gap bottom layer (about 1.98 eV) was grown on a Si (100) substrate. The open circuit voltage and short circuit current were improved by band-gap engineering of the Si-QD absorption layer. As a result, the power conversion efficiency of the SB Si-QD solar cell increased from 16.50% to 17.50%, compared to that of a Si-QD solar cell with a uniform band gap. This results will provide a guide to design advanced Si-QD solar cells by considering the band-gap structure in the Si-QD absorption layer.

8.
Dent Mater J ; 39(1): 154-160, 2020 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-31694996

RESUMEN

This study investigated the effects of different silica-based layer coatings on shear bond strength (SBS) between Y-TZP and bovine dentin. Three different silica-based layer coatings were applied to the Y-TZP surface: tribochemical silica coating, vitrification (glaze coating), and composite resin sintering. A silane coupling agent (SIL) was applied to the silica-coated Y-TZP surface in the presence or absence of hydrofluoric acid (HF) treatment. A one-step adhesive was then applied to the silica-coated Y-TZP and cemented to bovine dentin using MDP-free resin cement. The SBS value of the tribochemical silica coating group was lowest among the experimental groups, while the HF+SIL subgroup showed the highest SBS value after vitrification (p<0.05). While hydrofluoric acid etching did not affect the SBS value of the tribochemical silica coating group, it affected the SBS value in the vitrification and composite resin sintering groups (p<0.05).


Asunto(s)
Recubrimiento Dental Adhesivo , Dióxido de Silicio , Animales , Bovinos , Dentina , Ensayo de Materiales , Cementos de Resina , Resistencia al Corte , Propiedades de Superficie , Itrio , Circonio
9.
Nanotechnology ; 30(32): 325404, 2019 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-30952144

RESUMEN

Si quantum dots (QDs) have been fabricated from SiO2/SiOx multilayer structures to create a homogeneous size. However, this structure achieved much lower efficiencies than would be expected in the Si QD photovoltaic field. This is because Si QD generation and photoexcited carrier transport is restricted by the adjacent SiO2 layer. In this study, we applied a single SiOx:B layer fabrication method to the Si QD heterojunction solar cells. The number of generated Si QDs and the photo-excited carrier lifetime was maximized when the oxygen partial pressure and boron doping concentration parameters were 2.7 × 10-5 Torr and 2.27 × 1021 atoms cm-3, respectively. As a result, in excess of 17% power conversion efficiency for the Si QD heterojunction solar cell was achieved using the single layer method.

10.
Nanoscale ; 10(42): 19825-19834, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30334563

RESUMEN

Electrospun metal-plated nanofibers and supersonically sprayed nanowires were used to fabricate hybrid films exhibiting a superior low sheet resistance of 0.18 Ω sq-1, a transparency of 91.1%, and a figure-of-merit of 2.315 Ω-1. The films are suitable to serve as thermal sensors and heaters. Such hybrid transparent conducting films are highly flexible and thus wearable. They can be used as body-temperature monitors and heaters. The employed hybrid approach improved the sheet resistance diminishing it to a minimum, while maintaining transparency. In addition, the low sheet resistance of the films facilitates their powering with a low-voltage battery and thus, portability. The thermal sensing and heating capabilities were demonstrated for such films with various sheet resistances and degrees of transparency. The temperature sensing was achieved by the resistance change of the film; the resistance value was converted back to temperature. The sensing performance increased with the improvement in the sheet resistance. The temperature coefficient of resistivity was TCR = 0.0783 K-1. The uniform distribution of the metal-plated nanofibers and nanowires resulted in a uniform Joule heating contributing to an efficient convection heat transfer from the heaters to the surrounding, demonstrated by an improved convective heat transfer coefficient.


Asunto(s)
Metales/química , Nanofibras/química , Nanocables/química , Dispositivos Electrónicos Vestibles , Materiales Biocompatibles/química , Humanos , Plata/química , Temperatura , Conductividad Térmica
11.
Nanoscale ; 10(14): 6589-6601, 2018 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-29578221

RESUMEN

Aneurysmal subarachnoid hemorrhage (SAH) is the extravasation of blood into the subarachnoid space and is fatal in most cases. Platinum coils have been used to fill the hemorrhage site and prevent the extravasation of blood. Here we explored the use of Pt-coated polymer nanofibers (NF) to prevent blood extravasation and were able to achieve improved results in vitro. The polymer nanofibers were produced via electrospinning and were subsequently electroplated with Pt, resulting in metalized nanofibers. These nanofibers were installed within a microfluidic channel, and the resulting reduction in the permeability was evaluated using a fluid similar to blood. Based on the obtained results, these newly developed nanofibers are expected to decrease the operation cost for SAH, owing to their reduced size and low material cost. Furthermore, it is expected that these nanofibers will be used in a smaller amount during SAH operation while having the same preventive effect. This should reduce the operational risk associated with the multiple steps required to place the Pt coils at the SAH site. Finally, the underlying hydrodynamic mechanism responsible for the reduced permeability of the synthesized nanofibers is described.


Asunto(s)
Aneurisma/terapia , Embolización Terapéutica , Nanofibras/química , Hemorragia Subaracnoidea/terapia , Humanos , Polímeros/química
12.
ACS Appl Mater Interfaces ; 9(40): 35325-35332, 2017 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-28945338

RESUMEN

We have sequentially deposited layers of silver nanowires (AgNWs), silicon dioxide (SiO2) nanoparticles, and polystyrene (PS) nanoparticles on uncoated glass by a rapid low-cost supersonic spraying method to create antifrosting, anticondensation, and self-cleaning glass. The conductive silver nanowire network embedded in the coating allows electrical heating of the glass surface. Supersonic spraying is a single-step coating technique that does not require vacuum. The fabricated multifunctional glass was characterized by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), ultraviolet-visible spectroscopy, and transmission electron microscopy (TEM). The thermal insulation and antifrosting performance were demonstrated using infrared thermal imaging. The reliability of the electrical heating function was tested through extensive cycling. This transparent multifunctional coating holds great promise for use in various smart window designs.

13.
ACS Nano ; 10(9): 8723-31, 2016 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-27584720

RESUMEN

Ultrathin black phosphorus (BP) is one of the promising two-dimensional (2D) materials for future optoelectronic devices. Its chemical instability in ambient conditions and lack of a bottom-up approach for its synthesis necessitate efficient etching methods that generate BP films of designed thickness with stable and high-quality surfaces. Herein, reporting a photochemical etching method, we demonstrate a controlled layer-by-layer thinning of thick BP films down to a few layers or a single layer and confirm their Raman and photoluminescence characteristics. Ozone molecules generated by O2 photolysis oxidize BP, forming P2O5-like oxides. When the resulting phosphorus oxides are removed by water, the surface of BP with preset thickness is highly flat and self-protective by surface oxygen functional groups. This method provides a fabrication strategy of BP and possibly other 2D semiconductors with band gaps tuned by their thickness.

14.
Nanoscale ; 8(7): 4063-9, 2016 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-26819189

RESUMEN

We investigated the subdomain structures of single-layer graphene oxide (GO) by characterizing local friction and conductance using conductive atomic force microscopy. Friction and conductance mapping showed that a single-layer GO flake has subdomains several tens to a few hundreds of nanometers in lateral size. The GO subdomains exhibited low friction (high conductance) in the sp(2)-rich phase and high friction (low conductance) in the sp(3)-rich phase. Current-voltage spectroscopy revealed that the local current flow in single-layer GO depends on the quantity of hydroxyl and carboxyl groups, and epoxy bridges within the 2-dimensional carbon layer. The presence of subdomains with different sp(2)/sp(3) carbon ratios on a GO flake was also confirmed by chemical mapping using scanning transmission X-ray microscopy. These results suggest that spatial mapping of the friction and conductance can be used to rapidly identify the composition of heterogeneous single-layer GO at nanometer scale, which is essential for understanding charge transport in nanoelectronic devices.

15.
Phys Chem Chem Phys ; 17(37): 24342-8, 2015 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-26325266

RESUMEN

We fabricate mixed halide perovskite films through dual-source vacuum deposition of PbX2 (X = Cl, Br, and I) and methyl ammonium iodide (MAI) precursors with various deposition ratios. Vacuum deposition is an optimal way for film fabrication because it gives a uniform perovskite film which is free from contamination such as metallic phase lead, residual solvent, and moisture. The ionization potential and bandgap of MAPb(I1-yBry)3 film are controlled by changing the halide composition and lattice constant. In contrast, MAPb(I1-yCly)3 film shows negligible difference from MAPbI3 in terms of structural and electronic properties, which is due to poor Cl incorporation in the film from the MACl removal during crystal formation. An excess supply of MAI is necessary to form a perovskite crystal structure. Based on the elemental stoichiometry analysis, the additional methyl ammonium cation with respect to Pb in the film plays a critical role in changing the electron affinity and energy level alignment.

16.
ACS Appl Mater Interfaces ; 7(31): 17425-32, 2015 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-26192202

RESUMEN

We selected a sputtered-Zn(O,S) film as a buffer material and fabricated a Cu(In,Ga)Se2 (CIGS) solar cell for use in monolithic tandem solar cells. A thermally stable buffer layer was required because it should withstand heat treatment during processing of top cell. Postannealing treatment was performed on a CIGS solar cell in vacuum at temperatures from 300-500 °C to examine its thermal stability. Serious device degradation particularly in VOC was observed, which was due to the diffusion of thermally activated constituent elements. The elements In and Ga tend to out-diffuse to the top surface of the CIGS, while Zn diffuses into the interface of Zn(O,S)/CIGS. Such rearrangement of atomic fractions modifies the local energy band gap and band alignment at the interface. The notch-shape induced at the interface after postannealing could function as an electrical trap during electron transport, which would result in the reduction of solar cell efficiency.

17.
J Endod ; 39(4): 461-6, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23522537

RESUMEN

INTRODUCTION: The cytotoxicity of resin-based sealer is influential on the inflammatory reaction and cell survival for oral periapical cells. In this study, pachymic acid as an antioxidant was investigated for the improvement of bone disturbance against AH Plus (Dentsply DeTrey GmbH, Konstanz, Germany)-induced inflammation in MC-3T3 E1 cells. METHODS: AH Plus was prepared according to the manufacturer's instructions. Using mouse osteoblast cells (MC-3T3 E1), a specimen of AH Plus was eluted with the culture medium for 1 day and was diluted by 30%. The cellular cytotoxicity and reactive oxygen species formation was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and 2',7'-dichlorodihydrofluorescein diacetate with fluorescence-activated cell sorting. The secretion of proinflammatory cytokines was determined by an enzyme-linked immunosorbent assay, and the expression of inflammatory and osteogenic molecules was determined by immunoblotting. RESULTS: Cells with AH Plus elutes showed a decrease of cell viability and ALP activity. However, pachymic acid and N-acetyl-L-cysteine (control antioxidant) restored cell viability and ALP activity damaged by AH plus. The secretion of nitric oxide, tumor necrosis factor α, and interleukin-1ß were increased in AH Plus-stimulated MC-3T3 E1 cells, but pachymic acid suppressed its production. Furthermore, pachymic acid reduced the receptor activator of nuclear factor-κB ligand, cyclooxygenase-2, matrix metalloproteinase-2 and -9, increased bone morphogenetic protein-2 and -7, and runt-related transcription factor 2 despite AH Plus stimuli. In addition, pachymic acid affected the removal effect of reactive oxygen species formation as did N-acetyl-L-cysteine. More importantly, pachymic acid inhibited nuclear factor-κB translocation. CONCLUSIONS: The property of pachymic acid can mitigate the unfavorable conditions induced by AH Plus stimuli. Therefore, the use of pachymic acid is suggested to prevent the complications of oral diseases such as inflammation and alveolar destruction of the oral cavity.


Asunto(s)
Antioxidantes/farmacología , Resorción Ósea/prevención & control , Resinas Epoxi/toxicidad , Materiales de Obturación del Conducto Radicular/toxicidad , Triterpenos/farmacología , Células 3T3 , Animales , Antiinflamatorios/farmacología , Resorción Ósea/inducido químicamente , Supervivencia Celular/efectos de los fármacos , Mediadores de Inflamación/antagonistas & inhibidores , Interleucina-1beta/metabolismo , Ratones , Óxido Nítrico/antagonistas & inhibidores , Osteoblastos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
18.
ACS Appl Mater Interfaces ; 5(6): 1896-901, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23459333

RESUMEN

We report on the identification of molecular orientation and its order-disorder transition during the initial growth of 1,3-bis(N-carbazolyl)benzene (mCP) thin films on a highly ordered pyrolytic graphite (HOPG) surface by using photoelectron spectroscopy (PES). Theoretical PES amplitudes using a quantum mechanical calculation that adapts independent atomic center approximation (IAC) were calculated to compare with experimental observations. At low coverage, an equilibrium orientation of isolated adsorbate was estimated. As the coverage increases, the interaction between adsorbates becomes dominant and raises the disorder, which results in changes in the PES shapes as well as the line broadening of each peak.


Asunto(s)
Membranas Artificiales , Espectroscopía de Fotoelectrones/métodos
19.
Arch Oral Biol ; 58(1): 28-34, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22591774

RESUMEN

OBJECTIVES: The AH26 of epoxy resin-based sealer is used widely owing to its excellent physical characteristics but it induces oxidative stress and cytotoxicity at the periapical tissues. AH26 exhibited cytotoxicity towards MC-3T3-E1 cells, which resulted in mitochondria-mediated apoptosis. Peroxisome proliferator-activated receptor (PPARγ) has an anti-inflammatory effect in several tissue and cells, but its action of AH26-related inflammation is not completely understood. The aim of this study is to investigate the anti-inflammatory and anti-osteoclastic mechanisms of PPARγ in AH26-induced MC-3T3 E1 cells. METHODS: AH26 was prepared according to the manufacturer's instructions. The 1-day extraction sample, which was diluted by 30%, was tested in this experiment. Recombinant deficiency adenoviral PPARγ (Ad/PPARγ) was used to examine PPARγ over-expression in MC-3T3 E1 cells. AH26-induced reactive oxygen species (ROS) formation was analysed using 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) with fluorescence-activated cell sorting (FACS), and the expression of receptor activator of nuclear factor-κB ligand (RANKL) and inflammatory molecules was determined by immunoblotting. The anti-inflammatory and anti-osteoclastic mechanisms of the PPARγ-involved signal pathway was examined by immunoblotting. RESULTS: The AH26 elutes induced inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), RANKL expression and ROS formation. In addition, the AH26 elutes suppressed the expression of PPARγ. However, the recovery of PPARγ expression with Ad/PPARγ resulted in the inhibition of iNOS, COX-2, RANKL and ROS formation despite the AH26 treatment in MC-3T3 E1 cells. The mechanism of PPARγ was confirmed by the blocking of nuclear factor kappa B (NF-κB) translocation to the nucleus after the suppression of ERK1/2, SAPK/JNK and AP-1 in AH26-induced MC-3T3 E1 cells. CONCLUSION: From this result, PPARγ acts to inhibit bone destruction in AH26-induced bone cells. Therefore, the anti-inflammatory and anti-osteoclastic character of PPARγ might be applicable for healing periapical lesions more rapidly or reducing the induction of cellular inflammation caused by some endodontic sealers.


Asunto(s)
Antiinflamatorios/farmacología , Bismuto/farmacología , Resinas Epoxi/farmacología , Osteoclastos/efectos de los fármacos , PPAR gamma/farmacología , Ligando RANK/efectos de los fármacos , Materiales de Obturación del Conducto Radicular/farmacología , Plata/farmacología , Titanio/farmacología , Células 3T3 , Adenoviridae/genética , Animales , Western Blotting , Separación Celular , Ciclooxigenasa 2/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/efectos de los fármacos , Citometría de Flujo , Fluoresceínas , Colorantes Fluorescentes , Vectores Genéticos/genética , Mediadores de Inflamación/metabolismo , MAP Quinasa Quinasa 4/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , FN-kappa B/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo II/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , PPAR gamma/análisis , PPAR gamma/antagonistas & inhibidores , Especies Reactivas de Oxígeno/análisis , Transducción de Señal/efectos de los fármacos , Factor de Transcripción AP-1/efectos de los fármacos , Transfección
20.
J Endod ; 36(12): 1967-71, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21092814

RESUMEN

INTRODUCTION: The cytotoxicity of AH26, a resin-based sealer, induces apoptosis in osteoblast cells. However, the apoptosis pathway is not completely understood. This study examined the apoptosis pathway and its regulation of AH26 through mitogen-activated protein kinase (MAPKs), which may play a role in reducing the cytotoxicity of AH26. METHODS: Using mouse osteoblasts cells (MC-3T3-E1), specimens of AH26 were eluted with the culture medium for 1, 3, 5, and 7 days. The cytotoxicity was tested using an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The induction of apoptosis was detected by Hoechst33258 staining and poly (ADP-ribose) polymerase (PARP) activation. The AH26-involved signal pathway was analyzed by immunoblotting with a specific antibody. RESULTS: AH26 exhibited cytotoxicity toward MC-3T3-E1 cells, which resulted in mitochondria-mediated apoptosis, as confirmed by Bax expression and the displacement of cytochrome c from mitochondria to cytosol. As evidence of MAPKs activation, the cells treated with AH26 expressed stress-activated protein/c-jun N-terminal kinase (SAPK/JNK) and extracellular signal-regulated protein kinase (ERK1/2). SAPK/JNK activation appears to regulate apoptosis, whereas ERK activation protects cell survival. CONCLUSIONS: From these results, the toxicity of AH26 can be decreased by controlling the apoptosis signals. This approach might have potential applications for reducing the long-term stress of periapical tissue that improves endodontic treatment.


Asunto(s)
Apoptosis/efectos de los fármacos , Bismuto/toxicidad , Citoprotección/fisiología , Resinas Epoxi/toxicidad , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Materiales de Obturación del Conducto Radicular/toxicidad , Plata/toxicidad , Titanio/toxicidad , Células 3T3 , Animales , Apoptosis/fisiología , Proteínas Reguladoras de la Apoptosis/metabolismo , Citocromos c/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Mitocondrias/fisiología , Osteoblastos/efectos de los fármacos , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteína X Asociada a bcl-2/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...