Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(13): 16462-16473, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38513155

RESUMEN

Higher functionality should be achieved within the device-level switching characteristics to secure the operational possibility of mixed-signal data processing within a memristive crossbar array. This work investigated electroforming-free Ta/HfO2/RuO2 resistive switching devices for digital- and analog-type applications through various structural and electrical analyses. The multiphase reset behavior, induced by the conducting filament modulation and oxygen vacancy generation (annihilation) in the HfO2 layer by interacting with the Ta (RuO2) electrode, was utilized for the switching mode change. Therefore, a single device can manifest stable binary switching between low and high resistance states for the digital mode and the precise 8-bit conductance modulation (256 resistance values) via an optimized pulse application for the analog mode. An in-depth analysis of the operation in different modes and comparing memristors with different electrode structures validate the proposed mechanism. The Ta/HfO2/RuO2 resistive switching device is feasible for a mixed-signal processable memristive array.

2.
Small ; 20(25): e2306585, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38212281

RESUMEN

Compact but precise feature-extracting ability is core to processing complex computational tasks in neuromorphic hardware. Physical reservoir computing (RC) offers a robust framework to map temporal data into a high-dimensional space using the time dynamics of a material system, such as a volatile memristor. However, conventional physical RC systems have limited dynamics for the given material properties, restricting the methods to increase their dimensionality. This study proposes an integrated temporal kernel composed of a 2-memristor and 1-capacitor (2M1C) using a W/HfO2/TiN memristor and TiN/ZrO2/Al2O3/ZrO2/TiN capacitor to achieve higher dimensionality and tunable dynamics. The kernel elements are carefully designed and fabricated into an integrated array, of which performances are evaluated under diverse conditions. By optimizing the time dynamics of the 2M1C kernel, each memristor simultaneously extracts complementary information from input signals. The MNIST benchmark digit classification task achieves a high accuracy of 94.3% with a (196×10) single-layer network. Analog input mapping ability is tested with a Mackey-Glass time series prediction, and the system records a normalized root mean square error of 0.04 with a 20×1 readout network, the smallest readout network ever used for Mackey-Glass prediction in RC. These performances demonstrate its high potential for efficient temporal data analysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...