Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Int ; 185: 108522, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38401434

RESUMEN

The rapidly increasing prevalence of obesity and overweight, especially in children and adolescents, has become a serious societal issue. Although various genetic and environmental risk factors for pediatric obesity and overweight have been identified, the problem has not been solved. In this study, we examined whether environmental nanoplastic (NP) pollutants can act as environmental obesogens using mouse models exposed to NPs derived from polystyrene and polypropylene, which are abundant in the environment. We found abnormal weight gain in the progeny until 6 weeks of age following the oral administration of NPs to the mother during gestation and lactation. Through a series of experiments involving multi-omic analyses, we have demonstrated that NP-induced weight gain is caused by alterations in the lipid composition (lysophosphatidylcholine/phosphatidylcholine ratio) of maternal breast milk and he gut microbiota distribution of the progeny. These data indicate that environmental NPs can act as obesogens in childhood.


Asunto(s)
Microbiota , Obesidad Infantil , Masculino , Niño , Femenino , Animales , Ratones , Humanos , Adolescente , Sobrepeso/epidemiología , Microplásticos , Aumento de Peso , Leche Humana , Madres , Lípidos , Ingestión de Alimentos
2.
Nat Commun ; 14(1): 5728, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37714840

RESUMEN

Arachidonic and adrenic acids in the membrane play key roles in ferroptosis. Here, we reveal that lipoprotein-associated phospholipase A2 (Lp-PLA2) controls intracellular phospholipid metabolism and contributes to ferroptosis resistance. A metabolic drug screen reveals that darapladib, an inhibitor of Lp-PLA2, synergistically induces ferroptosis in the presence of GPX4 inhibitors. We show that darapladib is able to enhance ferroptosis under lipoprotein-deficient or serum-free conditions. Furthermore, we find that Lp-PLA2 is located in the membrane and cytoplasm and suppresses ferroptosis, suggesting a critical role for intracellular Lp-PLA2. Lipidomic analyses show that darapladib treatment or deletion of PLA2G7, which encodes Lp-PLA2, generally enriches phosphatidylethanolamine species and reduces lysophosphatidylethanolamine species. Moreover, combination treatment of darapladib with the GPX4 inhibitor PACMA31 efficiently inhibits tumour growth in a xenograft model. Our study suggests that inhibition of Lp-PLA2 is a potential therapeutic strategy to enhance ferroptosis in cancer treatment.


Asunto(s)
Ferroptosis , Neoplasias , Humanos , 1-Alquil-2-acetilglicerofosfocolina Esterasa/antagonistas & inhibidores , Metabolismo de los Lípidos/efectos de los fármacos , Neoplasias/tratamiento farmacológico
3.
BMB Rep ; 56(9): 488-495, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37679296

RESUMEN

Mitochondrial transplantation is a promising therapeutic approach for the treatment of mitochondrial diseases caused by mutations in mitochondrial DNA, as well as several metabolic and neurological disorders. Animal studies have shown that mitochondrial transplantation can improve cellular energy metabolism, restore mitochondrial function, and prevent cell death. However, challenges need to be addressed, such as the delivery of functional mitochondria to the correct cells in the body, and the long-term stability and function of the transplanted mitochondria. Researchers are exploring new methods for mitochondrial transplantation, including the use of nanoparticles or CRISPR gene editing. Mechanisms underlying the integration and function of transplanted mitochondria are complex and not fully understood, but research has revealed some key factors that play a role. While the safety and efficacy of mitochondrial transplantation have been investigated in animal models and human trials, more research is needed to optimize delivery methods and evaluate long-term safety and efficacy. Clinical trials using mitochondrial transplantation have shown mixed results, highlighting the need for further research in this area. In conclusion, although mitochondrial transplantation holds significant potential for the treatment of various diseases, more work is needed to overcome challenges and evaluate its safety and efficacy in human trials. [BMB Reports 2023; 56(9): 488-495].


Asunto(s)
ADN Mitocondrial , Mitocondrias , Animales , Humanos , ADN Mitocondrial/genética , Muerte Celular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Metabolismo Energético
4.
Cell Death Dis ; 14(8): 567, 2023 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-37633973

RESUMEN

Ferroptosis, a type of cell death induced by lipid peroxidation, has emerged as a novel anti-cancer strategy. Cancer cells frequently acquire resistance to ferroptosis. However, the underlying mechanisms are poorly understood. To address this issue, we conducted a thorough investigation of the genomic and transcriptomic data derived from hundreds of human cancer cell lines and primary tissue samples, with a particular focus on non-small cell lung carcinoma (NSCLC). It was observed that mutations in Kelch-like ECH-associated protein 1 (KEAP1) and subsequent nuclear factor erythroid 2-related factor 2 (NRF2, also known as NFE2L2) activation are strongly associated with ferroptosis resistance in NSCLC. Additionally, AIFM2 gene, which encodes ferroptosis suppressor protein 1 (FSP1), was identified as the gene most significantly correlated with ferroptosis resistance, followed by multiple NRF2 targets. We found that inhibition of NRF2 alone was not sufficient to reduce FSP1 protein levels and promote ferroptosis, whereas FSP1 inhibition effectively sensitized KEAP1-mutant NSCLC cells to ferroptosis. Furthermore, we found that combined inhibition of FSP1 and NRF2 induced ferroptosis more intensely. Our findings imply that FSP1 is a crucial suppressor of ferroptosis whose expression is partially dependent on NRF2 and that synergistically targeting both FSP1 and NRF2 may be a promising strategy for overcoming ferroptosis resistance in cancer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Ferroptosis , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Ferroptosis/genética , Proteína 1 Asociada A ECH Tipo Kelch/genética , Neoplasias Pulmonares/genética , Factor 2 Relacionado con NF-E2/genética
5.
Front Mol Biosci ; 10: 1221669, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37635938

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is a progressive liver disease that can progress to nonalcoholic steatohepatitis (NASH), NASH-related cirrhosis, and hepatocellular carcinoma (HCC). NAFLD ranges from simple steatosis (or nonalcoholic fatty liver [NAFL]) to NASH as a progressive form of NAFL, which is characterized by steatosis, lobular inflammation, and hepatocellular ballooning with or without fibrosis. Because of the complex pathophysiological mechanism and the heterogeneity of NAFLD, including its wide spectrum of clinical and histological characteristics, no specific therapeutic drugs have been approved for NAFLD. The heterogeneity of NAFLD is closely associated with cellular plasticity, which describes the ability of cells to acquire new identities or change their phenotypes in response to environmental stimuli. The liver consists of parenchymal cells including hepatocytes and cholangiocytes and nonparenchymal cells including Kupffer cells, hepatic stellate cells, and endothelial cells, all of which have specialized functions. This heterogeneous cell population has cellular plasticity to adapt to environmental changes. During NAFLD progression, these cells can exert diverse and complex responses at multiple levels following exposure to a variety of stimuli, including fatty acids, inflammation, and oxidative stress. Therefore, this review provides insights into NAFLD heterogeneity by addressing the cellular plasticity and metabolic adaptation of hepatocytes, cholangiocytes, hepatic stellate cells, and Kupffer cells during NAFLD progression.

6.
Cell Biosci ; 13(1): 116, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37370191

RESUMEN

BACKGROUND: Hepatic liver disease, including primary sclerosing cholangitis (PSC), is a serious extraintestinal manifestations of colonic inflammation. Cyclic adenosine monophosphate (cAMP)-responsive element-binding protein H (CrebH) is a transcription factor expressed mostly in the liver and small intestine. However, CrebH's roles in the gut-liver axis remain unknown. METHODS: Inflammatory bowel disease (IBD) and PSC disease models were established in wild-type and CrebH-/- mice treated with dextran sulfate sodium, dinitrobenzene sulfonic acid, and diethoxycarbonyl dihydrocollidine diet, respectively. RNA sequencing were conducted to investigate differential gene expression. Exosomes were isolated from plasma and culture media. miRNA expression profiling was performed using the NanoString nCounter Mouse miRNA Panel. Effects of miR-29a-3p on adhesion molecule expression were investigated in bEnd.3 brain endothelial cells. RESULTS: CrebH-/- mice exhibited accelerated liver injury without substantial differences in the gut after administration of dextran sulfate sodium (DSS), and had similar features to PSC, including enlarged bile ducts, enhanced inflammation, and aberrant MAdCAM-1 expression. Furthermore, RNA-sequencing analysis showed that differentially expressed genes in the liver of CrebH-/- mice after DSS overlapped significantly with genes changed in PSC-liver. Analysis of plasma exosome miRNA isolated from WT and CrebH-/- mice indicates that CrebH can contribute to the exosomal miRNA profile. We also identified miR-29a-3p as an effective mediator for MAdCAM-1 expression. Administration of plasma exosome from CrebH-/- mice led to prominent inflammatory signals in the liver of WT mice with inflammatory bowel disease (IBD). CONCLUSIONS: CrebH deficiency led to increased susceptibility to IBD-induced liver diseases via enhanced expression of adhesion molecules and concomitant infiltration of T lymphocytes. Exosomes can contribute to the progression of IBD-induced liver injury in CrebH-/- mice. These study provide novel insights into the role of CrebH in IBD-induced liver injury.

7.
Nat Commun ; 14(1): 3746, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37353518

RESUMEN

Brown adipose tissue (BAT) has abundant mitochondria with the unique capability of generating heat via uncoupled respiration. Mitochondrial uncoupling protein 1 (UCP1) is activated in BAT during cold stress and dissipates mitochondrial proton motive force generated by the electron transport chain to generate heat. However, other mitochondrial factors required for brown adipocyte respiration and thermogenesis under cold stress are largely unknown. Here, we show LETM1 domain-containing protein 1 (LETMD1) is a BAT-enriched and cold-induced protein required for cold-stimulated respiration and thermogenesis of BAT. Proximity labeling studies reveal that LETMD1 is a mitochondrial matrix protein. Letmd1 knockout male mice display aberrant BAT mitochondria and fail to carry out adaptive thermogenesis under cold stress. Letmd1 knockout BAT is deficient in oxidative phosphorylation (OXPHOS) complex proteins and has impaired mitochondrial respiration. In addition, BAT-specific Letmd1 deficient mice exhibit phenotypes identical to those observed in Letmd1 knockout mice. Collectively, we demonstrate that the BAT-enriched mitochondrial matrix protein LETMD1 plays a tissue-autonomous role that is essential for BAT mitochondrial function and thermogenesis.


Asunto(s)
Tejido Adiposo Pardo , Proteínas Mitocondriales , Termogénesis , Animales , Masculino , Ratones , Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/metabolismo , Ratones Noqueados , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Termogénesis/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
8.
Diabetologia ; 66(5): 931-954, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36759348

RESUMEN

AIMS/HYPOTHESIS: Non-alcoholic fatty liver disease (NAFLD) associated with type 2 diabetes may more easily progress towards severe forms of non-alcoholic steatohepatitis (NASH) and cirrhosis. Although the Wnt effector transcription factor 7-like 2 (TCF7L2) is closely associated with type 2 diabetes risk, the role of TCF7L2 in NAFLD development remains unclear. Here, we investigated how changes in TCF7L2 expression in the liver affects hepatic lipid metabolism based on the major risk factors of NAFLD development. METHODS: Tcf7l2 was selectively ablated in the liver of C57BL/6N mice by inducing the albumin (Alb) promoter to recombine Tcf7l2 alleles floxed at exon 5 (liver-specific Tcf7l2-knockout [KO] mice: Alb-Cre;Tcf7l2f/f). Alb-Cre;Tcf7l2f/f and their wild-type (Tcf7l2f/f) littermates were fed a high-fat diet (HFD) or a high-carbohydrate diet (HCD) for 22 weeks to reproduce NAFLD/NASH. Mice were refed a standard chow diet or an HCD to stimulate de novo lipogenesis (DNL) or fed an HFD to provide exogenous fatty acids. We analysed glucose and insulin sensitivity, metabolic respiration, mRNA expression profiles, hepatic triglyceride (TG), hepatic DNL, selected hepatic metabolites, selected plasma metabolites and liver histology. RESULTS: Alb-Cre;Tcf7l2f/f essentially exhibited increased lipogenic genes, but there were no changes in hepatic lipid content in mice fed a normal chow diet. However, following 22 weeks of diet-induced NAFLD/NASH conditions, liver steatosis was exacerbated owing to preferential metabolism of carbohydrate over fat. Indeed, hepatic Tcf7l2 deficiency enhanced liver lipid content in a manner that was dependent on the duration and amount of exposure to carbohydrates, owing to cell-autonomous increases in hepatic DNL. Mechanistically, TCF7L2 regulated the transcriptional activity of Mlxipl (also known as ChREBP) by modulating O-GlcNAcylation and protein content of carbohydrate response element binding protein (ChREBP), and targeted Srebf1 (also called SREBP1) via miRNA (miR)-33-5p in hepatocytes. Eventually, restoring TCF7L2 expression at the physiological level in the liver of Alb-Cre;Tcf7l2f/f mice alleviated liver steatosis without altering body composition under both acute and chronic HCD conditions. CONCLUSIONS/INTERPRETATION: In mice, loss of hepatic Tcf7l2 contributes to liver steatosis by inducing preferential metabolism of carbohydrates via DNL activation. Therefore, TCF7L2 could be a promising regulator of the NAFLD associated with high-carbohydrate diets and diabetes since TCF7L2 deficiency may lead to development of NAFLD by promoting utilisation of excess glucose pools through activating DNL. DATA AVAILABILITY: RNA-sequencing data have been deposited into the NCBI GEO under the accession number GSE162449 ( www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE162449 ).


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Lipogénesis/genética , Ratones Endogámicos C57BL , Hígado/metabolismo , Hepatocitos/metabolismo , Dieta Alta en Grasa , Triglicéridos/metabolismo , Glucosa/metabolismo , Proteína 2 Similar al Factor de Transcripción 7/genética , Proteína 2 Similar al Factor de Transcripción 7/metabolismo
9.
BMB Rep ; 54(12): 626-631, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34847985

RESUMEN

Janus kinase 2 (JAK2), a non-receptor tyrosine kinase, is a critical component of cytokine and growth factor signaling pathways regulating hematopoietic cell proliferation. JAK2 mutations are associated with multiple myeloproliferative neoplasms. Although physiological and pathological functions of JAK2 in hematopoietic tissues are well-known, such functions of JAK2 in the nervous system are not well studied yet. The present study demonstrated that JAK2 could negatively regulate neuronal differentiation of mouse embryonic stem cells (ESCs). Depletion of JAK2 stimulated neuronal differentiation of mouse ESCs and activated glycogen synthase kinase 3ꞵ, Fyn, and cyclin-dependent kinase 5. Knockdown of JAK2 resulted in accumulation of GTPbound Rac1, a Rho GTPase implicated in the regulation of cytoskeletal dynamics. These findings suggest that JAK2 might negatively regulate neuronal differentiation by suppressing the GSK-3ß/Fyn/CDK5 signaling pathway responsible for morphological maturation. [BMB Reports 2021; 54(12): 626-631].


Asunto(s)
Diferenciación Celular , Janus Quinasa 2 , Células Madre Embrionarias de Ratones , Neuronas/citología , Animales , Quinasa 5 Dependiente de la Ciclina , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Ratones , Células Madre Embrionarias de Ratones/citología , Proteínas Proto-Oncogénicas c-fyn , Transducción de Señal
10.
Int J Mol Sci ; 22(9)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946468

RESUMEN

Mitochondria are the major source of intercellular bioenergy in the form of ATP. They are necessary for cell survival and play many essential roles such as maintaining calcium homeostasis, body temperature, regulation of metabolism and apoptosis. Mitochondrial dysfunction has been observed in variety of diseases such as cardiovascular disease, aging, type 2 diabetes, cancer and degenerative brain disease. In other words, the interpretation and regulation of mitochondrial signals has the potential to be applied as a treatment for various diseases caused by mitochondrial disorders. In recent years, mitochondrial transplantation has increasingly been a topic of interest as an innovative strategy for the treatment of mitochondrial diseases by augmentation and replacement of mitochondria. In this review, we focus on diseases that are associated with mitochondrial dysfunction and highlight studies related to the rescue of tissue-specific mitochondrial disorders. We firmly believe that mitochondrial transplantation is an optimistic therapeutic approach in finding a potentially valuable treatment for a variety of mitochondrial diseases.


Asunto(s)
Mitocondrias/trasplante , Enfermedades Mitocondriales/terapia , Animales , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Diabetes Mellitus Tipo 2/terapia , Cardiopatías/metabolismo , Cardiopatías/patología , Cardiopatías/terapia , Humanos , Hepatopatías/metabolismo , Hepatopatías/patología , Hepatopatías/terapia , Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Dinámicas Mitocondriales , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/patología , Enfermedades del Sistema Nervioso/terapia
11.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33925827

RESUMEN

Liver disease is the spectrum of liver damage ranging from simple steatosis called as nonalcoholic fatty liver disease (NAFLD) to hepatocellular carcinoma (HCC). Clinically, NAFLD and type 2 diabetes coexist. Type 2 diabetes contributes to biological processes driving the severity of NAFLD, the primary cause for development of chronic liver diseases. In the last 20 years, the rate of non-viral NAFLD/NASH-derived HCC has been increasing rapidly. As there are currently no suitable drugs for treatment of NAFLD and NASH, a class of thiazolidinediones (TZDs) drugs for the treatment of type 2 diabetes is sometimes used to improve liver failure despite the risk of side effects. Therefore, diagnosis, prevention, and treatment of the development and progression of NAFLD and NASH are important issues. In this review, we will discuss the pathogenesis of NAFLD/NASH and NAFLD/NASH-derived HCC and the current promising pharmacological therapies of NAFLD/NASH. Further, we will provide insights into "adipose-derived adipokines" and "liver-derived hepatokines" as diagnostic and therapeutic targets from NAFLD to HCC.


Asunto(s)
Diabetes Mellitus Tipo 2/complicaciones , Hígado/patología , Enfermedad del Hígado Graso no Alcohólico , Obesidad/complicaciones , Adipoquinas/metabolismo , Carcinoma Hepatocelular/fisiopatología , Diabetes Mellitus Tipo 2/metabolismo , Progresión de la Enfermedad , Humanos , Hígado/metabolismo , Cirrosis Hepática/fisiopatología , Fallo Hepático , Neoplasias Hepáticas/fisiopatología , Síndrome Metabólico/fisiopatología , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/metabolismo
12.
Biology (Basel) ; 10(3)2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33801564

RESUMEN

Ferroptosis is a type of iron-dependent regulated necrosis induced by lipid peroxidation that occurs in cellular membranes. Among the various lipids, polyunsaturated fatty acids (PUFAs) associated with several phospholipids, such as phosphatidylethanolamine (PE) and phosphatidylcholine (PC), are responsible for ferroptosis-inducing lipid peroxidation. Since the de novo synthesis of PUFAs is strongly restricted in mammals, cells take up essential fatty acids from the blood and lymph to produce a variety of PUFAs via PUFA biosynthesis pathways. Free PUFAs can be incorporated into the cellular membrane by several enzymes, such as ACLS4 and LPCAT3, and undergo lipid peroxidation through enzymatic and non-enzymatic mechanisms. These pathways are tightly regulated by various metabolic and signaling pathways. In this review, we summarize our current knowledge of how various lipid metabolic pathways are associated with lipid peroxidation and ferroptosis. Our review will provide insight into treatment strategies for ferroptosis-related diseases.

13.
Biomedicines ; 9(1)2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33435535

RESUMEN

Increased hepatic gluconeogenesis is one of the main contributors to the development of type 2 diabetes. Recently, it has been reported that growth arrest and DNA damage-inducible 45 beta (GADD45ß) is induced under both fasting and high-fat diet (HFD) conditions that stimulate hepatic gluconeogenesis. Here, this study aimed to establish the molecular mechanisms underlying the novel role of GADD45ß in hepatic gluconeogenesis. Both whole-body knockout (KO) mice and adenovirus-mediated knockdown (KD) mice of GADD45ß exhibited decreased hepatic gluconeogenic gene expression concomitant with reduced blood glucose levels under fasting and HFD conditions, but showed a more pronounced effect in GADD45ß KD mice. Further, in primary hepatocytes, GADD45ß KD reduced glucose output, whereas GADD45ß overexpression increased it. Mechanistically, GADD45ß did not affect Akt-mediated forkhead box protein O1 (FoxO1) phosphorylation and forskolin-induced cAMP response element-binding protein (CREB) phosphorylation. Rather it increased FoxO1 transcriptional activity via enhanced protein stability of FoxO1. Further, GADD45ß colocalized and physically interacted with FoxO1. Additionally, GADD45ß deficiency potentiated insulin-mediated suppression of hepatic gluconeogenic genes, and it were impeded by the restoration of GADD45ß expression. Our finding demonstrates GADD45ß as a novel and essential regulator of hepatic gluconeogenesis. It will provide a deeper understanding of the FoxO1-mediated gluconeogenesis.

14.
Mol Cells ; 44(1): 26-37, 2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-33431714

RESUMEN

Human papillomaviruses (HPVs) cause cellular hyperproliferation-associated abnormalities including cervical cancer. The HPV genome encodes two major viral oncoproteins, E6 and E7, which recruit various host proteins by direct interaction for proteasomal degradation. Recently, we reported the structure of HPV18 E7 conserved region 3 (CR3) bound to the protein tyrosine phosphatase (PTP) domain of PTPN14, a well-defined tumor suppressor, and found that this intermolecular interaction plays a key role in E7-driven transformation and tumorigenesis. In this study, we carried out a molecular analysis of the interaction between CR3 of HPV18 E7 and the PTP domain of PTPN21, a PTP protein that shares high sequence homology with PTPN14 but is putatively oncogenic rather than tumor-suppressive. Through the combined use of biochemical tools, we verified that HPV18 E7 and PTPN21 form a 2:2 complex, with a dissociation constant of 5 nM and a nearly identical binding manner with the HPV18 E7 and PTPN14 complex. Nevertheless, despite the structural similarities, the biological consequences of the E7 interaction were found to differ between the two PTP proteins. Unlike PTPN14, PTPN21 did not appear to be subjected to proteasomal degradation in HPV18-positive HeLa cervical cancer cells. Moreover, knockdown of PTPN21 led to retardation of the migration/invasion of HeLa cells and HPV18 E7-expressing HaCaT keratinocytes, which reflects its protumor activity. In conclusion, the associations of the viral oncoprotein E7 with PTPN14 and PTPN21 are similar at the molecular level but play different physiological roles.


Asunto(s)
Alphapapillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Secuencia de Aminoácidos , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Genotipo , Humanos , Modelos Moleculares , Invasividad Neoplásica , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Proteínas Tirosina Fosfatasas no Receptoras/química , Proteolisis
15.
BMB Rep ; 54(2): 124-129, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33407993

RESUMEN

In current times, obesity is a major health problem closely associated with metabolic disease such as diabetes, dyslipidemia, and cardiovascular disease. The direct cause of obesity is known as an abnormal increase in fat cell size and the adipocyte pool. Hyperplasia, the increase in number of adipocytes, results from adipogenesis in which preadipocytes differentiate into mature adipocytes. Adipogenesis is regulated by local and systemic cues that alter transduction pathways and subsequent control of adipogenic transcription factors. Therefore, the regulation of adipogenesis is an important target for preventing obesity. Myonectin, a member of the CTRP family, is a type of myokine released by skeletal muscle cells. Although several studies have shown that myonectin is associated with lipid metabolism, the role of myonectin during adipogenesis is not known. Here, we demonstrate the role of myonectin during adipocyte differentiation of 3T3-L1 cells. We found that myonectin inhibits the adipogenesis of 3T3-L1 preadipocytes with a reduction in the expression of adipogenic transcription factors such as C/EBPα, ß and PPARγ. Furthermore, we show that myonectin has an inhibitory effect on adipogenesis through the regulation of the p38 MAPK pathway and CHOP. These findings suggest that myonectin may be a novel therapeutic target for the prevention of obesity. [BMB Reports 2021; 54(2): 124-129].


Asunto(s)
Adipocitos/metabolismo , Adiponectina/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Células 3T3-L1 , Adipogénesis , Animales , Células Cultivadas , Ratones
16.
Proc Natl Acad Sci U S A ; 117(51): 32433-32442, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33288688

RESUMEN

Ferroptosis is an iron-dependent regulated necrosis mediated by lipid peroxidation. Cancer cells survive under metabolic stress conditions by altering lipid metabolism, which may alter their sensitivity to ferroptosis. However, the association between lipid metabolism and ferroptosis is not completely understood. In this study, we found that the expression of elongation of very long-chain fatty acid protein 5 (ELOVL5) and fatty acid desaturase 1 (FADS1) is up-regulated in mesenchymal-type gastric cancer cells (GCs), leading to ferroptosis sensitization. In contrast, these enzymes are silenced by DNA methylation in intestinal-type GCs, rendering cells resistant to ferroptosis. Lipid profiling and isotope tracing analyses revealed that intestinal-type GCs are unable to generate arachidonic acid (AA) and adrenic acid (AdA) from linoleic acid. AA supplementation of intestinal-type GCs restores their sensitivity to ferroptosis. Based on these data, the polyunsaturated fatty acid (PUFA) biosynthesis pathway plays an essential role in ferroptosis; thus, this pathway potentially represents a marker for predicting the efficacy of ferroptosis-mediated cancer therapy.


Asunto(s)
Ácidos Grasos Insaturados/biosíntesis , Ferroptosis/fisiología , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Ácido Araquidónico/genética , Ácido Araquidónico/metabolismo , Ácido Araquidónico/farmacología , Carbolinas/farmacología , Línea Celular Tumoral , Metilación de ADN , delta-5 Desaturasa de Ácido Graso , Elementos de Facilitación Genéticos , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Elongasas de Ácidos Grasos/genética , Elongasas de Ácidos Grasos/metabolismo , Ácidos Grasos Insaturados/genética , Ácidos Grasos Insaturados/metabolismo , Ferroptosis/efectos de los fármacos , Ferroptosis/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Metabolismo de los Lípidos/genética , Regiones Promotoras Genéticas , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología
17.
J Biol Chem ; 295(39): 13677-13690, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32759168

RESUMEN

Astrocytes perform multiple essential functions in the developing and mature brain, including regulation of synapse formation, control of neurotransmitter release and uptake, and maintenance of extracellular ion balance. As a result, astrocytes have been implicated in the progression of neurodegenerative disorders such as Alzheimer's disease, Huntington's disease, and Parkinson's disease. Despite these critical functions, the study of human astrocytes can be difficult because standard differentiation protocols are time-consuming and technically challenging, but a differentiation protocol recently developed in our laboratory enables the efficient derivation of astrocytes from human embryonic stem cells. We used this protocol along with microarrays, luciferase assays, electrophoretic mobility shift assays, and ChIP assays to explore the genes involved in astrocyte differentiation. We demonstrate that paired-like homeodomain transcription factor 1 (PITX1) is critical for astrocyte differentiation. PITX1 overexpression induced early differentiation of astrocytes, and its knockdown blocked astrocyte differentiation. PITX1 overexpression also increased and PITX1 knockdown decreased expression of sex-determining region Y box 9 (SOX9), known initiator of gliogenesis, during early astrocyte differentiation. Moreover, we determined that PITX1 activates the SOX9 promoter through a unique binding motif. Taken together, these findings indicate that PITX1 drives astrocyte differentiation by sustaining activation of the SOX9 promoter.


Asunto(s)
Astrocitos/metabolismo , Factores de Transcripción Paired Box/metabolismo , Factor de Transcripción SOX9/metabolismo , Diferenciación Celular , Células Cultivadas , Humanos , Factores de Transcripción Paired Box/genética , Factor de Transcripción SOX9/genética
18.
Sci Rep ; 10(1): 10755, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32612143

RESUMEN

Nurr1, a transcription factor belonging to the orphan nuclear receptor, has an essential role in the generation and maintenance of dopaminergic neurons and is important in the pathogenesis of Parkinson' disease (PD). In addition, Nurr1 has a non-neuronal function, and it is especially well known that Nurr1 has an anti-inflammatory function in the Parkinson's disease model. However, the molecular mechanisms of Nurr1 have not been elucidated. In this study, we describe a novel mechanism of Nurr1 function. To provide new insights into the molecular mechanisms of Nurr1 in the inflammatory response, we performed Chromatin immunoprecipitation sequencing (ChIP-Seq) on LPS-induced inflammation in BV2 cells and finally identified the RasGRP1 gene as a novel target of Nurr1. Here, we show that Nurr1 directly binds to the RasGRP1 intron to regulate its expression. Moreover, we also identified that RasGRP1 regulates the Ras-Raf-MEK-ERK signaling cascade in LPS-induced inflammation signaling. Finally, we conclude that RasGRP1 is a novel regulator of Nurr1's mediated inflammation signaling.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Inflamación/metabolismo , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Animales , Línea Celular , Cromatina/química , Neuronas Dopaminérgicas/metabolismo , Células HEK293 , Humanos , Intrones , Lipopolisacáridos/química , Ratones , Microglía/metabolismo , Enfermedad de Parkinson/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo
19.
Metabolism ; 109: 154280, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32473155

RESUMEN

OBJECTIVE: Obesity is recognized as the cause of multiple metabolic diseases and is rapidly increasing worldwide. As obesity is due to an imbalance in energy homeostasis, the promotion of energy consumption through browning of white adipose tissue (WAT) has emerged as a promising therapeutic strategy to counter the obesity epidemic. However, the molecular mechanisms of the browning process are not well understood. In this study, we investigated the effects of the GATA family of transcription factors on the browning process. METHODS: We used qPCR to analyze the expression of GATA family members during WAT browning. In order to investigate the function of GATA3 in the browning process, we used the lentivirus system for the ectopic expression and knockdown of GATA3. Western blot and real-time qPCR analyses revealed the regulation of thermogenic genes upon ectopic expression and knockdown of GATA3. Luciferase reporter assays, co-immunoprecipitation, and chromatin immunoprecipitation were performed to demonstrate that GATA3 interacts with proliferator-activated receptor-γ co-activator-1α (PGC-1α) to regulate the promoter activity of uncoupling protein-1 (UCP-1). Enhanced energy expenditure by GATA3 was confirmed using oxygen consumption assays, and the mitochondrial content was assessed using MitoTracker. Furthermore, we examined the in vivo effects of lentiviral GATA3 overexpression and knockdown in inguinal adipose tissue of mice. RESULTS: Gata3 expression levels were significantly elevated in the inguinal adipose tissue of mice exposed to cold conditions. Ectopic expression of GATA3 enhanced the expression of UCP-1 and thermogenic genes upon treatment with norepinephrine whereas GATA3 knockdown had the opposite effect. Luciferase reporter assays using the UCP-1 promoter region showed that UCP-1 expression was increased in a dose-dependent manner by GATA3 regardless of norepinephrine treatment. GATA3 was found to directly bind to the promoter region of UCP-1. Furthermore, our results indicated that GATA3 interacts with the transcriptional coactivator PGC-1α to increase the expression of UCP-1. Taken together, we demonstrate that GATA3 has an important role in enhancing energy expenditure by increasing the expression of thermogenic genes both in vitro and in vivo. CONCLUSION: GATA3 may represent a promising target for the prevention and treatment of obesity by regulating thermogenic capacity.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Factor de Transcripción GATA3/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Proteína Desacopladora 1/metabolismo , Animales , Frío , Metabolismo Energético , Factor de Transcripción GATA3/genética , Humanos , Ratones , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/fisiología , Regiones Promotoras Genéticas , Termogénesis/genética , Proteína Desacopladora 1/genética , Regulación hacia Arriba
20.
Metabolism ; 105: 154173, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32035087

RESUMEN

OBJECTIVE: Brown adipocytes play important roles in the regulation of energy homeostasis by uncoupling protein 1-mediated non-shivering thermogenesis. Recent studies suggest that brown adipocytes as novel therapeutic targets for combating obesity and associated diseases, such as type II diabetes. However, the molecular mechanisms underlying brown adipocyte differentiation and function are not fully understood. METHODS: We employed previous findings obtained through proteomic studies performed to assess proteins displaying altered levels during brown adipocyte differentiation. Here, we performed assays to determine the functional significance of their altered levels during brown adipogenesis and development. RESULTS: We identified isocitrate dehydrogenase 1 (IDH1) as upregulated during brown adipocyte differentiation, with subsequent investigations revealing that ectopic expression of IDH1 inhibited brown adipogenesis, whereas suppression of IDH1 levels promoted differentiation of brown adipocytes. Additionally, Idh1 overexpression resulted in increased levels of intracellular α-ketoglutarate (α-KG) and inhibited the expression of genes involved in brown adipogenesis. Exogenous treatment with α-KG reduced brown adipogenesis during the early phase of differentiation, and ChIP analysis revealed that IDH1-mediated α-KG reduced trimethylation of histone H3 lysine 4 in the promoters of genes associated with brown adipogenesis. Furthermore, administration of α-KG decreased adipogenic gene expression by modulating histone methylation in brown adipose tissues of mice. CONCLUSION: These results suggested that the IDH1-α-KG axis plays an important role in regulating brown adipocyte differentiation and might represent a therapeutic target for treating metabolic diseases.


Asunto(s)
Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/metabolismo , Histonas/metabolismo , Isocitrato Deshidrogenasa/metabolismo , Ácidos Cetoglutáricos/metabolismo , Adipogénesis , Animales , Diferenciación Celular , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Masculino , Metilación , Ratones , Ratones Endogámicos C57BL , Proteómica , Termogénesis/genética , Termogénesis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...