Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pharmacol Sci ; 154(2): 77-85, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38246731

RESUMEN

PURPOSE: Acute kidney injury (AKI) is characterized by reduced renal function, oxidative stress, inflammation, and renal fibrosis. CU06-1004, an endothelial cell dysfunction blocker, exhibits anti-inflammatory effects by reducing vascular permeability in pathological conditions. However, the potential effects of CU06-1004 on AKI have not been investigated. We investigated the renoprotective effect of CU06-1004 against oxidative stress, inflammation, and fibrotic changes in a folic acid-induced AKI model. METHODS: AKI was induced by intraperitoneal injection of high dose (250 mg/kg) folic acid in mice. CU06-1004 was orally administered a low (10 mg/kg) or high dose (20 mg/kg). RESULTS: CU06-1004 ameliorated folic acid-induced AKI by decreasing serum blood urea nitrogen and creatinine levels, mitigating histological abnormalities, and decreasing tubular injury markers such as kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin in folic acid-induced AKI mice. Additionally, CU06-1004 alleviated folic acid-induced oxidative stress by reducing 4-hydroxynonenal and malondialdehyde levels. Furthermore, it attenuated macrophage infiltration and suppressed the expression of the proinflammatory factors, including tumor necrosis factor-α, intercellular adhesion molecule-1, and vascular cell adhesion protein-1. Moreover, CU06-1004 mitigated folic acid-induced tubulointerstitial fibrosis by decreasing α-smooth muscle actin and transforming growth factor-ß expression. CONCLUSION: These findings suggest CU06-1004 as a potential therapeutic agent for folic acid-induced AKI.


Asunto(s)
Lesión Renal Aguda , Saponinas , Animales , Ratones , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/prevención & control , Inflamación/tratamiento farmacológico , Ácido Fólico/farmacología
2.
Front Pharmacol ; 14: 1275749, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38035024

RESUMEN

Inhibition of angiogenesis is considered a promising therapeutic approach for cancer treatment. Our previous genetic research showed that the use of a cell-penetrating peptide to inhibit the pleckstrin homology (PH) domain of 3-phosphoinositide-dependent kinase 1 (PDK1) was a viable approach to suppress pathological angiogenesis. Herein, we synthesized and characterized a novel small molecule, CU05-1189, based on our prior study and present evidence for the first time that this compound possesses antiangiogenic properties both in vitro and in vivo. The computational analysis showed that CU05-1189 can interact with the PH domain of PDK1, and it significantly inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration, invasion, and tube formation in human umbilical vein endothelial cells without apparent toxicity. Western blot analysis revealed that the Akt signaling pathway was specifically inhibited by CU05-1189 upon VEGF stimulation, without affecting other VEGF receptor 2 downstream molecules or cytosolic substrates of PDK1, by preventing translocation of PDK1 to the plasma membrane. We also found that CU05-1189 suppressed VEGF-mediated vascular network formation in a Matrigel plug assay. More importantly, CU05-1189 had a good pharmacokinetic profile with a bioavailability of 68%. These results led to the oral administration of CU05-1189, which resulted in reduced tumor microvessel density and growth in a xenograft mouse model. Taken together, our data suggest that CU05-1189 may have great potential and be a promising lead as a novel antiangiogenic agent for cancer treatment.

3.
J Inflamm (Lond) ; 20(1): 13, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37024954

RESUMEN

BACKGROUND: Acute lung injury (ALI) is a life-threatening condition that fundamentally results from inflammation and edema in the lung. There are no effective treatments available for clinical use. Previously, we found that as a leakage blocker CU06-1004 prevents endothelial barrier disruption and enhances endothelial cell survival under inflammatory conditions. In this study, we aimed to elucidate the effect of CU06-1004 in terms of prevention of inflammation and endothelial dysfunction in an ALI mouse model. METHODS: An ALI model was established that included intraperitoneal administration of LPS. Following LPS administration, survival rates and lung wet/dry ratios were assessed. Histological analysis was performed using hematoxylin and eosin staining. Scanning electron microscopy was used to examine alveolar and capillary morphology. Cytokines such as IL-1ß, IL-6, and TNF-α were analyzed using an ELISA assay of bronchoalveolar lavage fluid (BALF) and serum. Neutrophil infiltration was observed in BALF using Wright-Giemsa staining, and myeloperoxidase (MPO) activity was assessed. Pulmonary vascular leakage was confirmed using Evans-blue dye, and the expression of junctional proteins was evaluated using immunofluorescent staining. Expression of adhesion molecules was observed using immunofluorescence staining. NF-κB activation was determined using immunohistochemistry and western blot analysis. RESULTS: Survival rates and pulmonary edema were ameliorated with CU06-1004 treatment. Administration of CU06-1004 normalized histopathological changes induced by LPS, and alveolar-capillary wall thickening was reduced. Compared with the LPS-challenged group, after CU06-1004 treatment, the infiltration of immune cells was decreased in the BALF, and MPO activity in lung tissue was reduced. Similarly, in the CU06-1004 treatment group, pro-inflammatory cytokines were significantly inhibited in both BALF and serum. Evans-blue leakage was reduced, and the expression of junctional proteins was recovered in the CU06-1004 group. Adhesion molecules were downregulated and NF-κB activation was inhibited after CU06-1004 treatment. CONCLUSIONS: These results suggested that CU06-1004 had a therapeutic effect against LPS-induced ALI via alleviation of the inflammatory response and protection of vascular integrity.

4.
Allergy ; 78(5): 1333-1346, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36789476

RESUMEN

BACKGROUND: Over-release of the vasoactive peptide bradykinin (BK) due to mutation in the SERPING1 gene is the leading cause of hereditary angioedema (HAE). BK directly activates endothelial cells and increases vascular permeability by disrupting the endothelial barrier, leading to angioedema affecting face, lips, extremities, gastrointestinal tract, and larynx. Although various pharmacological treatment options for HAE became available during the last decade, they are presently limited and pose a major economic burden on patients. To identify additional therapeutic options for HAE, we evaluated the effect of CU06-1004, an endothelial dysfunction blocker, on BK-induced vascular hyperpermeability and the HAE murine model. METHODS: To investigate the effect of CU06-1004 on BK-induced vascular hyperpermeability in vivo, we pre-administrated WT mice with the drug and then induced vascular leakage through intravenous injection of BK and observed vascular alternation. Then, SERPING1 deficient mice were used for a HAE murine model. For an in vitro model, the HUVEC monolayer was pre-treated with CU06-1004 and then stimulated with BK. RESULTS: Bradykinin disrupted the endothelial barrier and formed interendothelial cell gaps, leading to hyperpermeability in vivo and in vitro. However, CU06-1004 treatment protected the endothelial barrier by suppressing Src and myosin light chain activation via BK and alleviated hyperpermeability. CONCLUSION: Our study shows that CU06-1004 oral administration significantly reduced vascular hyperpermeability in the HAE murine model by protecting the endothelial barrier function against BK stimulation. Therefore, protecting endothelium against BK with CU06-1004 could serve as a potential prophylactic/therapeutic approach for HAE patients.


Asunto(s)
Angioedemas Hereditarios , Animales , Ratones , Angioedemas Hereditarios/tratamiento farmacológico , Angioedemas Hereditarios/genética , Proteína Inhibidora del Complemento C1/genética , Proteína Inhibidora del Complemento C1/farmacología , Bradiquinina/farmacología , Células Endoteliales , Modelos Animales de Enfermedad , Endotelio
5.
Fluids Barriers CNS ; 20(1): 9, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36726154

RESUMEN

BACKGROUND: Age-related changes in the cerebrovasculature, including blood-brain barrier (BBB) disruption and vascular dementia, are emerging as potential risks for many neurodegenerative diseases. Therefore, the endothelial cells that constitute the cerebrovasculature may play key roles in preventing brain injury. Our previous study showed that CU06-1004, an endothelial cell dysfunction blocker, prevented vascular leakage, enhanced vascular integrity in ischemic reperfusion injury, and promoted the normalization of tumor vasculature. Here, we evaluated the effects of CU06-1004 on age-related cerebrovascular functional decline in the aged mouse brain. RESULTS: In this study, we investigated the protective effects of CU06-1004 against oxidative stress-induced damage in human brain microvascular endothelial cells (HBMECs). HBMECs were treated with hydrogen peroxide (H2O2) to establish an oxidative stress-induced model of cellular injury. Compared with H2O2 treatment alone, pretreatment of HBMECs with CU06-1004 considerably reduced oxidative stress-induced cytotoxicity, reactive oxygen species generation, senescence-associated ß-galactosidase activity, senescence marker expression, and the expression levels of inflammatory proteins. Based on the observed cytoprotective effects of CU06-1004 in HBMECs, we examined whether CU06-1004 displayed protective effects against cerebrovascular aging in mice. Long-term administration of CU06-1004 alleviated age-associated cerebral microvascular rarefaction and cerebrovascular senescence in the aged mouse brain. CU06-1004 supplementation also reduced the extravasation of plasma IgG by improving BBB integrity in the aged mouse brain, associated with reductions in neuronal injury. A series of behavioral tests also revealed improved motor and cognitive functions in aged mice that received long-term CU06-1004 administration. CONCLUSIONS: These findings suggest that CU06-1004 may represent a promising therapeutic approach for delaying age-related cerebrovascular impairment and improving cognitive function in old age.


Asunto(s)
Barrera Hematoencefálica , Células Endoteliales , Humanos , Ratones , Animales , Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , Peróxido de Hidrógeno/metabolismo , Envejecimiento , Modelos Animales de Enfermedad
6.
Eur J Pharmacol ; 939: 175427, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36509133

RESUMEN

Retinal vascular diseases are the leading cause of blindness worldwide. These diseases have common disease mechanisms including vascular endothelial growth factor (VEGF) signaling, hypoxia, and inflammation. Treatment of these diseases with laser therapy, anti-VEGF injections and/or steroids has significantly improved clinical outcomes. However, these strategies do not address the underlying cause of the pathology and may have harmful side effects. Pathological processes that damage retinal vessels result in vascular occlusion and impairment of the barrier properties of retinal endothelial cells, leading to excessive vascular leakage. Therefore, a new therapeutic approach is needed for the treatment of retinal vascular disease. We were able to confirm that oral administration of CU06-1004, an endothelial dysfunction blocker, inhibited retinal vascular leakage induced by vascular endothelial growth factor (VEGF) and angiopoietin-2 (Ang2). Interestingly, oral administration of CU06-1004 prevented excessive vascular leakage in the diabetic retinopathy model. In addition, CU06-1004 inhibited angiogenesis and confirmed vascular stabilization in the oxygen-induced retinopathy model and laser-induced CNV model. Taken together, CU06-1004 could be a potential therapeutic agent for the treatment of retinal vascular diseases.


Asunto(s)
Retinopatía Diabética , Enfermedades de la Retina , Humanos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Permeabilidad Capilar , Células Endoteliales , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/complicaciones , Enfermedades de la Retina/metabolismo , Factores de Crecimiento Endotelial Vascular/metabolismo , Factores de Crecimiento Endotelial Vascular/farmacología , Retinopatía Diabética/tratamiento farmacológico , Retinopatía Diabética/etiología , Administración Oral
7.
Exp Mol Med ; 54(1): 23-34, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34997212

RESUMEN

Ischemia-reperfusion (I/R) injury accelerates the cardiomyocytes (CMs) death by oxidative stress, and thereby deteriorates cardiac function. There has been a paradigm shift in the therapeutic perspective more towards the prevention or amelioration of damage caused by reperfusion. Cardiac microvascular endothelial cells (CMECs) are more vulnerable to reperfusion injury and play the crucial roles more than CMs in the pathological process of early I/R injury. In this study, we investigate that CU06-1004, as a vascular leakage blocker, can improve cardiac function by inhibiting CMEC's hyperpermeability and subsequently reducing the neutrophil's plugging and infiltration in infarcted hearts. CU06-1004 was delivered intravenously 5 min before reperfusion and the rats were randomly divided into three groups: (1) vehicle, (2) low-CU06-1004 (1 mg/kg, twice at 24 h intervals), and (3) high-CU06-1004 (5 mg/kg, once before reperfusion). CU06-1004 treatment reduced necrotic size and cardiac edema by enhancing vascular integrity, as demonstrated by the presence of intact junction proteins on CMECs and surrounding pericytes in early I/R injury. It also decreased the expression of vascular cell adhesion molecule 1 (VCAM-1) on CMECs, resulting in reduced infiltration of neutrophils and macrophages. Echocardiography showed that the CU06-1004 treatment significantly improved cardiac function compared with the vehicle group. Interestingly, single high-dose treatment with CU06-1004 provided a greater functional improvement than repetitive low-dose treatment until 8 weeks post I/R. These findings demonstrate that CU06-1004 enhances vascular integrity and improves cardiac function by preventing lethal myocardial I/R injury. It can provide a promising therapeutic option, as potential adjunctive therapy to current reperfusion strategies.


Asunto(s)
Daño por Reperfusión Miocárdica , Animales , Edema/metabolismo , Células Endoteliales/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Ratas , Saponinas , Remodelación Ventricular
8.
J Neuroinflammation ; 17(1): 48, 2020 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-32019570

RESUMEN

BACKGROUND: Ischemic stroke is a main cause of mortality. Blood-brain barrier (BBB) breakdown appears to play a critical role in inflammation in patients with ischemic stroke and acceleration of brain injury. The BBB has a protective function and is composed of endothelial cells, pericytes, and astrocytes. In ischemic stroke treatments, regulation of vascular endothelial growth factor (VEGF)-A and vascular endothelial growth factor receptor (VEGFR)-2 is a crucial target despite adverse effects. Our previous study found that loss of C-type lectin family 14 member A (CLEC14A) activated VEGF-A/VEGFR-2 signaling in developmental and tumoral angiogenesis. Here, we evaluate the effects of BBB impairment caused by CLEC14A deficiency in ischemia-reperfusion injury. METHODS: In vitro fluorescein isothiocyanate (FITC)-dextran permeability, transendothelial electrical resistance (TEER) assay, and immunostaining were used to evaluate endothelial integrity. BBB permeability was assessed using Evans blue dye and FITC-dextran injection in Clec14a-/- (CLEC14A-KO) mice and wild-type mice. Middle cerebral artery occlusion surgery and behavioral assessments were performed to evaluate the neurologic damage. The change of tight junctional proteins, adhesion molecules, pro-inflammatory cytokines, and microglial were confirmed by immunofluorescence staining, Western blotting, and quantitative reverse transcription polymerase chain reaction of brain samples. RESULTS: In endothelial cells, knockdown of CLEC14A increased FITC-dextran permeability and decreased transendothelial electrical resistance; the severity of this effect increased with VEGF treatment. Immunofluorescence staining revealed that tight junctional proteins were attenuated in the CLEC14A knockdown endothelial cells. Consistent with the in vitro results, CLEC14A-KO mice that were injected with Evans blue dye had cerebral vascular leakage at postnatal day 8; wild-type mice had no leakage. We used a middle cerebral artery occlusion model and found that CLEC14A-KO mice had severe infarcted brain and neurological deficits with upregulated VEGFR-2 expression. FITC-dextran leakage was present in CLEC14A-KO mice after ischemia-reperfusion, and the numbers of tight junctional molecules were significantly decreased. Loss of CLEC14A increased the pro-inflammatory response through adhesion molecule expression, and glial cells were activated. CONCLUSIONS: These results suggest that activation of VEGFR-2 in CLEC14A-KO mice aggravates ischemic stroke by exacerbating cerebral vascular leakage and increasing neuronal inflammation after ischemia-reperfusion injury.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Lectinas Tipo C/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Daño por Reperfusión/metabolismo , Animales , Barrera Hematoencefálica/patología , Encéfalo/metabolismo , Encéfalo/patología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Infarto de la Arteria Cerebral Media/genética , Infarto de la Arteria Cerebral Media/patología , Inflamación/metabolismo , Inflamación/patología , Lectinas Tipo C/genética , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Neuronas/patología , Permeabilidad , Daño por Reperfusión/genética , Daño por Reperfusión/patología
9.
Exp Mol Med ; 51(11): 1-11, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31723119

RESUMEN

MicroRNAs (miRs) are crucial regulators of vascular endothelial cell (EC) functions, including migration, proliferation, and survival. However, the role of most miRs in ECs remains unknown. Using RNA sequencing analysis, we found that miR-148a/b-3p expression was significantly downregulated during the differentiation of umbilical cord blood mononuclear cells into outgrowing ECs and that decreased miR-148a/b-3p levels were closely related to EC behavior. Overexpression of miR-148a/b-3p in ECs significantly reduced migration, filamentous actin remodeling, and angiogenic sprouting. Intriguingly, the effects of decreased miR-148a/b-3p levels were augmented by treatment with vascular endothelial growth factor (VEGF). Importantly, we found that miR-148a/b-3p directly regulated neuropilin-1 (NRP1) expression by binding to its 3'-untranslated region. In addition, because NRP1 is the coreceptor for VEGF receptor 2 (VEGFR2), overexpression of miR-148a/b-3p inhibited VEGF-induced activation of VEGFR2 and inhibited its downstream pathways, as indicated by changes to phosphorylated focal adhesion kinase (FAK), extracellular signal-regulated kinase (ERK), and p38 mitogen-activated protein kinase. Collectively, our results demonstrate that miR-148a/b-3p is a direct transcriptional regulator of NRP1 that mediates antiangiogenic pathways. These data suggest that miR-148a/b-3p is a therapeutic candidate for overcoming EC dysfunction and angiogenic disorders, including ischemia, retinopathy, and tumor vascularization.


Asunto(s)
Movimiento Celular/fisiología , Células Endoteliales/metabolismo , MicroARNs/metabolismo , Neuropilina-1/metabolismo , Regiones no Traducidas 3'/genética , Regiones no Traducidas 3'/fisiología , Western Blotting , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Movimiento Celular/genética , Proliferación Celular/genética , Proliferación Celular/fisiología , Biología Computacional , Regulación Neoplásica de la Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/fisiología , Células Endoteliales de la Vena Umbilical Humana , Humanos , MicroARNs/genética , Neuropilina-1/genética , Análisis de Secuencia de ARN , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...