Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Pharmacol ; : 116259, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38705538

RESUMEN

Mounting evidence from preclinical and clinical studies suggests that persistent inflammation functions as a driving force in the journey to cancer. Cyclooxygenase-2 (COX-2) is a key enzyme involved in inflammatory signaling. While being transiently upregulated upon inflammatory stimuli, COX-2 has been found to be consistently overexpressed in human colorectal cancer and several other malignancies. The association between chronic inflammation and cancer has been revisited: cancer can arise when inflammation fails to resolve. Besides its proinflammatory functions, COX-2 also catalyzes the production of pro-resolving as well as anti-inflammatory metabolites from polyunsaturated fatty acids. This may account for the side effects caused by long term use of some COX-2 inhibitory drugs during the cancer chemopreventive trials. This review summarizes the latest findings highlighting the dual functions of COX-2 in the context of its implications in the development, maintenance, and progression of cancer.

2.
Sci Total Environ ; 926: 172137, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38569947

RESUMEN

The deterioration in air quality caused by volatile organic compounds (VOCs) has become an important environmental issue. Here, activated carbon (AC) composites with manganese oxide (MnO2: 1 % to 50 %) are synthesized as MAC for the removal of formaldehyde (FA) and toluene in air through a combination of reactive adsorption and catalytic oxidation (RACO) at room temperature (RT). The best-performing composite (MAC-20: 20 % of MnO2) exhibits a 10 % breakthrough volume (BTV10%) of FA and toluene at 41.2 and 377 L g-1, respectively while realizing complete oxidation of FA and toluene into carbon dioxide (CO2) at 100 °C and 275 °C, respectively. The reaction kinetic rates (r) for 10 % removal efficiency of FA and toluene (XFA or T) at RT are estimated as 9.82E-02 and 3.20E-02 mmol g-1 h-1, respectively. The high performance of MAC-20 can be attributed to its enriched adsorption capacity of oxygen vacancy (OV) and the presence of adsorbed oxygen (OA), as shown by an Mn3+/Mn4+ ratio of 0.729 and an OA/lattice­oxygen (OL) ratio of 1.50. The results of this study highlight the interactive roles of oxygen abundance and temperature in the generation of distinctive oxidation patterns for FA in reference to toluene. This study is expected to offer practical guidance for the implementation of RACO against diverse VOCs for efficient management of air quality.

3.
Int Immunopharmacol ; 131: 111847, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38518593

RESUMEN

This study investigated the anti-inflammatory and protective properties of SP-8356, a synthetic derivative of (1S)-(-)-verbenone, in a mouse model of LPS-induced acute lung injury (ALI). By targeting intracellular signaling pathways and inflammatory responses, SP-8356 demonstrated a potent ability to attenuate deleterious effects of proinflammatory stimuli. Specifically, SP-8356 effectively inhibited the activation of crucial signaling molecules such as NF-κB and Akt, and subsequently dampened the expression of inflammatory cytokines in various lung cellular components. Intervention with SP-8356 treatment also preserved the structural integrity of the epithelial and endothelial barriers. By reducing immune cell infiltration into inflamed lung tissue, SP-8356 exerted a broad protective effect against ALI. These findings position SP-8356 as a promising therapeutic candidate for pulmonary inflammatory diseases that cause ALI.


Asunto(s)
Lesión Pulmonar Aguda , Monoterpenos Bicíclicos , Animales , Ratones , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Transducción de Señal , Pulmón , FN-kappa B/metabolismo , Citocinas/metabolismo , Lipopolisacáridos/farmacología
4.
ACS Appl Mater Interfaces ; 16(14): 17965-17972, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38533594

RESUMEN

Metastructures, artificial arrangements of micro/macrostructures, possess unique properties and are of significant interest in aerospace, stealth technology, and various other applications. Recent studies have focused on quasi-zero stiffness metastructures, providing an outstanding vibration isolation capability. However, existing methods are constrained to low preloads and lack the consideration of structural analysis, despite their intended use in practical structures. This study introduces metastructures with quasi-zero stiffness characteristics under high preloads by inducing local buckling. An optimization framework combining deep reinforcement learning and finite-element analysis is employed to derive an optimal model that considers both structural safety and quasi-zero stiffness characteristics. To validate the optimization results, quasi-zero stiffness metastructures are fabricated via 3D printing, and compression and vibration experiments are conducted. The fabricated metastructures exhibit quasi-zero stiffness characteristics under a high target preload along with outstanding vibration reduction performance, even in the low-frequency range.

5.
Acta Pharmacol Sin ; 44(5): 984-998, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36450791

RESUMEN

The proliferation and migration of vascular smooth muscle cells (VSMCs) after vascular injury lead to neointimal hyperplasia, thus aggravating vascular diseases. However, the molecular mechanisms underlying neointima formation are not fully elucidated. Extracellular vesicles (EVs) are mediators of various intercellular communications. The potential of EVs as regulators in cardiovascular diseases has raised significant interest. In the current study we investigated the role of circulating small extracellular vesicles (csEVs), the most abundant EVs (1010 EVs/mL serum) in VSMC functions. csEVs were prepared from bovine, porcine or rat serum. We showed that incubation with csEVs (0.5 × 1010-2 × 1010) dose-dependently enhanced the proliferation and migration of VSMCs via the membrane phosphatidylserine (PS). In rats with ligation of right carotid artery, we demonstrated that application of csEVs in the ligated vessels aggravated neointima formation via interaction of membrane PS with injury. Furthermore, incubation with csEVs markedly enhanced the phosphorylation of AXL and MerTK in VSMCs. Pretreatment with BSM777607 (pan-TAM inhibitor), bemcentinib (AXL inhibitor) or UNC2250 (MerTK inhibitor) blocked csEV-induced proliferation and migration of VSMCs. We revealed that csEV-activated AXL and MerTK shared the downstream signaling pathways of Akt, extracellular signal-regulated kinase (ERK) and focal adhesion kinase (FAK) that mediated the effects of csEVs. We also found that csEVs increased the expression of AXL through activation of transcription factor YAP, which might constitute an AXL-positive feedback loop to amplify the signals. Finally, we demonstrated that dual inhibition of AXL/MerTK by ONO-7475 (0.1 µM) effectively hindered csEV-mediated proliferation and migration of VSMCs in ex vivo mouse aorta injury model. Based on these results, we propose an essential role for csEVs in proliferation and migration of VSMCs and highlight the feasibility of dual AXL/MerTK inhibitors in the treatment of vascular diseases.


Asunto(s)
Vesículas Extracelulares , Músculo Liso Vascular , Animales , Bovinos , Ratones , Ratas , Tirosina Quinasa c-Mer/metabolismo , Movimiento Celular , Proliferación Celular , Células Cultivadas , Vesículas Extracelulares/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Neointima/metabolismo , Porcinos , Enfermedades Vasculares/tratamiento farmacológico , Enfermedades Vasculares/metabolismo
6.
Sensors (Basel) ; 22(5)2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35270959

RESUMEN

Acoustic Doppler current profilers (ADCPs) were developed to acquire water current velocities, as well as depth-dependent echo intensities. As the backscattering strength of an underwater object can be estimated from the measured echo intensity, the ADCP can be used to estimate plankton populations and distributions. In this study, the backscattering strength of bubble clusters in a water tank was estimated using the commercial ADCP as a proof-of-concept. Specifically, the temporal variations in the backscattering strength and the duration of bubble existence were quantitatively evaluated. Additionally, the PDSL (population density spectrum level) and VF (void fraction) of the artificial bubbles were characterized based on the obtained distribution characteristics using a PDPA (phase Doppler particle analyzer).


Asunto(s)
Acústica , Agua
7.
Int J Mol Sci ; 23(3)2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35163322

RESUMEN

Acute ischemic stroke is the leading cause of morbidity and mortality worldwide. Recombinant tissue plasminogen activator (rtPA) is the only agent clinically approved by FDA for patients with acute ischemic stroke. However, delayed treatment of rtPA (e.g., more than 3 h after stroke onset) exacerbates ischemic brain damage by causing intracerebral hemorrhage and increasing neurotoxicity. In the present study, we investigated whether the neuroprotant otaplimastat reduced delayed rtPA treatment-evoked neurotoxicity in male Sprague Dawley rats subjected to embolic middle cerebral artery occlusion (eMCAO). Otaplimastat reduced cerebral infarct size and edema and improved neurobehavioral deficits. In particular, otaplimastat markedly reduced intracerebral hemorrhagic transformation and mortality triggered by delayed rtPA treatment, consequently extending the therapeutic time window of rtPA. We further found that ischemia-evoked extracellular matrix metalloproteases (MMPs) expression was closely correlated with cerebral hemorrhagic transformation and brain damage. In ischemic conditions, delayed rtPA treatment further increased brain injury via synergistic expression of MMPs in vascular endothelial cells. In oxygen-glucose-deprived endothelial cells, otaplimastat suppressed the activity rather than protein expression of MMPs by restoring the level of tissue inhibitor of metalloproteinase (TIMP) suppressed in ischemia, and consequently reduced vascular permeation. This paper shows that otaplimastat under clinical trials is a new drug which can inhibit stroke on its own and extend the therapeutic time window of rtPA, especially when administered in combination with rtPA.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Acetamidas , Animales , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Hemorragia Cerebral/tratamiento farmacológico , Hemorragia Cerebral/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Fibrinolíticos/uso terapéutico , Humanos , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo , Masculino , Metaloproteinasas de la Matriz/metabolismo , Quinazolinas/uso terapéutico , Quinazolinonas , Ratas , Ratas Sprague-Dawley , Accidente Cerebrovascular/metabolismo , Terapia Trombolítica , Activador de Tejido Plasminógeno
8.
Gut Liver ; 16(2): 246-258, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34737242

RESUMEN

BACKGROUND/AIMS: Heme oxygenase-1 (HO-1) plays a central role in cellular defense against inflammatory insults, and its induction in macrophages potentiates their efferocytic activity. In this study, we explored the potential role of macrophage HO-1 in the resolution of experimentally induced colitis. METHODS: To induce colitis, male C57BL/6 mice were treated with 2% dextran sulfate sodium (DSS) in the drinking water for 7 days. To investigate efferocytosis, apoptotic colon epithelial CCD 841 CoN cells were coincubated with bone marrow-derived macrophages (BMDMs). RESULTS: Administration of the HO-1 inhibitor zinc protoporphyrin IX (ZnPP) blunted the resolution of DSS-induced intestinal inflammation and expression of the proresolving M2 macrophage marker CD206. BMDMs treated with apoptotic colonic epithelial cells showed significantly elevated expression of HO-1 and its regulator Nrf2. Under the same experimental conditions, the proportion of CD206-expressing macrophages was also enhanced. ZnPP treatment abrogated the upregulation of CD206 expression in BMDMs engulfing apoptotic colonic epithelial cells. This result was verified with BMDMs isolated from HO-1-knockout mice. BMDMs, when stimulated with lipopolysaccharide, exhibited increased expression of CD86, a marker of M1 macrophages. Coculture of lipopolysaccharide-stimulated BMDMs with apoptotic colonic epithelial cell debris dampened the expression of CD86 as well as the pro-inflammatory cytokines in an HO-1-dependent manner. Genetic ablation as well as pharmacologic inhibition of HO-1 significantly reduced the proportion of efferocytic BMDMs expressing the scavenger receptor CD36. CONCLUSIONS: HO-1 plays a key role in the resolution of experimentally induced colitis by modulating the polarization of macrophages.


Asunto(s)
Colitis , Hemo-Oxigenasa 1 , Animales , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Sulfato de Dextran , Humanos , Lipopolisacáridos/efectos adversos , Lipopolisacáridos/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL
9.
Biomed Pharmacother ; 145: 112441, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34813997

RESUMEN

OBJECTIVE: Obesity-induced inflamed visceral adipose tissue (VAT) secretes pro-inflammatory cytokines thereby promoting systemic inflammation and insulin resistance which further exacerbate obesity-associated nonalcoholic fatty liver disease (NAFLD). Transforming growth factor (TGF)-ß /Smad3 signaling plays a crucial role in the inflammatory events within the VAT. Here, we investigate whether SP-1154, a novel synthetic verbenone derivative, can inhibit TGF-ß/Smad3 signaling thereby exhibiting a therapeutic effect against obesity-induced inflamed VAT and subsequent NAFLD in high-fat diet-induced mice. METHODS: NAFLD was induced by a high-fat diet (60% fat) for 20 weeks using the male C57BL/6 mice. SP-1154 (50 mg/kg) was orally given daily for 20 weeks. In vivo VAT- and systemic inflammation were measured by using 18F-fluorodeoxyglucose positron emission tomography and C-reactive protein levels. Both insulin tolerance- and glucose tolerance test were performed to assess the status of insulin resistance and glucose intolerance. Histological and molecular analyses were performed on harvested liver and VAT. KEY FINDINGS: SP-1154 inhibited TGF-ß/Smad3 signaling pathway and remarkably suppressed high-fat diet-induced VAT inflammation and its related systemic inflammation. Furthermore, SP-1154 significantly improved insulin sensitivity with glucose homeostasis and reduced hepatic steatosis. SP-1154 significantly improves VAT inflammation and obesity-related NAFLD. CONCLUSION: Our novel findings support the potential use of SP-1154 as a therapeutic drug for obesity and its related NAFLD by targeting the inflamed VAT.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Animales , Dieta Alta en Grasa/efectos adversos , Prueba de Tolerancia a la Glucosa , Inflamación/tratamiento farmacológico , Inflamación/patología , Resistencia a la Insulina , Grasa Intraabdominal/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/etiología , Obesidad/complicaciones , Tomografía de Emisión de Positrones , Proteína smad3/metabolismo
10.
Artículo en Inglés | MEDLINE | ID: mdl-33815562

RESUMEN

HemoHIM is a medicinal herbal preparation of Angelica gigas Nakai (Apiaceae), Cnidium officinale Makino (Umbelliferae), and Paeonia lactiflora Pallas (Paeoniaceae) designed for immune regulation. In the present study, the memory-enhancing effects of a standardized extract (HemoHIM) on scopolamine-induced memory impairment in a murine model was investigated. To induce amnesia, scopolamine (1 mg/kg) was intraperitoneally (i.p.) injected into mice 30 min before the start of behavioral tests. The Y-maze, novel object recognition test (NORT), and passive avoidance task (PAT) were used to evoke memory functions. HemoHIM significantly improved scopolamine-induced memory impairment in ICR mice, which was evidenced by an improvement of spontaneous alternation in the Y-maze, recognition index in NORT, and latency time in PAT. To elucidate the possible mechanism, the cholinergic activity and mRNA levels of choline acetyltransferase (ChAT), muscarinic acetylcholine receptor (mAchR), brain-derived neurotrophic factor (BDNF), and cAMP response element-binding protein (CREB) were measured using reverse transcription (RT-PCR) and western blot analyses, respectively. HemoHIM treatment attenuated the scopolamine-induced hyperactivation of acetylcholinesterase (AchE) activity. In addition, ChAT, mAchR, and CREB mRNA levels were increased in the hippocampus compared with the scopolamine group. Furthermore, HemoHIM treatment resulted in elevated BDNF protein expression. These results indicate that HemoHIM may exert antiamnesic activity by increasing Ach and inhibiting AchE in the hippocampus. In addition, HemoHIM has therapeutic potential by upregulating ChAT, mAchR, and BDNF, which is apparently mediated by activation of the CREB and ERK signaling pathways.

11.
Antioxidants (Basel) ; 10(3)2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33803551

RESUMEN

Taurine chloramine (TauCl) is an endogenous anti-inflammatory substance which is derived from taurine, a semi-essential sulfur-containing ß-amino acid found in some foods including meat, fish, eggs and milk. In general, TauCl as well as its parent compound taurine downregulates production of tissue-damaging proinflammatory mediators, such as chemokines and cytokines in many different types of cells. In the present study, we investigated the protective effects of TauCl on experimentally induced colon inflammation. Oral administration of TauCl protected against mouse colitis caused by 2,4,6-trinitrobenzene sulfonic acid (TNBS). TauCl administration attenuated apoptosis in the colonic mucosa of TNBS-treated mice. This was accompanied by reduced expression of an oxidative stress marker, 4-hydroxy-2-nonenal and proinflammatory molecules including tumor necrosis factor-α, interleukin-6 and cyclooxygenase-2 in mouse colon. TauCl also inhibited activation of NFκB and STAT3, two key transcription factors mediating proinflammatory signaling. Notably, the protective effect of TauCl on oxidative stress and inflammation in the colon of TNBS-treated mice was associated with elevated activation of Nrf2 and upregulation of its target genes encoding heme oxygenase-1, NAD(P)H:quinone oxidoreductase, glutamate cysteine ligase catalytic subunit, and glutathione S-transferase. Taken together, these results suggest that TauCl exerts the protective effect against colitis through upregulation of Nrf2-dependent cytoprotective gene expression while blocking the proinflammatory signaling mediated by NFκB and STAT3.

12.
FASEB J ; 35(5): e21432, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33794029

RESUMEN

While failure in resolution of inflammation is considered to increase the risk of tumorigenesis, there is paucity of experimental as well as clinical evidence supporting this association. Resolvin D1 (RvD1) is a representative pro-resolving lipid mediator that is endogenously generated from docosahexaenoic acid for the resolution of inflammation. Here, we report a decreased level of RvD1 in the blood from colorectal cancer patients and mice having inflammation-induced colon cancer, suggesting plasma RvD1 as a potential biomarker for monitoring colorectal cancer. Administration of RvD1 attenuated dextran sodium sulfate (DSS)-induced colitis and azoxymethane (AOM) plus DSS-induced colorectal carcinogenesis by suppressing the production of interleukin-6 (IL-6) and IL-6-mediated chromosomal instability. The protective effect of RvD1 against chromosomal instability is associated with downregulation of IL-6-induced Cyclin D1 expression, which appears to be mediated by blocking the Janus kinase 2 (JAK2)-signal transducer and activator of transcription 3 (STAT3) axis. RvD1 inhibited the STAT3 signaling pathway by interfering with the binding of IL-6 to its receptor (IL-6R), suggesting the novel function of RvD1 as a putative IL-6R antagonist. Together, our findings suggest that RvD1-mediated blockade of IL-6 signal transmission may contribute to inhibition of chromosomal instability and tumorigenesis.


Asunto(s)
Carcinogénesis/patología , Colitis/complicaciones , Neoplasias del Colon/tratamiento farmacológico , Neoplasias Colorrectales/tratamiento farmacológico , Ácidos Docosahexaenoicos/farmacología , Interleucina-6/farmacología , Huso Acromático/efectos de los fármacos , Animales , Carcinogénesis/metabolismo , Estudios de Casos y Controles , Colitis/inducido químicamente , Colitis/patología , Neoplasias del Colon/etiología , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Neoplasias Colorrectales/etiología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Humanos , Masculino , Ratones , Ratones Endogámicos ICR , Huso Acromático/patología
13.
Front Immunol ; 12: 615803, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33633749

RESUMEN

Uncontrolled macrophage functions cause failure to resolve gut inflammation and has been implicated in the pathogenesis of inflammatory bowel disease (IBD). 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), one of endogenous lipid mediators formed from arachidonic acid during the inflammatory process, has been reported to terminate inflammation. However, the pro-resolving effect of 15d-PGJ2 on intestinal inflammation and underlying molecular mechanisms remain largely unknown. In the present study, we examined the effects of 15d-PGJ2 on the resolution of dextran sulfate sodium (DSS)-induced murine colitis that mimics human IBD. Pharmacologic inhibition of prostaglandin D synthase (PGDS) responsible for the synthesis of 15d-PGJ2 hampered resolution of inflammation in the colonic mucosa of mice treated with DSS. Notably, intraperitoneal injection of 15d-PGJ2 accelerated the resolution of experimentally induced colitis. 15d-PGJ2 treatment reduced the number of neutrophils and M1 macrophages, while it increased the proportion of M2 macrophages. Moreover, 15d-PGJ2 treated mice exhibited the significantly reduced proportion of macrophages expressing the pro-inflammatory cytokine, IL-6 with concomitant suppression of STAT3 phosphorylation in the colonic mucosa of mice administered 2.5% DSS in drinking water. Taken together, these findings clearly indicate that 15d-PGJ2, endogenously generated from arachidonic acid by cyclooxygenase-2 and PGDS activities in inflamed tissue, promotes resolution of intestinal colitis.


Asunto(s)
Antiinflamatorios/farmacología , Colitis/tratamiento farmacológico , Factores Inmunológicos/farmacología , Prostaglandina D2/análogos & derivados , Animales , Biomarcadores , Colitis/etiología , Colitis/patología , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Prostaglandina D2/farmacología , Factor de Transcripción STAT3 , Resultado del Tratamiento
14.
Biomol Ther (Seoul) ; 29(3): 331-341, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33455945

RESUMEN

Liver cancer is a common tumor and currently the second leading cause of cancer-related mortality globally. Liver cancer is highly related to inflammation as more than 90% of liver cancer arises in the context of hepatic inflammation, such as hepatitis B virus and hepatitis C virus infection. Despite significant improvements in the therapeutic modalities for liver cancer, patient prognosis is not satisfactory due to the limited efficacy of current drug therapies in anti-metastatic activity. Therefore, developing new effective anti-cancer agents with anti-metastatic activity is important for the treatment of liver cancer. In this study, SP-8356, a verbenone derivative with anti-inflammatory activity, was investigated for its effect on the growth and migration of liver cancer cells. Our findings demonstrated that SP-8356 inhibits the proliferation of liver cancer cells by inducing apoptosis and suppressing the mobility and invasion ability of liver cancer cells. Functional studies revealed that SP-8356 inhibits the mitogen-activated protein kinase and nuclear factor-kappa B signaling pathways, which are related to cell proliferation and metastasis, resulting in the downregulation of metastasis-related genes. Moreover, using an orthotopic liver cancer model, tumor growth was significantly decreased following treatment with SP-8356. Thus, this study suggests that SP-8356 may be a potential agent for the treatment of liver cancer with multimodal regulation.

15.
Environ Pollut ; 270: 116239, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33341551

RESUMEN

Facile modification is a common, but effective, option to improve the uptake removal capacity of of activated carbon (AC) against diverse target volatile organic compounds (VOCs; e.g., benzene) in gaseous streams. To help design the routes for such modification, this research built strategies to generate three types of modified ACs by incorporating amine/sulfur/amino-silane groups under solvothermal or microwave (MW) thermal conditions. The adsorption performance has been tested using a total of six types of AC sorbents (three modified + three pristine forms) for the capture of 1 Pa benzene (1 atm and 298 K). The obtained results are evaluated in relation to their textural properties and surface functionalities. Accordingly, the enhancement of AC surface basicity (e.g., point of zero charge (PZC) = 10.25), attained via the silylation process, is accompanied by the reduced adsorption of benzene (a weak base). In contrast, ACs amended with amine/sulfur (electron-donating) groups using the MW technique are found to acquire high surface acidity (PZC of 5.99-6.05) to exhibit significantly improved benzene capturing capability (relative to all others). Their uplifted performance is demonstrated in terms of key performance metrics such as breakthrough volume (BTV10%: 163 â†’ 443 L g-1), adsorption capacity (Q10%: 4.82 â†’ 13.6 mg g-1), and partition coefficient (PC10%: 0.516 â†’ 1.67 mol kg-1 Pa-1). Based on the kinetic analysis, the overall adsorption process is found to be governed by pore diffusion as the main rate-determining step, along with surface interaction mechanisms. The results of this research clearly support the critical role of surface chemistry of AC adsorbents and their textural properties in upgrading air/gas purification systems.


Asunto(s)
Benceno , Carbón Orgánico , Adsorción , Gases , Cinética
16.
Neurosci Lett ; 736: 135265, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32707070

RESUMEN

Neuronal cell death induced by ischemic injury has been attributed to glutamate receptor-mediated excitotoxicity, which is known to be accompanied by Ca2+ overload in the cytoplasm with concomitant activation of calcium-dependent mechanisms. More specifically, the overactivation of calpains, calcium-dependent cysteine proteases, have been associated with neuronal cell death following glutamate treatment. Previously, we observed decreased expression levels of F-box/WD repeat domain-containing protein 7 (Fbxw7) after the hyperactivation of cyclin-dependent kinase 5 (Cdk5) in cortical neurons challenged with glutamate. As determined using in vitro calpain cleavage assays, we demonstrated that the cleavage of Fbxw7 was mediated by activated calpain and attenuated in the presence of the calpain inhibitor, calpeptin. Using the rat middle cerebral artery occlusion model, we confirmed that Fbxw7 was indeed cleaved by activated calpain in the ipsilateral cortex. Based on our data, we hypothesize that the negative regulation of Fbxw7 by calpain may contribute to neuronal cell death and that the preservation of Fbxw7 by the inhibition of calpain, Cdk5, or both composes a novel protective mechanism following excitotoxicity.


Asunto(s)
Calpaína/metabolismo , Corteza Cerebral/metabolismo , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Neuronas/metabolismo , Animales , Muerte Celular/fisiología , Corteza Cerebral/patología , Quinasa 5 Dependiente de la Ciclina/metabolismo , Ácido Glutámico/metabolismo , Infarto de la Arteria Cerebral Media/patología , Neuronas/patología , Ratas
17.
Br J Cancer ; 123(6): 988-999, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32572171

RESUMEN

BACKGROUND: Gremlin-1 (GREM1), one of the bone morphogenetic protein antagonists, is involved in organogenesis, tissue differentiation and kidney development. However, the role of GREM1 in cancer progression and its underlying mechanisms remain poorly understood. METHODS: The role of GREM1 in breast cancer progression was assessed by measuring cell viability, colony formation, 3D tumour spheroid formation/invasion and xenograft tumour formation. Chromatin immunoprecipitation, a luciferase reporter assay and flow cytometry were performed to investigate the molecular events in which GREM1 is involved. RESULTS: GREM1 expression was elevated in breast cancer cells and tissues obtained from breast cancer patients. Its overexpression was associated with poor prognosis in breast cancer patients, especially those with oestrogen receptor (ER)-negative tumours. GREM1 knockdown inhibited the proliferation of breast cancer cells and xenograft mammary tumour growth, while its overexpression enhanced their viability, growth and invasiveness. Oestrogen-related receptor α (ERRα), an orphan nuclear hormone receptor, directly interacted with the GREM1 promoter and increased the expression of GREM1. GREM1 also enhanced the promoter activity of ESRRA encoding ERRα, comprising a positive feedback loop. Notably, GREM1 bound to and activated EGFR, a well-known upstream regulator of ERRα. CONCLUSIONS: Our study suggests that the GREM1-ERRα axis can serve as a potential therapeutic target in the management of cancer, especially ER-negative tumour.


Asunto(s)
Neoplasias de la Mama/etiología , Péptidos y Proteínas de Señalización Intercelular/fisiología , Receptores de Estrógenos/fisiología , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Línea Celular Tumoral , Progresión de la Enfermedad , Receptores ErbB/fisiología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Ratones , Ratones Endogámicos BALB C , Transducción de Señal/fisiología , Receptor Relacionado con Estrógeno ERRalfa
18.
Arch Biochem Biophys ; 689: 108413, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32473133

RESUMEN

The proviral integration site for Moloney murine leukemia virus (PIM) family of serine/threonine-specific kinases consist of three isoforms, that regulate proliferation, apoptosis, metabolism, invasion, and metastasis of cancer cells. Among these, abnormally elevated kinase activity of PIM-1 contributes to the progression of gastric cancer and predicts poor prognosis and a low survival rate in gastric cancer patients. In the present study, we found that resveratrol, one of the representative chemopreventive and anticarcinogenic phytochemicals, directly binds to PIM-1 and thereby inhibits its catalytic activity in human gastric cancer SNU-601 cells. This resulted in suppression of phosphorylation of the proapoptotic Bad, a known substrate of PIM-1. Resveratrol, by inactivating PIM-1, also inhibited anchorage-independent growth and proliferation of SNU-601 cells. To understand the molecular interaction between resveratrol and PIM-1, we conducted docking simulation and found that resveratrol directly binds to the PIM-1 at the ATP-binding pocket. In conclusion, the proapototic and anti-proliferative effects of resveratrol in gastric cancer cells are likely to be mediated through suppression of PIM-1 kinase activity, which may represent a novel mechanism underlying its chemopreventive and anticarcinogenic actions.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-pim-1/antagonistas & inhibidores , Resveratrol/farmacología , Neoplasias Gástricas/tratamiento farmacológico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Neoplasias Gástricas/metabolismo
19.
Int J Mol Sci ; 21(8)2020 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-32340317

RESUMEN

The corneal fibrotic responses to corneal damage often lead to severe corneal opacification thereby resulting in severe visual impairment or even blindness. The persistence of corneal opacity depends heavily on the activity of corneal myofibroblast. Myofibroblasts are opaque and synthesize a disorganized extracellular matrix (ECM) and thus promoting opacification. Cluster of differentiation 147 (CD147), a member of the immunoglobulin superfamily, is known to play important roles in the differentiation process from fibroblast to myofibroblast in damaged cornea and may therefore be an effective target for treatment of corneal opacity. Here, we examined the therapeutic efficacy of novel CD147 inhibiting verbenone derivative SP-8356 ((1S,5R)-4-(3,4-dihydroxy-5-methoxystyryl)-6,6-dimethylbicyclo[3.1.1]hept-3-en-2-one) on corneal fibrosis. Topical SP-8356 significantly reduced corneal haze and fibrosis in the alkali-burned cornea. In detail, SP-8356 inhibited both alpha-smooth muscle actin (α-SMA) expressing myofibroblast and its ECM-related products, such as matrix-metalloproteinase-9 and collagen type III and IV. Similar to SP-8356, topical corticosteroid (prednisolone acetate, PA) also reduced the ECM-related products and opacification. However, prednisolone acetate failed to decrease the population of α-SMA-positive corneal myofibroblast. In conclusion, SP-8356 is capable enough to prevent corneal haze by preventing pathological fibrosis after severe corneal damage. Therefore, SP-8356 could be a potentially promising therapeutic drug for corneal fibrosis.


Asunto(s)
Álcalis/efectos adversos , Basigina/antagonistas & inhibidores , Monoterpenos Bicíclicos/farmacología , Lesiones de la Cornea/etiología , Lesiones de la Cornea/patología , Quemaduras Oculares/etiología , Quemaduras Oculares/patología , Animales , Biopsia , Colágeno/metabolismo , Lesiones de la Cornea/tratamiento farmacológico , Citocinas/metabolismo , Modelos Animales de Enfermedad , Quemaduras Oculares/tratamiento farmacológico , Fibroblastos/metabolismo , Fibrosis , Inmunohistoquímica , Mediadores de Inflamación/metabolismo , Masculino , Ratas
20.
Molecules ; 25(8)2020 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-32294954

RESUMEN

(1S,5R)-4-((E)-3,4-dihydroxy-5-methoxystryryl)-6,6-dimethylbicylco[3.1.1]hept-3-en-2-one (SP-8356) is a novel (1S)-(-)-verbenone derivative that is currently in preclinical development for the treatment of ischemic stroke and atherosclerosis. This report aimed at characterization of the metabolism and pharmacokinetic properties of SP-8356. Following intravenous dose in rats and dogs, plasma concentrations of SP-8356 declined rapidly with high clearance (CL) and short half-life; after oral administration in both species, its plasma levels were below the quantitation limit. Fourteen circulating metabolites, formed by mono-oxygenation, demethylation, glucuronidation, catechol O-methylation, sulfation and oxidation (bioactivation) followed by glutathione (GSH) conjugation, were tentatively identified in both species. Urinary excretion of SP-8356 appeared to be minimal in rats, compared to its metabolites. GSH conjugate of SP-8356 was also formed during incubation with rat liver S9 fraction consistent with oxidative bioactivation; this bioactivation was almost completely inhibited by the cofactors for glucuronidation, sulfation and methylation, indicating that it may be abolished by competing metabolic reactions in the body. The human pharmacokinetics of SP-8356 was predicted to be similar to that of the animals based on the current in vitro metabolic stability results. In summary, rapid phase II metabolism appears to be mainly responsible for its suboptimal pharmacokinetics, such as high CL and low oral absorption. Because of competing metabolic reactions, potential safety risks related to SP-8356 bioactivation may be low.


Asunto(s)
Monoterpenos Bicíclicos/metabolismo , Monoterpenos Bicíclicos/farmacocinética , Hígado/efectos de los fármacos , Administración Intravenosa , Administración Oral , Animales , Monoterpenos Bicíclicos/administración & dosificación , Monoterpenos Bicíclicos/sangre , Cromatografía Líquida de Alta Presión , Perros , Glutatión/metabolismo , Semivida , Humanos , Hígado/metabolismo , Masculino , Tasa de Depuración Metabólica/fisiología , Farmacocinética , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...