Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 228
Filtrar
1.
Zebrafish ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748396

RESUMEN

Various methods have been used in rodents to evaluate learning and memory. Although much less frequently used, the zebrafish emerges as an alternative model organism in this context. For example, it allows assessing potential behavioral deficits because of neurodevelopmental disorders or environmental neurotoxins. A variety of learning tasks have been employed in previous studies that required extensive habituation and training sessions. Here, we introduce a simpler and faster method to evaluate learning and memory of zebrafish with minimum habituation. A new apparatus, a transparent L-shaped tube, was developed in which we trained each zebrafish to swim through a long arm and measured the time to swim through this arm. We demonstrate that in this task, zebrafish could acquire both short-term (1 h) and long-term memory (4 days). We also studied learning and memory of a gene knockout (KO) zebrafish that showed social impairments related to autism. We found KO mutant zebrafish to show a quantitative impairment in habituation, learning, and memory performance compared with wild-type control fish. In conclusion, we established a novel learning apparatus and sensitive paradigm that allowed us to evaluate learning and memory of adult zebrafish that required only a brief habituation period and minimal training.

2.
J Cosmet Dermatol ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720512

RESUMEN

BACKGROUND: Transient receptor potential vanilloid 1 (TRPV1) is associated with skin sensitivity and mainly activated by capsaicin and heat. Interestingly, troxerutin can inhibit TRPV1 activation. However, its efficacy in reducing skin sensitivity remains undetermined. AIMS: We evaluated the efficacy of troxerutin in alleviating skin sensitivity using clinical tests and in vitro experiments. METHODS: For the in vitro experiment, HaCaT keratinocytes were pretreated with different concentrations of troxerutin, followed by incubation with 50 µM capsaicin for 1, 24, or 48 h. The gene and protein expressions of four inflammatory cytokines involved in skin irritation were determined. Among 35 Korean women with sensitive skin recruited for the clinical trial, 13 were involved in assessing the immediate soothing effects of 0.1% and 0.0095% troxerutin following capsaicin irritation, whereas 22 participated in evaluating the preventive soothing effect of 10% and 1% troxerutin over 4 weeks against capsaicin- and heat-induced irritation. We evaluated the soothing rate using skin redness, visual analog scale, and high temperature sensitive index as evaluation indices. RESULTS: Troxerutin inhibited the mRNA and protein expressions of cytokines in capsaicin-treated keratinocytes. In the clinical study, 0.1% and 0.0095% troxerutin promptly alleviated capsaicin-induced skin redness, whereas 10% troxerutin notably decreased both the visual analog scale and high temperature sensitive index for capsaicin- and heat-related irritation. However, 1% troxerutin was only effective in reducing the visual analog scale in response to capsaicin irritation. CONCLUSIONS: Troxerutin can inhibit TRPV1 activation in clinical and in vitro tests.

3.
J Environ Manage ; 357: 120851, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38581894

RESUMEN

Conventional liquid treatments for large-scale, low-level radioactive wastewater, such as ion exchange and waste solidification, face challenges due to the large amounts of secondary waste and high disposal costs. A new large-scale decontamination method is proposed that uses kapok fiber composites for rapid radionuclide adsorption and high volume reduction to minimize secondary waste. The composite consists of natural zeolite and kapok holocellulose, which has high water-soaking ability and low-temperature pyrolysis. The kapok composites, fabricated using a commercial wet-laid nonwoven manufacturing process, absorbs 99% of low-level radioactive cesium in 20 min, reducing the volume by 98% and the weight by 47% at 300 °C. The low-temperature pyrolysis process below 300 °C prevents cesium desorption and gasification by avoiding zeolite destruction. The mass-producible kapok composites can be used for adsorbing various radionuclides in large-scale wastewater by attaching specific adsorbents for target isotopes to the composites.


Asunto(s)
Residuos Radiactivos , Zeolitas , Aguas Residuales , Cesio , Radioisótopos , Adsorción , Residuos Radiactivos/prevención & control
4.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38542468

RESUMEN

This study was performed to investigate the protective effects of Allium ochotense on fatty liver and hepatitis in chronic alcohol-induced hepatotoxicity. The physiological compounds of a mixture of aqueous and 60% ethanol (2:8, w/w) extracts of A. ochotense (EA) were identified as kestose, raffinose, kaempferol and quercetin glucoside, and kaempferol di-glucoside by UPLC Q-TOF MSE. The EA regulated the levels of lipid metabolism-related biomarkers such as total cholesterol, triglyceride, low-density lipoprotein (LDL), and high-density lipoprotein (HDL)-cholesterol in serum. Also, EA ameliorated the levels of liver toxicity-related biomarkers such as glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), and total bilirubin in serum. EA improved the antioxidant system by reducing malondialdehyde contents and increasing superoxide dismutase (SOD) levels and reduced glutathione content. EA improved the alcohol metabolizing enzymes such as alcohol dehydrogenase, acetaldehyde dehydrogenase, and cytochrome P450 2E1 (CYP2E1). Treatment with EA alleviated lipid accumulation-related protein expression by improving phosphorylation of AMP-activated protein kinase (p-AMPK) expression levels. Especially, EA reduced inflammatory response by regulating the toll-like receptor-4/nuclear factor kappa-light-chain-enhancer of activated B cells (TLR-4/NF-κB) signaling pathway. EA showed an anti-apoptotic effect by regulating the expression levels of B-cell lymphoma 2 (BCl-2), BCl-2-associated X protein (BAX), and caspase 3. Treatment with EA also ameliorated liver fibrosis via inhibition of transforming growth factor-beta 1/suppressor of mothers against decapentaplegic (TGF-ß1/Smad) pathway and alpha-smooth muscle actin (α-SMA). Therefore, these results suggest that EA might be a potential prophylactic agent for the treatment of alcoholic liver disease.


Asunto(s)
Hígado Graso Alcohólico , Hígado Graso , Ratones , Animales , Quempferoles/farmacología , Hígado/metabolismo , Ratones Endogámicos C57BL , Hígado Graso Alcohólico/metabolismo , Etanol/toxicidad , Etanol/metabolismo , Hígado Graso/metabolismo , Inflamación/metabolismo , Colesterol/metabolismo , Glucósidos/farmacología , Biomarcadores/metabolismo , Estrés Oxidativo
5.
Int Microbiol ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38466360

RESUMEN

The aim of this study was to explore the taxonomic identification and evaluate the safety of a bacterium, Enterococcus lactis IDCC 2105, isolated from homemade cheese in Korea, using whole genome sequence (WGS) analysis. It sought to identify the species level of this Enterococcus spp., assess its antibiotic resistance, and evaluate its virulence potential. WGS analysis confirmed the bacterial strain IDCC 2105 as E. lactis and identified genes responsible for resistance to erythromycin and clindamycin, specifically msrC, and eatAv, which are chromosomally located, indicating a minimal risk for horizontal gene transfer. The absence of plasmids in E. lactis IDCC 2105 further diminishes the likelihood of resistance gene dissemination. Additionally, our investigation into seven virulence factors, including hemolysis, platelet aggregation, biofilm formation, hyaluronidase, gelatinase, ammonia production, and ß-glucuronidase activity, revealed no detectable virulence traits. Although bioinformatic analysis suggested the presence of collagen adhesion genes acm and scm, these were not corroborated by phenotypic virulence assays. Based on these findings, E. lactis IDCC 2105 presents as a safe strain for potential applications, contributing valuable information on its taxonomy, antibiotic resistance profile, and lack of virulence factors, supporting its use in food products.

6.
Toxins (Basel) ; 16(2)2024 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-38393162

RESUMEN

Limited evidence suggests that stimulating adipose-derived stem cells (ASCs) indirectly promotes hair growth. We examined whether bee venom (BV) activated ASCs and whether BV-induced hair growth was facilitated by enhanced growth factor release by ASCs. The induction of the telogen-to-anagen phase was studied in mice. The underlying mechanism was investigated using organ cultures of mouse vibrissa hair follicles. When BV-treated ASCs were injected subcutaneously into mice, the telogen-to-anagen transition was accelerated and, by day 14, the hair weight increased. Quantitative polymerase chain reaction (qPCR) revealed that BV influenced the expression of several molecules, including growth factors, chemokines, channels, transcription factors, and enzymes. Western blot analysis was employed to verify the protein expression levels of extracellular-signal-regulated kinase (ERK) and phospho-ERK. Both the Boyden chamber experiment and scratch assay confirmed the upregulation of cell migration by BV. Additionally, ASCs secreted higher levels of growth factors after exposure to BV. Following BV therapy, the gene expression levels of alkaline phosphatase (ALP), fibroblast growth factor (FGF)-1 and 6, endothelial cell growth factor, and platelet-derived growth factor (PDGF)-C were upregulated. The findings of this study suggest that bee venom can potentially be utilized as an ASC-preconditioning agent for hair regeneration.


Asunto(s)
Venenos de Abeja , Animales , Ratones , Venenos de Abeja/farmacología , Venenos de Abeja/metabolismo , Proliferación Celular , Cabello , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Células Madre/metabolismo , Células Cultivadas
7.
Transl Psychiatry ; 14(1): 82, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331943

RESUMEN

Genetic variants in ZNF536 contribute to the risk for neuropsychiatric disorders such as schizophrenia, autism, and others. The role of this putative transcriptional repressor in brain development and function is, however, largely unknown. We generated znf536 knockout (KO) zebrafish and studied their behavior, brain anatomy, and brain function. Larval KO zebrafish showed a reduced ability to compete for food, resulting in decreased total body length and size. This phenotype can be rescued by segregating the homozygous KO larvae from their wild-type and heterozygous siblings, enabling studies of adult homozygous KO animals. In adult KO zebrafish, we observed significant reductions in anxiety-like behavior and social interaction. These znf536 KO zebrafish have decreased cerebellar volume, corresponding to decreased populations of specific neuronal cells, especially in the valvular cerebelli (Va). Finally, using a Tg[mbp:mgfp] line, we identified a previously undetected myelin structure located bilaterally within the Va, which also displayed a reduction in volume and disorganization in KO zebrafish. These findings indicate an important role for ZNF536 in brain development and implicate the cerebellum in the pathophysiology of neuropsychiatric disorders.


Asunto(s)
Cerebelo , Pez Cebra , Animales , Pez Cebra/genética , Pez Cebra/metabolismo , Animales Modificados Genéticamente/metabolismo , Cerebelo/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Encéfalo/metabolismo
8.
J Neurogastroenterol Motil ; 30(1): 73-86, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38173160

RESUMEN

Background/Aims: To evaluate the efficacy of quadruple-coated probiotics (gQlab) in patients with irritable bowel syndrome (IBS), focusing on sex differences and IBS subtypes. Methods: One hundred and nine Rome III-diagnosed IBS patients were randomized into either a gQlab or placebo group and received either gQlab or a placebo for 4 weeks. Participants replied to questionnaires assessing compliance, symptoms, and safety. Fecal samples were collected at 0 and 4 weeks to measure the probiotic levels using real-time quantitative polymerase chain reaction (qPCR) and to perform metagenomic analysis via 16S ribosomal DNA sequencing. The primary endpoint was the change in the overall IBS symptoms after 4 weeks of treatment. Results: Ninety-two subjects (47 and 45 in the gQlab and placebo groups, respectively) completed the study protocol. At week 4, there was a higher relief of the overall IBS symptoms in the gQlab group (P = 0.005). The overall IBS symptom improvement was statistically significant (P = 0.017) in female patients of the gQlab group compared with the placebo group. Among the IBS subtypes, constipation-predominant IBS patients showed significant relief of the overall IBS symptoms (P = 0.002). At week 4, the fecal microbiome profiles between the 2 groups did not differ, but the qPCR levels of Lactobacillus plantarum, Lactobacillus acidophilus, Lactobacillus helveticus, Bifidobacterium longum, and Bifidobacterium breve were increased in the gQlab group (P < 0.05 by repeated measures ANOVA). Conclusions: gQlab administration can improve the overall IBS symptoms, especially in female and constipation-predominant IBS patients. Further research is necessary to clarify the pathophysiology behind sex-related treatment responses in IBS patients.

9.
J Microbiol Biotechnol ; 34(3): 606-621, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38111317

RESUMEN

This study evaluated the hepatoprotective effect of fermented Protaetia brevitarsis larvae (FPB) in ethanol-induced liver injury mice. As a result of amino acids in FPB, 18 types of amino acids including essential amino acids were identified. In the results of in vitro tests, FPB increased alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activities. In addition, FPB treatment increased cell viability on ethanol- and H2O2-induced HepG2 cells. FPB ameliorated serum biomarkers related to hepatoxicity including glutamic oxaloacetic transaminase, glutamine pyruvic transaminase, total bilirubin, and lactate dehydrogenase and lipid metabolism including triglyceride, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol. Also, FPB controlled ethanol metabolism enzymes by regulating the protein expression levels of ADH, ALDH, and cytochrome P450 2E1 in liver tissue. FPB protected hepatic oxidative stress by improving malondialdehyde content, reduced glutathione, and superoxide dismutase levels. In addition, FPB reversed mitochondrial dysfunction by regulating reactive oxygen species production, mitochondrial membrane potential, and ATP levels. FPB protected ethanol-induced apoptosis, fatty liver, and hepatic inflammation through p-AMP-activated protein kinase and TLR-4/NF-κB signaling pathways. Furthermore, FPB prevented hepatic fibrosis by decreasing TGF-ß1/Smad pathway. In summary, these results suggest that FPB might be a potential prophylactic agent for the treatment of alcoholic liver disease via preventing liver injury such as fatty liver, hepatic inflammation due to chronic ethanol-induced oxidative stress.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Hígado Graso , Animales , Ratones , Aminoácidos/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Colesterol/metabolismo , Etanol/metabolismo , Hígado Graso/metabolismo , Peróxido de Hidrógeno/metabolismo , Inflamación/metabolismo , Larva/metabolismo , Hígado , Estrés Oxidativo , Receptor Toll-Like 4/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
10.
BMB Rep ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37915133

RESUMEN

Bone marrow-derived mesenchymal stem cells (BM-MSCs) can differentiate into endothelial cells in an inflammatory microenvironment. However, the regulatory mechanisms underlying this process are not entirely understood. Here, we found that TIE2 in BM-MSCs was upregulated at the transcriptional level after stimulation with tumor necrosis factor-alpha (TNFα), a major pro-inflammatory cytokine. Additionally, the STAT-binding sequence within the proximal region of TIE2 was necessary for TNFα-induced TIE2 promoter activation. TIE2 and STAT3 knockdown reduced TNFα-induced endothelial tube formation in BMMSCs. Among the major TNFα-activated MAP kinases (ERK1/2, JNK1/2, and p38 MAPK) in BM-MSCs, only inhibition of the p38 kinase abrogated TNFα-induced TIE2 upregulation by inhibiting the JAK-STAT signaling pathway. These findings suggest that p38 MAP contributes to the endothelial differentiation of BM-MSCs by activating the JAK-STAT-TIE2 signaling axis in the inflammatory microenvironment.

11.
Int J Mol Sci ; 24(18)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37762386

RESUMEN

This study was conducted to investigate the anti-amnestic property of Korean red pine bark extract (KRPBE) on TMT-induced cognitive decline in ICR mice. As a result of looking at behavioral function, the consumption of KRPBE improved the spatial work ability, short-term learning, and memory ability by Y-maze, passive avoidance, and Morris water maze tests. KRPBE suppressed antioxidant system damage by assessing the SOD activity, reduced GSH content, and MDA levels in brain tissue. In addition, it had a protective effect on cholinergic and synaptic systems by regulating ACh levels, AChE activity, and protein expression levels of ChAT, AChE, SYP, and PSD-95. Also, the KRPBE ameliorated TMT-induced mitochondrial damage by regulating the ROS content, MMP, and ATP levels. Treatment with KRPBE suppressed Aß accumulation and phosphorylation of tau and reduced the expression level of BAX/BCl-2 ratio and caspase 3, improving oxidative stress-induced apoptosis. Moreover, treatment with KRPBE improved cognitive dysfunction by regulating the neuro-inflammatory protein expression levels of p-JNK, p-Akt, p-IκB-α, COX-2, and IL-1ß. Based on these results, the extract of Korean red pine bark, which is discarded as a byproduct of forestry, might be used as an eco-friendly material for functional foods or pharmaceuticals by having an anti-amnesia effect on cognitive impairment.

12.
Int J Mol Sci ; 24(17)2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37686071

RESUMEN

This study was conducted to confirm the effects of Korean red ginseng on lung and brain dysfunction in a BALB/c mice model exposed to particulate matter (PM)2.5 for 12 weeks. Learning and cognitive abilities were assessed with Y-maze, passive avoidance, and Morris water maze tests. To evaluate the ameliorating effect of red ginseng extract (RGE), the antioxidant system and mitochondrial function were investigated. The administration of RGE protected lung and brain impairment by regulating the antioxidant system and mitochondrial functions damaged by PM2.5-induced toxicity. Moreover, RGE prevented pulmonary fibrosis by regulating the transforming growth factor beta 1 (TGF-ß1) pathway. RGE attenuated PM2.5-induced pulmonary and cognitive dysfunction by regulating systemic inflammation and apoptosis via the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)/c-Jun N-terminal kinases (JNK) pathway. In conclusion, RGE might be a potential material that can regulate chronic PM2.5-induced lung and brain cognitive dysfunction.


Asunto(s)
Encefalopatías , Panax , Animales , Ratones , Antioxidantes , Inflamación/tratamiento farmacológico , Encéfalo , Ratones Endogámicos BALB C , Pulmón
13.
Antioxidants (Basel) ; 12(9)2023 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-37760047

RESUMEN

This study investigated the ameliorating effect of the aqueous extract of Codium fragile on PM2.5-induced pulmonary dysfunction. The major compounds of Codium fragile were identified as palmitic acid, stearic acid, and oleamide using GC/MS2 and hexadecanamide, oleamide, and 13-docosenamide using UPLC-Q-TOF/MSE. Codium fragile improved pulmonary antioxidant system deficit by regulating SOD activities and reducing GSH levels and MDA contents. It suppressed pulmonary mitochondrial dysfunction by regulating ROS contents and mitochondrial membrane potential levels. It regulated the inflammatory protein levels of TLR4, MyD88, p-JNK, p-NF-κB, iNOS, Caspase-1, TNF-α, and IL-1ß. In addition, it improved the apoptotic protein expression of BCl-2, BAX, and Caspase-3 and attenuated the fibrous protein expression of TGF-ß1, p-Smad-2, p-Smad-3, MMP-1, and MMP-2. In conclusion, this study suggests that Codium fragile might be a potential material for functional food or pharmaceuticals to improve lung damage by regulating oxidative stress inflammation, cytotoxicity, and fibrosis via the TLR/TGF-ß1 signaling pathway.

14.
Int J Mol Sci ; 24(18)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37762678

RESUMEN

Vasculogenic mimicry (VM) is an intriguing phenomenon observed in tumor masses, in which cancer cells organize themselves into capillary-like channels that closely resemble the structure and function of blood vessels. Although VM is believed to contribute to alternative tumor vascularization, the detailed regulatory mechanisms controlling these cellular processes remain poorly understood. Our study aimed to investigate the role of Early Growth Response 1 (EGR1) in regulating VM in aggressive cancer cells, specifically MDA-MB-231 triple-negative breast cancer cells. Our study revealed that EGR1 promotes the formation of capillary-like tubes by MDA-MB-231 cells in a 3-dimensional Matrigel matrix. EGR1 was observed to upregulate Kruppel-like factor 4 (KLF4) expression, which regulates the formation of the capillary-like tube structure. Additionally, our findings highlight the involvement of the ERK1/2 and p38 mitogen-activated protein kinase pathways in mediating the expression of EGR1 and KLF4, underscoring their crucial role in VM in MDA-MB-231 cells. Understanding these regulatory mechanisms will provide valuable insights into potential therapeutic targets for preventing VM during the treatment of triple-negative breast cancer.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Línea Celular , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Factor 4 Similar a Kruppel , Activación Transcripcional , Neoplasias de la Mama Triple Negativas/genética , Regulación hacia Arriba
15.
Int J Mol Sci ; 24(16)2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37629080

RESUMEN

This study was conducted to evaluate the cognitive dysfunction improvement effect of aqueous extract of Codium fragile (AECF) by regulating the imbalance of the gut-brain axis in chronic particulate matter (PM)2.5-exposed mice. The physiological compounds of AECF were identified as hexadecanamide, oleamide, octadecanamide, stearidonic acid, and linolenic acid by the ultra-performance liquid chromatography-quadrupole time of flight mass spectrometry (UPLC Q-TOF MSE) analysis. To evaluate the effect of PM2.5 on the antioxidant system, superoxide dismutase (SOD) contents, reduced glutathione (GSH) contents, and malondialdehyde (MDA) contents were measured in colon and brain tissues. AECF significantly ameliorated the imbalance of the antioxidant systems. Also, AECF improved intestinal myeloperoxidase (MPO) activity, the abundance of the gut microbiome, short-chain fatty acids (SCFAs) contents, and tight junction protein expression against PM2.5-induced damage. In addition, AECF prevented PM2.5-induced inflammatory and apoptotic expression via the toll-like receptor-4 (TLR-4)/myeloid differentiation primary response 88 (MyD88) pathway in colon and brain tissues. Additionally, AECF enhanced the mitochondrial function, including the mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) contents in brain tissues. Furthermore, AECF regulated the cholinergic system, such as acetylcholine (ACh) contents, acetylcholinesterase (AChE) activity, and protein expression levels of AChE and choline acetyltransferase (ChAT) in brain tissues. To evaluate the effect of cognitive dysfunction caused by PM2.5-induced intestinal dysfunction, behavior tests such as Y-maze, passive avoidance, and Morris water maze tests were performed. From the results of the behavior tests, AECF ameliorated spatial learning and memory, short-term memory, and long-term learning and memory function. This study confirmed that AECF reduced PM2.5-induced cognitive dysfunction by regulating gut microbiome and inflammation, apoptosis, and mitochondrial function by enhancing the gut-brain axis. Based on these results, this study suggests that AECF, which contains fatty acid amides, might be a potential material for ameliorating PM2.5-induced cognitive dysfunction via gut-brain axis improvement.


Asunto(s)
Chlorophyta , Disfunción Cognitiva , Animales , Ratones , Eje Cerebro-Intestino , Receptor Toll-Like 4 , Factor 88 de Diferenciación Mieloide , Acetilcolinesterasa , Antioxidantes , Proteínas Adaptadoras Transductoras de Señales , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/tratamiento farmacológico
16.
Antioxidants (Basel) ; 12(4)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37107342

RESUMEN

This study aimed to assess the protective effect of an extract of Lonicera japonica against particulate-matter (PM)2.5-induced pulmonary inflammation and fibrosis. The compounds with physiological activity were identified as shanzhiside, secologanoside, loganic acid, chlorogenic acid, secologanic acid, secoxyloganin, quercetin pentoside, and dicaffeoyl quinic acids (DCQA), including 3,4-DCQA, 3,5-DCQA, 4,5-DCQA, and 1,4-DCQA using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MSE). The extract of Lonicera japonica reduced cell death, reactive oxygen species (ROS) production, and inflammation in A549 cells. The extract of Lonicera japonica decreased serum T cells, including CD4+ T cells, CD8+ T cells, and total T helper 2 (Th2) cells, and immunoglobulins, including immunoglobulin G (IgG) and immunoglobulin E (IgE), in PM2.5-induced BALB/c mice. The extract of Lonicera japonica protected the pulmonary antioxidant system by regulating superoxide dismutase (SOD) activity, reduced glutathione (GSH) contents, and malondialdehyde (MDA) levels. In addition, it ameliorated mitochondrial function by regulating the production of ROS, mitochondrial membrane potential (MMP), and ATP contents. Moreover, the extract of Lonicera japonica exhibited a protective activity of apoptosis, fibrosis, and matrix metalloproteinases (MMPs) via TGF-ß and NF-κB signaling pathways in lung tissues. This study suggests that the extract of Lonicera japonica might be a potential material to improve PM2.5-induced pulmonary inflammation, apoptosis, and fibrosis.

17.
PLoS One ; 18(4): e0285035, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37099566

RESUMEN

BACKGROUND: Despite reports that the closed intensive care unit (ICU) system improves clinical outcomes, it has not been widely applied for various reasons. This study aimed to propose a better ICU system for critically ill patients by comparing the experience of open surgical ICU (OSICU) and closed surgical ICU (CSICU) systems in the same institution. METHODS AND FINDINGS: Our institution converted the ICU system from "open" to "closed" in February 2020, and enrolled patients were classified into the OSICU and CSICU groups at that time from March 2019 to February 2022. A total of 751 patients were categorized into the OSICU (n = 191) and CSICU (n = 560) groups. The mean age of the patients was 67 years in the OSICU group and 72 years in the CSICU group (p < 0.05). The acute physiology and chronic health evaluation II score was 21.8 ± 7.65 in the CSICU group, which was higher than the score 17.4 ± 7.97 in the OSICU group (p < 0.05). The sequential organ failure assessment scores were 2.0 ± 2.29 in the OSICU group and 4.1 ± 3.06 in the CSICU group (p < 0.05). After correction for bias by logistic regression analysis for all-cause mortality, the odds ratio in the CSICU group was 0.089 (95% confidence interval [CI]: 0.014-0.568, p < 0.05). CONCLUSIONS: Despite considering the various factors of increased patient severity, a CSICU system is more beneficial for critically ill patients. Therefore, we propose that the CSICU system be applied worldwide.


Asunto(s)
Enfermedad Crítica , Unidades de Cuidados Intensivos , Humanos , Anciano , Factores de Riesgo , Puntuaciones en la Disfunción de Órganos , Estudios Retrospectivos
18.
Ecotoxicol Environ Saf ; 256: 114862, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37004432

RESUMEN

The widespread presence of mercury, a heavy metal found in the environment and used in numerous industries and domestic, raises concerns about its potential impact on human health. Nevertheless, the adverse effects of this environmental toxicant at low concentrations are often underestimated. There are emerging studies showing that accumulation of mercury in the eye may contribute to visual impairment and a comorbidity between autism spectrum disorders (ASD) trait and visual impairment. However, the underlying mechanism of visual impairment in humans and rodents is challenging. In response to this issue, zebrafish larvae with a cone-dominated retinal visual system were exposed to 100 nM mercury chloride (HgCl2), according to our previous study, followed by light-dark stimulation, a social assay, and color preference to examine the functionality of the visual system in relation to ASD-like behavior. Exposure of embryos to HgCl2 from gastrulation to hatching increased locomotor activity in the dark, reduced shoaling and exploratory behavior, and impaired color preference. Defects in microridges as the first barrier may serve as primary tools for HgCl2 toxicity affecting vision. Depletion of polyunsaturated fatty acids (PUFAs), linoleic acid, arachidonic acid (ARA), alpha-linoleic acid, docosahexaenoic acid (DHA), stearic acid, L-phenylalanine, isoleucine, L-lysine, and N-acetylputrescine, along with the increase of gamma-aminobutyric acid (GABA), sphingosine-1-phosphate, and citrulline assayed by liquid chromatography-mass spectrometry (LC-MS) suggest that these metabolites serve as biomarkers of retinal impairments that affect vision and behavior. Although suppression of adsl, shank3a, tsc1b, and nrxn1a gene expression was observed, among these tsc1b showed more positive correlation with ASD. Collectively, these results contribute new insights into the possible mechanism of mercury toxicity give rise to visual, cognitive, and social deficits in zebrafish.


Asunto(s)
Mercurio , Pez Cebra , Humanos , Animales , Pez Cebra/metabolismo , Mercurio/toxicidad , Cloruro de Mercurio/toxicidad , Trastornos de la Visión , Expresión Génica
19.
Oncoimmunology ; 11(1): 2014655, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36524207

RESUMEN

Clonal cell line-based, multigene-modified, off-the-shelf NK cell therapeutics are emerging as the new frontier of adoptive cellular immunotherapy. Here, we utilized a newly established NK cell line, NK101, as a backbone to derive multifaceted killer cells armored with various antitumor modalities through repeated cycles of genetic modification and clonal selection. First, NK101 cells were transduced with a tricistronic lentiviral vector expressing CD7, CD28, and cytosine deaminase (CD). The resulting cell line demonstrated enhanced cytotoxicity against B7+ tumors and exerted bystander killing effects on neighboring tumor cells upon 5-FC treatment. Second, engineered NK101 cells were again transduced with a bicistronic vector expressing membrane-bound interleukin-15 (mbIL-15) and dominant negative TGFß type II receptor (DNTßRII). Ectopic expression of mbIL-15 resulted in further augmentation of lytic activities against all tested target cells by inducing upregulation of multiple activating receptors, while that of DNTßRII allowed the cells to maintain heightened cytotoxicity in the presence of TGFß. Finally, dual-transduced NK101 cells were modified to express chimeric antigen receptors (CARs) targeting either a solid tumor antigen (EpCAM) or a hematologic tumor antigen (FLT3). The final engineered products not only demonstrated antigen-specific killing activities in vitro but also exerted strong tumor-inhibitory effects in preclinical models of metastatic solid tumor and hematologic malignancy. Notably, combined treatment with 5-FC further enhanced antitumor efficacy of engineered NK101 in the solid tumor model. Our results demonstrate successful generation of multigene-modified NK101 cell therapeutics exerting diverse mechanisms of antitumor action - activation receptor-mediated innate killing, antigen-specific killing, and bystander effect-mediated killing.


Asunto(s)
Citotoxicidad Inmunológica , Células Asesinas Naturales , Línea Celular Tumoral , Células Asesinas Naturales/metabolismo , Inmunoterapia Adoptiva/métodos , Factor de Crecimiento Transformador beta/metabolismo
20.
Acute Crit Care ; 37(4): 527-532, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36203234

RESUMEN

BACKGROUND: Sepsis and septic shock remain the leading causes of death in critically ill patients worldwide. Various biomarkers are available to determine the prognosis and therapeutic effects of sepsis. In this study, we investigated the effectiveness of presepsin as a sepsis biomarker. METHODS: Patients admitted to the intensive care unit with major or minor diagnosis of sepsis were categorized into survival and non-survival groups. The white blood cell count and serum C-reactive protein, procalcitonin, and presepsin levels were measured in all patients. RESULTS: The study included 40 patients (survival group, 32; non-survival group, 8; mortality rate, 20%). The maximum serum presepsin levels measured during intensive care unit admission were significantly higher in the non-survival group (median [interquartile range]: 4,205.5 pg/ml [1,155.8-10,094.0] vs. 741.5 pg/ml [520.0-1,317.5], P<0.05). No statistically significant intergroup differences were observed in the maximum, minimum, and mean values of the white blood cell count, as well as serum C-reactive protein, and procalcitonin levels. Based on the receiver operating characteristic curve, the area under the curve for presepsin as a predictor of sepsis mortality was 0.764. At a cut-off value of 1,898.5 pg/ml, the sensitivity and specificity of presepsin for prediction of sepsis-induced mortality were 75.0% and 87.5%, respectively. CONCLUSIONS: Early diagnosis of sepsis and prediction of sepsis-induced mortality are important for prompt initiation of treatment. Presepsin may serve as an effective biomarker for prediction of sepsis-induced mortality and for evaluation of treatment effectiveness.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...