Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4166, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755146

RESUMEN

Failure of proper ventricular trabeculation is often associated with congenital heart disease. Support from endocardial cells, including the secretion of extracellular matrix and growth factors is critical for trabeculation. However, it is poorly understood how the secretion of extracellular matrix and growth factors is initiated and regulated by endocardial cells. We find that genetic knockout of histone deacetylase 3 in the endocardium in mice results in early embryo lethality and ventricular hypotrabeculation. Single cell RNA sequencing identifies significant downregulation of extracellular matrix components in histone deacetylase 3 knockout endocardial cells. Secretome from cultured histone deacetylase 3 knockout mouse cardiac endothelial cells lacks transforming growth factor ß3 and shows significantly reduced capacity in stimulating cultured cardiomyocyte proliferation, which is remarkably rescued by transforming growth factor ß3 supplementation. Mechanistically, we identify that histone deacetylase 3 knockout induces transforming growth factor ß3 expression through repressing microRNA-129-5p. Our findings provide insights into the pathogenesis of congenital heart disease and conceptual strategies to promote myocardial regeneration.


Asunto(s)
Endocardio , Histona Desacetilasas , Ratones Noqueados , MicroARNs , Miocitos Cardíacos , Animales , Endocardio/metabolismo , Ratones , MicroARNs/metabolismo , MicroARNs/genética , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Miocitos Cardíacos/metabolismo , Factor de Crecimiento Transformador beta3/metabolismo , Factor de Crecimiento Transformador beta3/genética , Proliferación Celular , Miocardio/metabolismo , Células Endoteliales/metabolismo , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/metabolismo , Cardiopatías Congénitas/patología , Matriz Extracelular/metabolismo , Femenino
2.
bioRxiv ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-37886504

RESUMEN

BACKGROUND: Trabeculation, a key process in early heart development, is the formation of myocardial trabecular meshwork. The failure of trabeculation often leads to embryonic lethality. Support from endocardial cells, including the secretion of extracellular matrix (ECM) and growth factors is critical for trabeculation; however, it is unknown how the secretion of ECM and growth factors is initiated and regulated by endocardial cells. METHODS: Various cellular and mouse models in conjunction with biochemical and molecular tools were employed to study the role of histone deacetylase 3 (HDAC3) in the developing endocardium. RESULTS: We found that genetic deletion of Hdac3 in endocardial cells in mice resulted in early embryo lethality presenting as a hypotrabeculation cardiac phenotype. Single cell RNA sequencing identified several ECM components including collagens that were significantly downregulated in Hdac3 knockout (KO) endocardial cells. When cultured with supernatant from Hdac3 KO mouse cardiac endothelial cells (MCECs), wild-type mouse embryonic cardiomyocytes showed decreased proliferation, suggesting that growth signaling from Hdac3 KO MCECs is disrupted. Subsequent transcriptomic analysis revealed that transforming growth factor ß3 (TGFß3) was significantly downregulated in Hdac3 KO MCECs and Hdac3 cardiac endothelial KO hearts. Mechanistically, we identified that microRNA (miR)-129-5p was significantly upregulated in Hdac3 KO MCECs and Hdac3 cardiac endothelial KO hearts. Overexpression of miR-129-5p repressed Tgfß3 expression in wild-type MCECs, whereas knockdown of miR-129-5p restored Tgfß3 expression in Hdac3 KO MCECs. CONCLUSION: Our findings reveal a critical signaling pathway in which endocardial HDAC3 promotes trabecular myocardium growth by stimulating TGFß signaling through repressing miR-129-5p, providing novel insights into the etiology of congenital heart disease and conceptual strategies to promote myocardial regeneration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...