Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(16): e2310956, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38196140

RESUMEN

Neuromorphic circuits that can function under extreme deformations are important for various data-driven wearable and robotic applications. Herein, biphasic liquid metal particle (BMP) with unprecedented stretchability and strain-insensitivity (ΔR/R0 = 1.4@ 1200% strain) is developed to realize a stretchable neuromorphic circuit that mimics a spike-based biologic sensory system. The BMP consists of liquid metal particles (LMPs) and rigid liquid metal particles (RLMPs), which are homogeneously mixed via spontaneous solutal-Marangoni mixing flow during coating. This permits facile single step patterning directly on various substrates at room temperature. BMP is highly conductive (2.3 × 106 S/m) without any post activation steps. BMP interconnects are utilized for a sensory system, which is capable of distinguishing variations of biaxial strains with a spiking neural network, thus demonstrating their potential for various sensing and signal processing applications.

2.
Small Methods ; 8(3): e2301294, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37988680

RESUMEN

Graphitic carbon-coated ZnPS3 is prepared via direct phosphosulfurization and high energy mechanical milling (HEMM) with multiwall carbon nanotubes (MWCNTs) and first introduced as an anode for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). The HEMM process with MWCNTs reduces the particle size of as-synthesized ZnPS3 bulk to 100-500 nm and yields the ≈5 nm thick graphitic carbon coated ZnPS3 nanoparticles, which are the nanocomposites of 5 nm sized nanocrystallites embedded in the amorphous matrix. The ZnPS3 electrode undergoes the combined conversion and alloying reactions with Li and Na ions and exhibits high initial discharge and charge capacities in both LIBs and SIBs. The graphitic carbon-coated ZnPS3 electrode exhibits excellent high-rate capability and long-term cyclability. The superior electrochemical properties can be attributed to high electrical conductivity, high Li ion mobility, and high reversibility and structural stability derived from the graphitic carbon-coated nanoparticles. This study demonstrates that the novel graphitic carbon-coated ZnPS3 is a promising anode material for both LIBs and SIBs and the graphitic carbon coating methodology by HEMM is expected to apply to the various metal oxides, sulfides, and phosphides.

3.
Cancer Commun (Lond) ; 44(1): 47-75, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38133457

RESUMEN

BACKGROUND: Transmembrane 4 L six family member 5 (TM4SF5) translocates subcellularly and functions metabolically, although it is unclear how intracellular TM4SF5 translocation is linked to metabolic contexts. It is thus of interests to understand how the traffic dynamics of TM4SF5 to subcellular endosomal membranes are correlated to regulatory roles of metabolisms. METHODS: Here, we explored the metabolic significance of TM4SF5 localization at mitochondria-lysosome contact sites (MLCSs), using in vitro cells and in vivo animal systems, via approaches by immunofluorescence, proximity labelling based proteomics analysis, organelle reconstitution etc. RESULTS: Upon extracellular glucose repletion following depletion, TM4SF5 became enriched at MLCSs via an interaction between mitochondrial FK506-binding protein 8 (FKBP8) and lysosomal TM4SF5. Proximity labeling showed molecular clustering of phospho-dynamic-related protein I (DRP1) and certain mitophagy receptors at TM4SF5-enriched MLCSs, leading to mitochondrial fission and autophagy. TM4SF5 bound NPC intracellular cholesterol transporter 1 (NPC1) and free cholesterol, and mediated export of lysosomal cholesterol to mitochondria, leading to impaired oxidative phosphorylation but intact tricarboxylic acid (TCA) cycle and ß-oxidation. In mouse models, hepatocyte Tm4sf5 promoted mitophagy and cholesterol transport to mitochondria, both with positive relations to liver malignancy. CONCLUSIONS: Our findings suggested that TM4SF5-enriched MLCSs regulate glucose catabolism by facilitating cholesterol export for mitochondrial reprogramming, presumably while hepatocellular carcinogenesis, recapitulating aspects for hepatocellular carcinoma metabolism with mitochondrial reprogramming to support biomolecule synthesis in addition to glycolytic energetics.


Asunto(s)
Proteínas de la Membrana , Mitocondrias , Animales , Ratones , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Movimiento Celular/fisiología , Mitocondrias/metabolismo , Lisosomas , Colesterol/metabolismo
4.
iScience ; 26(9): 107625, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37670786

RESUMEN

Transmembrane 4 L six family member 5 (TM4SF5) engages in non-alcoholic steatohepatitis (NASH), although its mechanistic roles are unclear. Genetically engineered Tm4sf5 mice fed ad libitum normal chow or high-fat diet for either an entire day or a daytime-feeding (DF) pattern were analyzed for metabolic parameters. Compared to wild-type and Tm4sf5-/- knockout mice, hepatocyte-specific TM4SF5-overexpressing Alb-TGTm4sf5-Flag (TG) mice showed abnormal food-intake behavior during the mouse-inactive daytime, increased apelin expression, increased food intake, and higher levels of NASH features. DF or exogenous apelin injection of TG mice caused severe hepatic pathology. TM4SF5-mediated abnormal food intake was correlated with peroxisomal ß-oxidation, mTOR activation, and autophagy inhibition, with triggering NASH phenotypes. Non-alcoholic fatty liver disease (NAFLD) patients' samples revealed a correlation between serum apelin and NAFLD activity score. Altogether, these observations suggest that hepatic TM4SF5 may cause abnormal food-intake behaviors to trigger steatohepatitic features via the regulation of peroxisomal ß-oxidation, mTOR, and autophagy.

5.
ACS Nano ; 17(15): 14678-14685, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37490514

RESUMEN

The imaging of microscopic biological samples faces numerous difficulties due to their small feature sizes and low-amplitude contrast. Metalenses have shown great promise in bioimaging as they have access to the complete complex information, which, alongside their extremely small and compact footprint and potential to integrate multiple functionalities into a single device, allow for miniaturized microscopy with exceptional features. Here, we design and experimentally realize a dual-mode metalens integrated with a liquid crystal cell that can be electrically switched between bright-field and edge-enhanced imaging on the millisecond scale. We combine the concepts of geometric and propagation phase to design the dual-mode metalens and physically encode the required phase profiles using hydrogenated amorphous silicon for operation at visible wavelengths. The two distinct metalens phase profiles include (1) a conventional hyperbolic metalens for bright-field imaging and (2) a spiral metalens with a topological charge of +1 for edge-enhanced imaging. We demonstrate the focusing and vortex generation ability of the metalens under different states of circular polarization and prove its use for biological imaging. This work proves a method for in vivo observation and monitoring of the cell response and drug screening within a compact form factor.

6.
Adv Mater ; 35(29): e2212098, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37129959

RESUMEN

Since the recognition of a significant oxygen-redox contribution to enhancing the capacity of Li transition-metal oxide cathodes, the oxygen release and subsequent structural variations together with capacity fading are critical issues to achieve better electrochemical performance. As most previous reports dealt with the structural degradation of cathodes after electrochemical cycling, it is fairly difficult to clarify how substantial the effect of lattice strain on the oxygen release will be while exclusively ruling out any electrochemical influences. By utilizing nanoindentation and mechanical surface polishing of single-crystal LiCoO2 and Li2 MnO3 , the local variations of both the atomic structure and oxygen content are scrutinized. Atomic-column-resolved imaging reveals that local LiM (M = Co and Mn) disordering and further amorphization are induced by mechanical strain. Moreover, substantial oxygen deficiency in the regions with these structural changes is directly identified by spectroscopic analyses. Ab initio density functional theory calculations also demonstrate energetically favorable formation of oxygen vacancies under shear strain. Providing direct evidence of oxygen release as a consequence of lattice strain, the findings in this work suggest that efficient strain relaxation will be of great significance for longevity of the anion framework in layered oxide cathodes.

7.
Sci Rep ; 13(1): 6219, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37069202

RESUMEN

Climate impacts on crop production components other than yield, i.e., area and cropping intensity, remain under-studied. Here, we clarify climate-crop area relationships by analyzing subnational census area and yield data for six multi-rice cropping countries in South and Southeast Asia. Extreme climate has a greater influence on the departure of area and yield from long-term trends than the average seasonal climate; precipitation and temperature in the sowing period of the wet/rainfed season have a greater influence on variability of the total annual area than in the growing period. In 57% of the country-scenario cases showing significant changes in area and/or yield, the directions of the area and yield responses to climate are not synchronized, deriving non-significant production changes under projected climates. Climate-area relationships not only limit production shocks, but also clarify uncertainties associated with climate mitigation of agricultural land, where area markedly affects the scale of mitigation.


Asunto(s)
Oryza , Productos Agrícolas , Cambio Climático , Clima , Asia , Agricultura
8.
Sci Rep ; 13(1): 3780, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36882468

RESUMEN

Low-temperature processing is important for improving the stability and performance of flexible quantum dot light-emitting diodes (QLEDs). In this study, QLEDs were fabricated using poly[bis(4-phenyl) (2,4,6-trimethylphenyl)amine] (PTAA) as a suitable hole transport layer (HTL) material owing to its low-temperature processability and vanadium oxide as the low-temperature solution-processable hole injection layer material. The maximum luminance and highest current efficiency of the QLEDs on a glass substrate with an optimal PTAA HTL was 8.9 × 104 Cd/m2 and 15.9 Cd/A, respectively, which was comparable to that of conventional devices. The QLEDs on a flexible substrate showed a maximum luminance of 5.4 × 104 Cd/m2 and highest current efficiency of 5.1 Cd/A. X-ray and ultraviolet photoelectron spectroscopies were used to investigate the chemical state and interfacial electronic structure according to the materials and the state changes of the HTL, respectively. The interfacial electronic structure showed that PTAA exhibited a better hole transport ability owing to its low hole injection barrier ([Formula: see text]). Moreover, QLEDs with a PTAA HTL could operate as photosensors under reverse bias conditions. These results indicate that the low-temperature-processed PTAA HTL is suitable for improving the performance of flexible QLEDs.

9.
Materials (Basel) ; 16(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36769979

RESUMEN

Charge imbalance in quantum-dot light-emitting diodes (QLEDs) causes emission degradation. Therefore, many studies focused on improving hole injection into the QLEDs-emitting layer owing to lower hole conductivity compared to electron conductivity. Herein, CuCo2O4 has a relatively higher hole conductivity than other binary oxides and can induce an improved charge balance. As the annealing temperature decreases, the valence band maximum (VBM) of CuCo2O4 shifts away from the Fermi energy level (EF), resulting in an enhanced hole injection through better energy level alignment with hole transport layer. The maximum luminance and current efficiency of the CuCo2O4 hole injection layer (HIL) of the QLED were measured as 93,607 cd/m2 and 11.14 cd/A, respectively, resulting in a 656% improvement in luminous performance of QLEDs compared to conventional metal oxide HIL-based QLEDs. These results demonstrate that the electrical properties of CuCo2O4 can be improved by adjusting the annealing temperature, suggesting that solution-processed spinel can be applied in various optoelectronic devices.

10.
Polymers (Basel) ; 15(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36772072

RESUMEN

Interface properties between charge transport and perovskite light-absorbing layers have a significant impact on the power conversion efficiency (PCE) of perovskite solar cells (PSCs). Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is a polyelectrolyte composite that is widely used as a hole transport layer (HTL) to facilitate hole transport from a perovskite layer to an anode. However, PEDOT:PSS must be modified using a functional additive because PSCs with a pristine PEDOT:PSS HTL do not exhibit a high PCE. Herein, we demonstrate an increase in the PCE of PSCs with a polyethylene glycol hexadecyl ether (Brij C10)-mixed PEDOT:PSS HTL. Photoelectron spectroscopy results show that the Brij C10 content becomes significantly high in the HTL surface composition with an increase in the Brij C10 concentration (0-5 wt%). The enhanced PSC performance, e.g., a PCE increase from 8.05 to 11.40%, is attributed to the reduction in non-radiative recombination at the interface between PEDOT:PSS and perovskite by the insulating Brij C10. These results indicate that the suppression of interface recombination is essential for attaining a high PCE for PSCs.

11.
PLoS One ; 18(2): e0281287, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36730322

RESUMEN

In recent decades, droughts have critically limited crop production, inducing food system shocks regionally and globally. It was estimated that crop yield variability in around one-third to three-fourths of global harvested areas is explained significantly by drought, revealing the notable vulnerability of crop systems to such climate-related stressors. However, understanding the key factors determining the global pattern of crop yield sensitivity to drought is limited. Here, we investigate a wide range of physical and socioeconomic factors that may determine crop-drought vulnerability in terms of yield sensitivity to drought based on the Standardized Precipitation Index at 0.5° resolution from 1981 to 2016 using machine learning approaches. The results indicate that the spatial variations of the crop-drought sensitivity were mainly explained by environmental factors (i.e., annual precipitation, soil water-holding capacity, soil acidity, annual potential evapotranspiration) and crop management factors (i.e., fertilizer rate, growing season). Several factors might have a positive effect in mitigating crop-drought vulnerability, such as annual precipitation, soil water holding capacity, and fertilizer rate. This study quantitatively assesses the possible effect of various determinants which might control crop vulnerability to drought. This understanding may provide insights for further studies addressing better crop vulnerability measures under future drought stress.


Asunto(s)
Sequías , Fertilizantes , Suelo , Clima , Estaciones del Año , Cambio Climático
12.
Adv Mater ; 35(4): e2204275, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35861641

RESUMEN

Biomaterials, which are substances interacting with biological systems, have been extensively explored to understand living organisms and obtain scientific inspiration (such as biomimetics). However, many aspects of biomaterials have yet to be fully understood. Because liquid crystalline phases are ubiquitously found in biomaterials (e.g., cholesterol, amphiphile, DNA, cellulose, bacteria), therefore, a wide range of research has made attempts to approach unresolved issues with the concept of liquid crystals (LCs). This review presents these studies that address the interactive correlation between biomaterials and LCs. Specifically, intrinsic LC behavior of various biomaterials such as DNA, cellulose nanocrystals, and bacteriaare first introduced. Second, the dynamics of bacteria in LC media are addressed, with focus on how bacteria interact with LCs, and how dynamics of bacteria can be controlled by exploiting the characteristics of LCs. Lastly, how the strong correlation between LCs and biomaterials has been leveraged to design a new class of biosensors with additional functionalities (e.g., self-regulated drug release) that are not available in previous systems is reviewed. Examples addressed in this review convey the message that the intersection between biomaterials and LCs offers deep insights into fundamental understanding of biomaterials, and provides resources for development of transformative technologies.


Asunto(s)
Técnicas Biosensibles , Cristales Líquidos , Cristales Líquidos/química , ADN/química , Bacterias , Liberación de Fármacos
13.
BMB Rep ; 55(12): 609-614, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36104259

RESUMEN

Mutation of the gene for adenomatous polyposis coli (APC), as seen in ApcMin/+ mice, leads to intestinal adenomas and carcinomas via stabilization of ß-catenin. Transmembrane 4 L six family member 5 (TM4SF5) is involved in the development of non-alcoholic fatty liver disease, fibrosis, and cancer. However, the functional linkage between TM4SF5 and APC or ß-catenin has not been investigated for pathological outcomes. After interbreeding ApcMin/+ with TM4SF5-overexpressing transgenic (TgTM4SF5) mice, we explored pathological outcomes in the intestines and livers of the offspring. The intestines of 26-week-old dual-transgenic mice (ApcMin/+:TgTM4SF5) had intramucosal adenocarcinomas beyond the single-crypt adenomas in ApcMin/+ mice. Additional TM4SF5 overexpression increased the stabilization of ß-catenin via reduced glycogen synthase kinase 3ß (GSK3ß) phosphorylation on Ser9. Additionally, the livers of the dualtransgenic mice showed distinct sinusoidal dilatation and features of hepatic portal hypertension associated with fibrosis, more than did the relatively normal livers in ApcMin/+ mice. Interestingly, TM4SF5 overexpression in the liver was positively linked to increased GSK3ß phosphorylation (opposite to that seen in the colon), ß-catenin level, and extracellular matrix (ECM) protein expression, indicating fibrotic phenotypes. Consistent with these results, 78-week-old TgTM4SF5 mice similarly had sinusoidal dilatation, immune cell infiltration, and fibrosis. Altogether, systemic overexpression of TM4SF5 aggravates pathological abnormalities in both the colon and the liver. [BMB Reports 2022; 55(12): 609-614].


Asunto(s)
Hipertensión Portal , Proteínas de la Membrana , Animales , Ratones , Proteína de la Poliposis Adenomatosa del Colon/genética , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , beta Catenina/metabolismo , Fibrosis , Glucógeno Sintasa Quinasa 3 beta , Proteínas de la Membrana/genética , Ratones Transgénicos
14.
Adv Mater ; 34(32): e2204159, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35702762

RESUMEN

Conventional electronic (e-) skins are a class of thin-film electronics mainly fabricated in laboratories or factories, which is incapable of rapid and simple customization for personalized healthcare. Here a new class of e-tattoos is introduced that can be directly implemented on the skin by facile one-step coating with various designs at multi-scale depending on the purpose of the user without a substrate. An e-tattoo is realized by attaching Pt-decorated carbon nanotubes on gallium-based liquid-metal particles (CMP) to impose intrinsic electrical conductivity and mechanical durability. Tuning the CMP suspension to have low-zeta potential, excellent wettability, and high-vapor pressure enables conformal and intimate assembly of particles directly on the skin in 10 s. Low-cost, ease of preparation, on-skin compatibility, and multifunctionality of CMP make it highly suitable for e-tattoos. Demonstrations of electrical muscle stimulators, photothermal patches, motion artifact-free electrophysiological sensors, and electrochemical biosensors validate the simplicity, versatility, and reliability of the e-tattoo-based approach in biomedical engineering.


Asunto(s)
Galio , Nanotubos de Carbono , Tatuaje , Atención a la Salud , Conductividad Eléctrica , Electrónica , Reproducibilidad de los Resultados
15.
Light Sci Appl ; 11(1): 118, 2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35487908

RESUMEN

Taking inspiration from beautiful colors in nature, structural colors produced from nanostructured metasurfaces have shown great promise as a platform for bright, highly saturated, and high-resolution colors. Both plasmonic and dielectric materials have been employed to produce static colors that fulfil the required criteria for high-performance color printing, however, for practical applications in dynamic situations, a form of tunability is desirable. Combinations of the additive color palette of red, green, and blue enable the expression of further colors beyond the three primary colors, while the simultaneous intensity modulation allows access to the full color gamut. Here, we demonstrate an electrically tunable metasurface that can represent saturated red, green, and blue pixels that can be dynamically and continuously controlled between on and off states using liquid crystals. We use this to experimentally realize ultrahigh-resolution color printing, active multicolor cryptographic applications, and tunable pixels toward high-performance full-color reflective displays.

16.
Nano Lett ; 22(1): 188-195, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34941273

RESUMEN

We investigated the role of graphene interfaces in strengthening and toughening of the Cu-graphene nanocomposite by a combination of in situ transmission electron microscopy (TEM) deformation and molecular dynamics (MD) simulations. In situ TEM directly showed that dislocation plasticity is strongly confined within single Cu grains by the graphene interfaces and grain boundaries. The weak Cu-graphene interfacial bonding induces stress decoupling, which results in independent plastic deformation of each Cu layer. As confirmed by the MD simulation, the localized deformation made by such constrained dislocation plasticity results in the nucleation and growth of voids at the graphene interface, which acts as a precursor for crack. The graphene interfaces also effectively block crack propagation promoted by easy delamination of Cu layers dissipating the elastic strain energy. The toughening mechanisms revealed by the present study will provide valuable insights into the optimization of the mechanical properties of metal-graphene nanolayered composites.

17.
Nano Converg ; 8(1): 23, 2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34370114

RESUMEN

Laser three-dimensional (3D) manufacturing technologies have gained substantial attention to fabricate 3D structured electrochemical rechargeable batteries. Laser 3D manufacturing techniques offer excellent 3D microstructure controllability, good design flexibility, process simplicity, and high energy and cost efficiencies, which are beneficial for rechargeable battery cell manufacturing. In this review, notable progress in development of the rechargeable battery cells via laser 3D manufacturing techniques is introduced and discussed. The basic concepts and remarkable achievements of four representative laser 3D manufacturing techniques such as selective laser sintering (or melting) techniques, direct laser writing for graphene-based electrodes, laser-induced forward transfer technique and laser ablation subtractive manufacturing are highlighted. Finally, major challenges and prospects of the laser 3D manufacturing technologies for battery cell manufacturing will be provided.

18.
Sci Adv ; 7(15)2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33827821

RESUMEN

The rapid detection of biological and chemical substances in real time is particularly important for public health and environmental monitoring and in the military sector. If the process of substance detection to visual reporting can be implemented into a single miniaturized sensor, there could be a profound impact on practical applications. Here, we propose a compact sensor platform that integrates liquid crystals (LCs) and holographic metasurfaces to autonomously sense the existence of a volatile gas and provide an immediate visual holographic alarm. By combining the advantage of the rapid responses to gases realized by LCs with the compactness of holographic metasurfaces, we develop ultracompact gas sensors without additional complex instruments or machinery to report the visual information of gas detection. To prove the applicability of the compact sensors, we demonstrate a metasurface-integrated gas sensor on safety goggles via a one-step nanocasting process that is attachable to flat, curved, and flexible surfaces.

19.
Adv Mater ; 33(11): e2008353, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33527502

RESUMEN

Native extracellular matrix (ECM) can exhibit cyclic nanoscale stretching and shrinking of ligands to regulate complex cell-material interactions. Designing materials that allow cyclic control of changes in intrinsic ligand-presenting nanostructures in situ can emulate ECM dynamicity to regulate cellular adhesion. Unprecedented remote control of rapid, cyclic, and mechanical stretching ("ON") and shrinking ("OFF") of cell-adhesive RGD ligand-presenting magnetic nanocoils on a material surface in five repeated cycles are reported, thereby independently increasing and decreasing ligand pitch in nanocoils, respectively, without modulating ligand-presenting surface area per nanocoil. It is demonstrated that cyclic switching "ON" (ligand nanostretching) facilitates time-regulated integrin ligation, focal adhesion, spreading, YAP/TAZ mechanosensing, and differentiation of viable stem cells, both in vitro and in vivo. Fluorescence resonance energy transfer (FRET) imaging reveals magnetic switching "ON" (stretching) and "OFF" (shrinking) of the nanocoils inside animals. Versatile tuning of physical dimensions and elements of nanocoils by regulating electrodeposition conditions is also demonstrated. The study sheds novel insight into designing materials with connected ligand nanostructures that exhibit nanocoil-specific nano-spaced declustering, which is ineffective in nanowires, to facilitate cell adhesion. This unprecedented, independent, remote, and cytocompatible control of ligand nanopitch is promising for regulating the mechanosensing-mediated differentiation of stem cells in vivo.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Fenómenos Mecánicos , Nanoestructuras , Células Madre/citología , Células Madre/efectos de los fármacos , Adhesión Celular , Humanos , Ligandos , Factores de Tiempo
20.
Nat Food ; 2(1): 19-27, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37117661

RESUMEN

Climate warming poses challenges for food production at low latitudes, particularly in arid regions. Sudan, where wheat demand could triple by 2050, has the world's hottest wheat-growing environments, and observed yield declines in hot seasons are prompting the national government to prepare for a warming of 1.5-4.2 °C. Using advanced crop modelling under different climate and socioeconomic scenarios, we show that despite the use of adjusted sowing dates and existing heat-tolerant varieties, by 2050, Sudan's domestic production share may decrease from 16.0% to 4.5-12.2%. In the relatively cool northern region, yields will need to increase by 3.1-4.7% per year, at non-compounding rates, to meet demand. In the hot central and eastern regions, improvements in heat tolerance are essential, and yields must increase by 0.2-2.7% per year to keep pace with climate warming. These results indicate the potential contribution of climate change adaptation measures and provide targets for addressing the wheat supply challenge.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...