Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1253649, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37818371

RESUMEN

Introduction: Scurfy mice have a complete deficiency of functional regulatory T cells (Treg) due to a frameshift mutation in the Foxp3 gene. The impaired immune homeostasis results in a lethal lymphoproliferative disorder affecting multiple organs, including the liver. The autoimmune pathology in scurfy mice is in part accompanied by autoantibodies such as antinuclear antibodies (ANA). ANA are serological hallmarks of several autoimmune disorders including autoimmune liver diseases (AILD). However, the underlying pathogenesis and the role of Treg in AILD remain to be elucidated. The present study therefore aimed to characterize the liver disease in scurfy mice. Methods: Sera from scurfy mice were screened for ANA by indirect immunofluorescence assay (IFA) and tested for a wide range of AILD-associated autoantibodies by enzyme-linked immunosorbent assay, line immunoassay, and addressable laser bead immunoassay. CD4+ T cells of scurfy mice were transferred into T cell-deficient B6/nude mice. Monoclonal autoantibodies from scurfy mice and recipient B6/nude mice were tested for ANA by IFA. Liver tissue of scurfy mice was analyzed by conventional histology. Collagen deposition in scurfy liver was quantified via hepatic hydroxyproline content. Real-time quantitative PCR was used to determine fibrosis-related hepatic gene expression. Hepatic immune cells were differentiated by flow cytometry. Results: All scurfy mice produced ANA. AILD-associated autoantibodies, predominantly antimitochondrial antibodies, were detected at significantly higher levels in scurfy sera. CD4+ T cells from scurfy mice were sufficient to induce anti-dsDNA autoantibodies and ANA with an AILD-related nuclear envelope staining pattern. Liver histology revealed portal inflammation with bile duct damage and proliferation, as in primary biliary cholangitis (PBC), and interface hepatitis with portal-parenchymal necroinflammation, as found in autoimmune hepatitis (AIH). In scurfy liver, TNFα and fibrosis-related transcripts including Col1a1, Timp1, Acta2, Mmp2, and Mmp9 were upregulated. The level of proinflammatory monocytic macrophages (Ly-6Chi) was increased, while M2-type macrophages (CD206+) were downregulated compared to wildtype controls. Despite severe hepatic inflammation, fibrosis did not develop within 25 days, which is close to the lifespan of scurfy mice. Discussion: Our findings suggest that Treg-deficient scurfy mice spontaneously develop clinical, serological, and immunopathological characteristics of AILD with overlapping features of PBC and AIH.


Asunto(s)
Enfermedades del Tejido Conjuntivo , Hepatitis Autoinmune , Hepatopatías , Ratones , Animales , Linfocitos T Reguladores , Ratones Desnudos , Autoanticuerpos , Hepatopatías/metabolismo , Fibrosis , Enfermedades del Tejido Conjuntivo/metabolismo , Síndrome , Inflamación/metabolismo
2.
Cell Mol Gastroenterol Hepatol ; 15(4): 841-867, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36521660

RESUMEN

BACKGROUND & AIMS: Fibroblast activation protein (FAP) is expressed on activated fibroblast. Its role in fibrosis and desmoplasia is controversial, and data on pharmacological FAP inhibition are lacking. We aimed to better define the role of FAP in liver fibrosis in vivo and in vitro. METHODS: FAP expression was analyzed in mice and patients with fibrotic liver diseases of various etiologies. Fibrotic mice received a specific FAP inhibitor (FAPi) at 2 doses orally for 2 weeks during parenchymal fibrosis progression (6 weeks of carbon tetrachloride) and regression (2 weeks off carbon tetrachloride), and with biliary fibrosis (Mdr2-/-). Recombinant FAP was added to (co-)cultures of hepatic stellate cells (HSC), fibroblasts, and macrophages. Fibrosis- and inflammation-related parameters were determined biochemically, by quantitative immunohistochemistry, polymerase chain reaction, and transcriptomics. RESULTS: FAP+ fibroblasts/HSCs were α-smooth muscle actin (α-SMA)-negative and located at interfaces of fibrotic septa next to macrophages in murine and human livers. In parenchymal fibrosis, FAPi reduced collagen area, liver collagen content, α-SMA+ myofibroblasts, M2-type macrophages, serum alanine transaminase and aspartate aminotransferase, key fibrogenesis-related transcripts, and increased hepatocyte proliferation 10-fold. During regression, FAP was suppressed, and FAPi was ineffective. FAPi less potently inhibited biliary fibrosis. In vitro, FAP small interfering RNA reduced HSC α-SMA expression and collagen production, and FAPi suppressed their activation and proliferation. Compared with untreated macrophages, FAPi regulated macrophage profibrogenic activation and transcriptome, and their conditioned medium attenuated HSC activation, which was increased with addition of recombinant FAP. CONCLUSIONS: Pharmacological FAP inhibition attenuates inflammation-predominant liver fibrosis. FAP is expressed on subsets of activated fibroblasts/HSC and promotes both macrophage and HSC profibrogenic activity in liver fibrosis.


Asunto(s)
Hepatitis , Hepatopatías , Humanos , Ratones , Animales , Tetracloruro de Carbono/toxicidad , Cirrosis Hepática/metabolismo , Inflamación , Fibrosis , Colágeno/metabolismo , Fibroblastos/metabolismo , Macrófagos/metabolismo
3.
BMC Public Health ; 22(1): 410, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35227243

RESUMEN

BACKGROUND: Suicide is a serious worldwide public health concern, and South Korea has shown the highest suicide rate among Organisation for Economic Co-operation and Development (OECD) countries since 2003. Nevertheless, most previous Korean studies on suicide had limitations in investigating various social environment factors using long-term nationwide data. Thus, this study examined how various social environment characteristics are related to the suicide rate at the district-level, using nationwide longitudinal data over 11 years. METHODS: We used the district-level age-standardized suicide rate and a total of 12 annual social environment characteristics that represented socioeconomic, demographic, urbanicity, general health behaviors, and other environmental characteristics from 229 administrative districts in South Korea. A Bayesian hierarchical model with integrated Laplace approximations (INLA) was used to examine the spatiotemporal association between the rate of suicide and the social environment indicators selected for the study. RESULTS: In the total population, the indicators "% of population aged 65 and older eligible for the basic pension", "% vacant houses in the area", "% divorce", "% single elderly households", "% detached houses", "% current smokers", and "% of population with obesity" showed positive associations with the suicide rate. In contrast, "% of people who regularly participated in religious activities" showed negative associations with suicide rate. The associations between these social environment characteristics and suicide rate were generally more statistically significant in males and more urbanized areas, than in females and less urbanized areas; however, associations differed amongst age groups, depending on the social environment characteristic variable under study. CONCLUSIONS: This study investigated the complex role of social environments on suicide rate in South Korea and revealed that higher suicide rates were associated with lower values of socioeconomic status, physical exercise, and religious activities, and with higher social isolation and smoking practice. Our results can be used in the development of targeted suicide prevention policies.


Asunto(s)
Suicidio , Anciano , Teorema de Bayes , Divorcio , Femenino , Conductas Relacionadas con la Salud , Humanos , Masculino , República de Corea/epidemiología , Medio Social , Factores Socioeconómicos
4.
Hepatology ; 76(4): 1135-1149, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35218234

RESUMEN

BACKGROUND AND AIMS: Growing evidence suggests an important role of B cells in the development of NAFLD. However, a detailed functional analysis of B cell subsets in NAFLD pathogenesis is lacking. APPROACH AND RESULTS: In wild-type mice, 21 weeks of high fat diet (HFD) feeding resulted in NAFLD with massive macrovesicular steatosis, modest hepatic and adipose tissue inflammation, insulin resistance, and incipient fibrosis. Remarkably, Bnull (JHT) mice were partially protected whereas B cell harboring but antibody-deficient IgMi mice were completely protected from the development of hepatic steatosis, inflammation, and fibrosis. The common feature of JHT and IgMi mice is that they do not secrete antibodies, whereas HFD feeding in wild-type mice led to increased levels of serum IgG2c. Whereas JHT mice have no B cells at all, regulatory B cells were found in the liver of both wild-type and IgMi mice. HFD reduced the number of regulatory B cells and IL-10 production in the liver of wild-type mice, whereas these increased in IgMi mice. Livers of patients with advanced liver fibrosis showed abundant deposition of IgG and stromal B cells and low numbers of IL-10 expressing cells, compatible with our experimental data. CONCLUSIONS: B lymphocytes have both detrimental and protective effects in HFD-induced NAFLD. The lack of secreted pathogenic antibodies protects partially from NAFLD, whereas the presence of certain B cell subsets provides additional protection. IL-10-producing regulatory B cells may represent such a protective B cell subset.


Asunto(s)
Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Animales , Linfocitos B , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Fibrosis , Inmunoglobulina G , Inflamación/patología , Resistencia a la Insulina/fisiología , Interleucina-10 , Hígado/patología , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/patología
5.
Int J Epidemiol ; 51(1): 111-121, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-34386817

RESUMEN

BACKGROUND: Although urbanization is often an important topic in climate change studies, the complex effect of urbanization on heat vulnerability in urban and rural areas has rarely been studied. We investigated the disparate effects of urbanization on heat vulnerability in urban and rural areas, using nationwide data. METHODS: We collected daily weather data for all 229 administrative districts in South Korea (2011-17). Population density was applied as an urbanization indicator. We calculated the heat-mortality risk using a distributed lag nonlinear model and analysed the relationship with population density. We also examined district characteristics that can be related to the spatial heterogeneity in heat-mortality risk. RESULTS: We found a U-shaped association between population density and heat-mortality risk, with the highest risk for rural populations; in urban areas, risk increases with increasing population density. Higher heat-mortality risk was associated with a lower number of hospital beds per person and higher percentage of people requiring recuperation. The association between hospital beds and heat-mortality risk was prominent in high-density urban areas, whereas the association between the percentage of people requiring recuperation and heat-mortality risk was pronounced in rural areas. CONCLUSIONS: Our findings indicate that the association between population density and heat-mortality risk is different in urban and rural areas, and that district characteristics related to heat-mortality risk also differ by urbanicity. These results can contribute to understanding the complex role of urbanization on heat vulnerability and can provide evidence to policy makers for prioritizing resources.


Asunto(s)
Calor , Urbanización , Humanos , Densidad de Población , República de Corea/epidemiología , Población Rural , Población Urbana
6.
J Hepatol ; 76(4): 800-811, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34915054

RESUMEN

BACKGROUND & AIMS: Although long-chain omega-3 fatty acids (LCn-3FAs) regulate inflammatory pathways of relevance to non-alcoholic steatohepatitis (NASH), their susceptibility to peroxidation may limit their therapeutic potential. We compared the metabolism of eicosapentaenoic acid (EPA) with an engineered EPA derivative (icosabutate) in human hepatocytes in vitro and their effects on hepatic glutathione metabolism, oxidised lipids, inflammation, and fibrosis in a dietary mouse model of NASH, and in patients prone to fatty liver disease. METHODS: Oxidation rates and cellular partitioning of EPA and icosabutate were compared in primary human hepatocytes. Comparative effects of delayed treatment with either low- (56 mg/kg) or high-dose (112 mg/kg) icosabutate were compared with EPA (91 mg/kg) or a glucagon-like peptide 1 receptor agonist in a choline-deficient (CD), L-amino acid-defined NASH mouse model. To assess the translational potential of these findings, effects on elevated liver enzymes and fibrosis-4 (FIB-4) score were assessed in overweight, hyperlipidaemic patients at an increased risk of NASH. RESULTS: In contrast to EPA, icosabutate resisted oxidation and incorporation into hepatocytes. Icosabutate also reduced inflammation and fibrosis in conjunction with a reversal of CD diet-induced changes in the hepatic lipidome. EPA had minimal effect on any parameter and even worsened fibrosis in association with depletion of hepatic glutathione. In dyslipidaemic patients at risk of NASH, icosabutate rapidly normalised elevated plasma ALT, GGT and AST and reduced FIB-4 in patients with elevated ALT and/or AST. CONCLUSION: Icosabutate does not accumulate in hepatocytes and confers beneficial effects on hepatic oxidative stress, inflammation and fibrosis in mice. In conjunction with reductions in markers of liver injury in hyperlipidaemic patients, these findings suggest that structural engineering of LCn-3FAs offers a novel approach for the treatment of NASH. LAY SUMMARY: Long-chain omega-3 fatty acids are involved in multiple pathways regulating hepatic inflammation and fibrosis, but their susceptibility to peroxidation and use as an energy source may limit their clinical efficacy. Herein, we show that a structurally modified omega-3 fatty acid, icosabutate, overcame these challenges and had markedly improved antifibrotic efficacy in a mouse model of non-alcoholic steatohepatitis. A hepatoprotective effect of icosabutate was also observed in patients with elevated circulating lipids, in whom it led to rapid reductions in markers of liver injury.


Asunto(s)
Ácidos Grasos Omega-3 , Hepatitis , Enfermedad del Hígado Graso no Alcohólico , Animales , Biomarcadores/metabolismo , Butiratos , Modelos Animales de Enfermedad , Ácidos Grasos/metabolismo , Fibrosis , Glutatión/metabolismo , Hepatitis/patología , Humanos , Inflamación/metabolismo , Hígado/patología , Cirrosis Hepática/complicaciones , Cirrosis Hepática/etiología , Ratones , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/etiología
7.
Exp Ther Med ; 21(4): 349, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33732322

RESUMEN

Organic cation transporters (human, OCT; mouse, Oct) are responsible for the intracellular uptake and detoxification of a broad spectrum of endogenous and exogenous substrates. The OCT1 gene SLC22A1 (human; mouse, Scl22a1) is transactivated by hepatocyte nuclear factor 4α (human, HNF4α; mouse, Hnf4α). HNF4α is a master regulator of hepatocyte differentiation and is frequently associated with hepatocellular carcinoma (HCC). In addition, the downregulation of HNF4α is associated with enhanced fibrogenesis. Our recent study revealed that hepatocarcinogenesis and fibrosis were enhanced with the loss of Oct3 (gene, Slc22a3). Notably, differences in Hnf4α expression, and in cholestasis and fibrosis were also detected in Oct3-knockout (FVB.Slc22a3tm10pb, Oct3-/-) mice. To the best of our knowledge, no data exists on an interaction between Oct3 and Hnf4α. We hypothesised that loss of Oct3 may have an impact on Hnf4α expression. In the present study, gene expression analyses were performed in liver tissue from untreated Oct3-/- and wild type (FVB, WT) mice. C57BL/6, Oct3-/- and WT mice were treated with pro-fibrotic carbon tetrachloride (CCl4) or thioacetamide (TAA) for 6 weeks to chemically induce liver fibrosis. Cholestasis-associated fibrosis was mechanically generated in Oct3-/- and WT mice by bile duct ligation (BDL). Finally, stably OCT1- and OCT3-transfected tumour cell lines and primary murine hepatocytes were treated with the non-selective OCT inhibitor quinine and Hnf4α expression was quantified by qPCR and immunofluorescence. The results revealed that Hnf4α is one of the top upstream regulators in Oct3-/- mice. Hnf4α mRNA expression levels were downregulated in Oct3-/- mice compared with in WT mice during cholestatic liver damage as well as fibrogenesis. The downregulation of Hnf4α mRNA expression in fibrotic liver tissue was reversible within 4 weeks. In stably OCT1- and OCT3-transfected HepG2 and HuH7 cells, and primary murine hepatocytes, functional inhibition of OCT led to the upregulation of Hnf4α mRNA expression. Hnf4α was revealed to be located in the cytosol of WT hepatocytes, whereas Oct3-/- hepatocytes exhibited nuclear Hnf4α expression. In conclusion, Hnf4α was downregulated in response to cholestasis and fibrosis, and functional inhibition of Oct may lead to the upregulation of Hnf4α.

8.
Angiogenesis ; 24(1): 57-65, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33037487

RESUMEN

Cirrhosis describes the development of excess fibrous tissue around regenerative nodules in response to chronic liver injury and usually leads to irreversible organ damage and end-stage liver disease. During the development of cirrhosis, the formation of collagenous scar tissue is paralleled by a reorganization and remodeling of the hepatic vascular system. To date, macrovascular remodeling in various cirrhosis models has been examined using three-dimensional (3D) imaging modalities, while microvascular changes have been studied mainly by two-dimensional (2D) light microscopic and electron microscopic imaging. Here, we report on the application of high-resolution 3D synchrotron radiation-based microtomography (SRµCT) for the study of the sinusoidal and capillary blood vessel system in three murine models of advanced parenchymal and biliary hepatic fibrosis. SRµCT facilitates the characterization of microvascular architecture and identifies features of intussusceptive angiogenesis in progressive liver fibrosis in a non-destructive 3D manner.


Asunto(s)
Imagenología Tridimensional , Cirrosis Hepática/diagnóstico por imagen , Microvasos/diagnóstico por imagen , Sincrotrones , Microtomografía por Rayos X , Animales , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
9.
Environ Int ; 142: 105868, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32593050

RESUMEN

Although several studies have reported that social isolation is one of the important health risk factors in the elderly population living in urban areas, its effects on vulnerability to heatwaves have been studied relatively less than climatic and other socio-economic factors. Thus, we investigated the association between social isolation levels and heatwave-related mortality risk in the elderly population in 119 urban administrative districts in Korea, using a time-series multi-city dataset (2008-2017). We used a two-stage analysis. In the first stage, we estimated the heatwave-related mortality risk in the elderly population (age ≥ 65) for each district using a time-series regression with a distributed lag model. Subsequently, in the second stage, we applied meta-regressions to pool the estimates across all the districts and estimate the association between social isolation variables and heatwave-related mortality risk. Our findings showed that higher social gathering and mutual aid levels were associated with lower heatwave-related mortality risk. Further, the lower percentage of single elderly households living in detached houses was also related to higher heatwave-related mortality risk. The associations were generally more evident in males compared to females. Our findings suggest that vulnerability to heatwave-related mortality among the urban, city-dwelling, elderly population may be amplified by higher isolation indicators.


Asunto(s)
Calor , Aislamiento Social , Anciano , Ciudades , Femenino , Humanos , Masculino , Mortalidad , República de Corea/epidemiología , Población Urbana
10.
J Craniofac Surg ; 31(2): 436-439, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32049922

RESUMEN

INTRODUCTION: Traditionally, galeal flap or cranialization was often used to reconstruct the skull base defect caused by trauma or tumor removal. However, in the case of huge skull base defect, galeal flap is not enough to block the communication between nasal cavity and intracranial space. In this study, authors suggest combination flap of galea and reverse temporalis muscle as a method for reconstruction of huge skull base defect. MATERIALS AND METHODS: From 2016 to 2019, retrospective review was conducted, assessing 7 patients with bone defect which is not just opening of frontal sinus but extends to frontal sinus and cribriform plate. Reconstructions were done by combination of galeal flap and reverse temporalis muscle flap transposition. RESULTS: Defects were caused by nasal cavity tumor with intracranial extension or brain tumor with nasal cavity extension. There was no major complication in every case. During the follow up period, no patient had signs of complication such as ascending infection, herniation and CSF rhinorrhea. Postoperative radiologic images of all patients that were taken at least 6 months after the surgery showed that flaps maintained the lining and the volume well. DISCUSSION: Conventional reconstruction of skull base defect with galeal flap is not effective enough to cover the large sized defect. In conclusion, galeal flap in combination with reverse temporalis muscle flap can effectively block the communication of nasal cavity and intracranium.


Asunto(s)
Cavidad Nasal/cirugía , Procedimientos de Cirugía Plástica , Base del Cráneo/cirugía , Adulto , Anciano , Femenino , Seno Frontal/cirugía , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Colgajos Quirúrgicos/cirugía
11.
Biochim Biophys Acta Mol Basis Dis ; 1866(1): 165582, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31676376

RESUMEN

Fibrosis is the hallmark of pathologic tissue remodelling in most chronic diseases. Despite advances in our understanding of the mechanisms of fibrosis, it remains uncured. Fibrogenic processes share conserved core cellular and molecular pathways across organs. In this study, we aimed to elucidate shared and organ-specific features of fibrosis using murine precision-cut tissue slices (PCTS) prepared from small intestine, liver and kidneys. PCTS displayed substantial differences in their baseline gene expression profiles: 70% of the extracellular matrix (ECM)-related genes were differentially expressed across the organs. Culture for 48 h induced significant changes in ECM regulation and triggered the onset of fibrogenesis in all PCTS in organ-specific manner. TGFß signalling was activated during 48 h culture in all PCTS. However, the degree of its involvement varied: both canonical and non-canonical TGFß pathways were activated in liver and kidney slices, while only canonical, Smad-dependent, cascade was involved in intestinal slices. The treatment with galunisertib blocked the TGFßRI/SMAD2 signalling in all PCTS, but attenuated culture-induced dysregulation of ECM homeostasis and mitigated the onset of fibrogenesis with organ-specificity. In conclusion, regardless the many common features in pathophysiology of organ fibrosis, PCTS displayed diversity in culture-induced responses and in response to the treatment with TGFßRI kinase inhibitor galunisertib, even though it targets a core fibrosis pathway. A clear understanding of the common and organ-specific features of fibrosis is the basis for developing novel antifibrotic therapies.


Asunto(s)
Fibrosis/patología , Cirrosis Hepática/patología , Hígado/patología , Animales , Fibrosis/tratamiento farmacológico , Fibrosis/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Hígado/efectos de los fármacos , Hígado/metabolismo , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Ratones , Ratones Endogámicos C57BL , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/farmacología , Quinolinas/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Proteína Smad2/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
12.
Sci Rep ; 9(1): 17463, 2019 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-31767938

RESUMEN

We previously demonstrated that a common dietary protein component, wheat amylase trypsin inhibitors (ATI), stimulate intestinal macrophages and dendritic cells via toll like receptor 4. Activation of these intestinal myeloid cells elicits an inflammatory signal that is propagated to mesenteric lymph nodes, and that can facilitate extraintestinal inflammation. Mice were fed a well-defined high fat diet, with (HFD/ATI) or without (HFD) nutritionally irrelevant amounts of ATI. Mice on HFD/ATI developed only mild signs of intestinal inflammation and myeloid cell activation but displayed significantly higher serum triglycerides and transaminases compared to mice on HFD alone. Moreover, they showed increased visceral and liver fat, and a higher insulin resistance. ATI feeding promoted liver and adipose tissue inflammation, with M1-type macrophage polarization and infiltration, and enhanced liver fibrogenesis. Gluten, the major protein component of wheat, did not induce these pathologies. Therefore, wheat ATI ingestion in minute quantities comparable to human daily wheat consumption exacerbated features of the metabolic syndrome and non-alcoholic steatohepatitis, despite its irrelevant caloric value.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico/etiología , Triticum/química , Inhibidores de Tripsina/efectos adversos , Alanina Transaminasa/sangre , Alimentación Animal/toxicidad , Animales , Colágeno/análisis , Dieta con Restricción de Grasas , Dieta Alta en Grasa/efectos adversos , Perfilación de la Expresión Génica , Prueba de Tolerancia a la Glucosa , Glútenes/administración & dosificación , Glútenes/toxicidad , Hipertrigliceridemia/etiología , Inflamación , Insulina/sangre , Resistencia a la Insulina , Grasa Intraabdominal/patología , Cirrosis Hepática/etiología , Cirrosis Hepática/patología , Masculino , Síndrome Metabólico/complicaciones , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/patología , Zeína/administración & dosificación
13.
Biochem Pharmacol ; 169: 113633, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31494146

RESUMEN

BACKGROUND: Liver fibrosis results from continuous inflammation and injury. Despite its high prevalence worldwide, no approved antifibrotic therapies exist. Omipalisib is a selective inhibitor of the PI3K/mTOR pathway that controls nutrient metabolism, growth and proliferation. It has shown antifibrotic properties in vitro. While clinical trials for idiopathic pulmonary fibrosis have been initiated, an in-depth preclinical evaluation is lacking. We evaluated omipalisib's effects on fibrogenesis using the ex vivo model of murine and human precision-cut tissue slices (PCTS). METHODS: Murine and human liver and jejunum PCTS were incubated with omipalisib up to 10 µM for 48 h. PI3K pathway activation was assessed through protein kinase B (Akt) phosphorylation and antifibrotic efficacy was determined via a spectrum of fibrosis markers at the transcriptional and translational level. RESULTS: During incubation of PCTS the PI3K pathway was activated and incubation with omipalisib prevented Akt phosphorylation (IC50 = 20 and 1.5 nM for mouse and human, respectively). Viability of mouse and human liver PCTS was compromised only at the high concentration of 10 and 1-5 µM, respectively. However, viability of jejunum PCTS decreased with 0.1 (mouse) and 0.01 µM (human). Spontaneously increased fibrosis related genes and proteins were significantly and similarly suppressed in mouse and in human liver PCTS. CONCLUSIONS: Omipalisib has antifibrotic properties in ex vivo mouse and human liver PCTS, but higher concentrations showed toxicity in jejunum PCTS. While the PI3K/mTOR pathway appears to be a promising target for the treatment of liver fibrosis, PCTS revealed likely side effects in the intestine at higher doses.


Asunto(s)
Cirrosis Hepática/tratamiento farmacológico , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP/fisiología , Adenosina Trifosfato/análisis , Animales , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfatidilinositol 3-Quinasas/fisiología , Piridazinas , Quinolinas/farmacología , Sulfonamidas/farmacología , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
14.
Am J Physiol Gastrointest Liver Physiol ; 317(2): G195-G202, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31241979

RESUMEN

Organic cation transporters (OCT) are responsible for the intracellular uptake and detoxification of a broad spectrum of endogenous and exogenous substrates. OCTs are downregulated in cholestasis, fibrosis, and hepatocellular carcinoma, but the underlying molecular mechanisms and downstream effects of OCT deletion are unknown. Oct3-knockout (Oct3-/-; FVB.Slc22a3tm10pb) and wild-type (WT; FVB) mice were subject to escalating doses of carbon tetrachloride (CCl4) or thioacetamide (TAA) for 6 wk to induce advanced parenchymal liver fibrosis. Secondary biliary fibrosis was generated by bile duct ligation. Liver fibrosis was assessed by hydroxyproline determination, quantitative Sirius red morphometry, and quantitative real-time PCR for fibrosis and inflammation-related genes. Ductular reaction was assessed by bile duct count per field of view in hematoxylin and eosin staining. General gene expression analyses were performed in liver tissue from untreated Oct3-/- and WT mice. Finally, primary murine hepatocytes were treated with the nonselective OCT inhibitor quinine, and transforming growth factor-ß1 (Tgfß1) protein expression was quantified by quantitative real-time PCR and Western blot. Oct3-/- mice developed significantly more fibrosis after bile duct ligation and CCl4 treatment compared with WT mice. Ductular reaction was enhanced in the long-term model. Concomitantly, Oct1 mRNA expression was downregulated during cholestatic and chemically (TAA and CCl4) induced fibrogenesis. The downregulation of Oct1 mRNA in fibrotic liver tissue reversed within 4 wk after TAA cessation. Gene expression analysis by next-generation sequencing revealed an enrichment of Tgfß1 target genes in Oct3-/- mice. Tgfß1 mRNA expression was significantly upregulated after chemically induced fibrosis (P < 0.001) in Oct3-/- compared with WT mice. Accordingly, in primary murine hepatocytes functional inhibition of OCT led to an upregulation of Tgfß1 mRNA expression. Loss of Oct3 promotes fibrogenesis by affecting Tgfß-mediated homeostasis in mice with chronic biliary and parenchymal liver damage and fibrosis.NEW & NOTEWORTHY We show for the first time that organic cation transporter 3 (Oct3) is not only downregulated in fibrosis but loss of Oct3 also leads to an upregulation of transforming growth factor-ß contributing to fibrosis progression.


Asunto(s)
Hepatocitos , Cirrosis Hepática , Factor 3 de Transcripción de Unión a Octámeros , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Proteínas de Transporte de Catecolaminas en la Membrana Plasmática/metabolismo , Colestasis/inmunología , Colestasis/metabolismo , Progresión de la Enfermedad , Regulación de la Expresión Génica , Hepatocitos/inmunología , Hepatocitos/metabolismo , Inflamación/metabolismo , Cirrosis Hepática/inmunología , Cirrosis Hepática/metabolismo , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/metabolismo , Ratones , Ratones Noqueados , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Activación Transcripcional , Regulación hacia Arriba
15.
Matrix Biol ; 68-69: 435-451, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29656147

RESUMEN

Liver fibrosis and in particular cirrhosis are the major causes of morbidity and mortality of patients with chronic liver disease. Their prevention or reversal have become major endpoints in clinical trials with novel liver specific drugs. Remarkable progress has been made with therapies that efficiently address the cause of the underlying liver disease, as in chronic hepatitis B and C. Highly effective antiviral therapy can prevent progression or even induce reversal in the majority of patients, but such treatment remains elusive for the majority of liver patients with advanced alcoholic or nonalcoholic steatohepatitis, genetic or autoimmune liver diseases. Moreover, drugs that would speed up fibrosis reversal are needed for patients with cirrhosis, since even with effective causal therapy reversal is slow or the disease may further progress. Therefore, highly efficient and specific antifibrotic agents are needed that can address advanced fibrosis, i.e., the detrimental downstream result of all chronic liver diseases. This review discusses targeted antifibrotic therapies that address molecules and mechanisms that are central to fibrogenesis or fibrolysis, including strategies that allow targeting of activated hepatic stellate cells and myofibroblasts and other fibrogenic effector cells. Focus is on collagen synthesis, integrins and cells and mechanisms specific including specific downregulation of TGFbeta signaling, major extracellular matrix (ECM) components, ECM-crosslinking, and ECM-receptors such as integrins and discoidin domain receptors, ECM-crosslinking and methods for targeted delivery of small interfering RNA, antisense oligonucleotides and small molecules to increase potency and reduce side effects. With an increased understanding of the biology of the ECM and liver fibrosis and an improved preclinical validation, the translation of these approaches to the clinic is currently ongoing. Application to patients with liver fibrosis and a personalized treatment is tightly linked to the development of noninvasive biomarkers of fibrosis, fibrogenesis and fibrolysis.


Asunto(s)
Cirrosis Hepática/tratamiento farmacológico , Terapia Molecular Dirigida/métodos , Transducción de Señal/efectos de los fármacos , Animales , Progresión de la Enfermedad , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Cirrosis Hepática/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
16.
PLoS One ; 13(3): e0192728, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29522534

RESUMEN

BACKGROUND AND AIMS: Hepatic cholesterol deposition drives inflammation and fibrosis in non-alcoholic steatohepatitis (NASH). The Niemann-Pick type C2 (NPC2) protein plays an important role in regulating intracellular cholesterol trafficking and homeostasis. We hypothesized that intravenous NPC2 supplementation reduces cholesterol accumulation, hepatic inflammation and fibrogenesis in a nutritional NASH rat model. METHODS: Rats were fed a high-fat, high-cholesterol (HFHC) diet for four weeks resulting in moderately severe NASH. Animals were treated with intravenous NPC2 or placebo twice weekly for either the last two weeks or the entire four weeks. End-points were liver/body- and spleen/body weight ratios, histopathological NASH scores, fibrosis, serum liver enzymes, cholesterol, lipoproteins, cytokines, and quantitative polymerase chain reaction derived hepatic gene expression related to cholesterol metabolism, inflammation, and fibrosis. RESULTS: HFHC rats developed hepatomegaly, non-fibrotic NASH histopathology, elevated liver enzymes, serum cholesterol, and pro-inflammatory cytokines. Their sterol regulatory element binding factor 2 (SREBF2) and low-density lipoprotein receptor (LDL-R) mRNAs were down-regulated compared with rats on standard chow. NPC2 did not improve liver weight, histopathology, levels of serum liver enzymes or pro-inflammatory tumor necrosis factor-α (TNFα), Interleukin (IL)-6, or IL-1ß in HFHC rats. Two weeks of NPC2 treatment lowered hepatic TNFα and COL1A1 mRNA expression. However, this effect was ultimately reversed following additional two weeks of treatment. Four weeks NPC2 treatment of rats raised ATP-binding cassette A1 (ABCA1) and low-density lipoprotein receptor (LDLR) mRNAs in the liver, concurrent with a strong tendency towards higher serum high-density lipoprotein (HDL). Furthermore, the peroxisome proliferator activated receptor-É£ (PPARG) gene expression was reduced. CONCLUSIONS: NPC2 proved inefficient at modifying robust hepatic NASH end-points in a HFHC NASH model. Nonetheless, our data suggest that hepatic ABCA1 expression and reverse cholesterol transport were upregulated by NPC2 treatment, thus presenting putative therapeutic effects in diseases associated with deregulated lipid metabolism.


Asunto(s)
Proteínas Portadoras/farmacología , Colesterol/metabolismo , Colágeno Tipo I/metabolismo , Glicoproteínas/farmacología , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , PPAR gamma/metabolismo , Animales , Transporte Biológico Activo/efectos de los fármacos , Cadena alfa 1 del Colágeno Tipo I , Citocinas/metabolismo , Grasas de la Dieta/efectos adversos , Grasas de la Dieta/farmacología , Modelos Animales de Enfermedad , Femenino , Péptidos y Proteínas de Señalización Intracelular , Hígado/patología , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/patología , Ratas , Ratas Wistar , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo
17.
EBioMedicine ; 29: 92-103, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29463471

RESUMEN

Chronic hepatitis leads to liver fibrosis and cirrhosis. Cirrhosis is a major cause of worldwide morbidity and mortality. Macrophages play a key role in fibrosis progression and reversal. However, the signals that determine fibrogenic vs fibrolytic macrophage function remain ill defined. We studied the role of interleukin-4 receptor α (IL-4Rα), a potential central switch of macrophage polarization, in liver fibrosis progression and reversal. We demonstrate that inflammatory monocyte infiltration and liver fibrogenesis were suppressed in general IL-4Rα-/- as well as in macrophage-specific IL-4Rα-/- (IL-4RαΔLysM) mice. However, with deletion of IL-4RαΔLysM spontaneous fibrosis reversal was retarded. Results were replicated by pharmacological intervention using IL-4Rα-specific antisense oligonucleotides. Retarded resolution was linked to the loss of M2-type resident macrophages, which secreted MMP-12 through IL-4 and IL-13-mediated phospho-STAT6 activation. We conclude that IL-4Rα signaling regulates macrophage functional polarization in a context-dependent manner. Pharmacological targeting of macrophage polarization therefore requires disease stage-specific treatment strategies. RESEARCH IN CONTEXT: Alternative (M2-type) macrophage activation through IL-4Rα promotes liver inflammation and fibrosis progression but speeds up fibrosis reversal. This demonstrates context dependent, opposing roles of M2-type macrophages. During reversal IL-4Rα induces fibrolytic MMPs, especially MMP-12, through STAT6. Liver-specific antisense oligonucleotides efficiently block IL-4Rα expression and attenuate fibrosis progression.


Asunto(s)
Subunidad alfa del Receptor de Interleucina-4/metabolismo , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Macrófagos/metabolismo , Transducción de Señal , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Expresión Génica , Subunidad alfa del Receptor de Interleucina-4/genética , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/etiología , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Metaloproteinasas de la Matriz/genética , Metaloproteinasas de la Matriz/metabolismo , Ratones , Ratones Noqueados , Células Mieloides/inmunología , Células Mieloides/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Células RAW 264.7 , Factor de Transcripción STAT6/metabolismo , Bazo/inmunología , Bazo/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
18.
Antioxid Redox Signal ; 28(2): 87-109, 2018 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-28635324

RESUMEN

AIMS: Nonalcoholic steatohepatitis (NASH) is characterized by steatosis, panlobular inflammation, liver fibrosis, and increased cardiovascular mortality. Dipeptidyl peptidase-4 inhibitors (gliptins) are indirect glucagon-like peptide 1 agonists with antidiabetic and anti-inflammatory activity, used for the treatment of type 2 diabetes. Their potential and underlying mechanisms to treat metabolic liver inflammation and fibrosis as well as the associated vascular dysfunction remain to be explored. RESULTS: In the methionine/choline-deficient (MCD) diet and Mdr2-/- models of NASH and liver fibrosis, treatment with sitagliptin and linagliptin significantly decreased parameters of steatosis and inflammation, which was accompanied by suppression of hepatic transcript levels reflecting metabolic inflammation and fibrosis, including SREBP-1c, FAS, TNFα, iNOS, α-SMA, Col1α1, and MMP-12. Moreover, gliptins reduced the number of liver infiltrating CD11b+Ly6Chi proinflammatory monocytes/macrophages and liver-resident F4/80+ macrophages, with an increase of Ym1+ alternative macrophages and (anti-inflammatory) macrophage markers Arg1 and IL-10. This was paralleled by decreased hepatic and aortic reactive oxygen species (ROS) production and NOX-2 mRNA expression, a normalization of endothelial dysfunction, cardiac NADPH oxidase activity, mitochondrial ROS formation, and whole blood oxidative burst in the MCD model. Innovation and Conclusions: Gliptins via suppression of inflammation decrease steatosis, apoptosis, oxidative stress, and vascular dysfunction in murine models of NASH and liver fibrosis, with mild direct antifibrotic properties. They reduce the numbers of liver and vascular inflammatory monocytes/macrophages and induce their alternative polarization, with beneficial effect on NASH-associated hepatic and cardiovascular complications. Therefore, gliptins qualify as drugs for treatment of NASH and associated liver fibrosis and cardiovascular complications. Antioxid. Redox Signal. 28, 87-109.


Asunto(s)
Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inflamación/inmunología , Inflamación/metabolismo , Activación de Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Estrés Oxidativo/efectos de los fármacos , Animales , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Biomarcadores , Dieta/efectos adversos , Modelos Animales de Enfermedad , Fibrosis , Expresión Génica , Inflamación/complicaciones , Inflamación/patología , Hígado/inmunología , Hígado/metabolismo , Hígado/patología , Ratones , Ratones Noqueados , Células Mieloides/inmunología , Células Mieloides/metabolismo , NADPH Oxidasa 2/genética , NADPH Oxidasa 2/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/patología , Especies Reactivas de Oxígeno/metabolismo
19.
Angiogenesis ; 20(3): 359-372, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28283856

RESUMEN

Nintedanib, a tyrosine kinase inhibitor approved for the treatment of idiopathic pulmonary fibrosis, has anti-fibrotic, anti-inflammatory, and anti-angiogenic activity. We explored the impact of nintedanib on microvascular architecture in a pulmonary fibrosis model. Lung fibrosis was induced in C57Bl/6 mice by intratracheal bleomycin (0.5 mg/kg). Nintedanib was started after the onset of lung pathology (50 mg/kg twice daily, orally). Micro-computed tomography was performed via volumetric assessment. Static lung compliance and forced vital capacity were determined by invasive measurements. Mice were subjected to bronchoalveolar lavage and histologic analyses, or perfused with a casting resin. Microvascular corrosion casts were imaged by scanning electron microscopy and synchrotron radiation tomographic microscopy, and quantified morphometrically. Bleomycin administration resulted in a significant increase in higher-density areas in the lungs detected by micro-computed tomography, which was significantly attenuated by nintedanib. Nintedanib significantly reduced lung fibrosis and vascular proliferation, normalized the distorted microvascular architecture, and was associated with a trend toward improvement in lung function and inflammation. Nintedanib resulted in a prominent improvement in pulmonary microvascular architecture, which outperformed the effect of nintedanib on lung function and inflammation. These findings uncover a potential new mode of action of nintedanib that may contribute to its efficacy in idiopathic pulmonary fibrosis.


Asunto(s)
Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Indoles/uso terapéutico , Microvasos/ultraestructura , Animales , Bleomicina , Proliferación Celular/efectos de los fármacos , Colágeno/metabolismo , Modelos Animales de Enfermedad , Fibrosis Pulmonar Idiopática/diagnóstico por imagen , Fibrosis Pulmonar Idiopática/patología , Fibrosis Pulmonar Idiopática/fisiopatología , Imagenología Tridimensional , Ratones Endogámicos C57BL , Microvasos/diagnóstico por imagen , Microvasos/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Neumonía/complicaciones , Neumonía/diagnóstico por imagen , Neumonía/patología , Neumonía/fisiopatología , Alveolos Pulmonares/efectos de los fármacos , Alveolos Pulmonares/patología , Alveolos Pulmonares/ultraestructura , Pruebas de Función Respiratoria , Microtomografía por Rayos X
20.
Methods Mol Biol ; 1559: 279-296, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28063051

RESUMEN

Fibrosis is the excessive accumulation of extracellular matrix components due to chronic injury, with collagens as predominant structural components. Liver fibrosis can progress to cirrhosis, which is characterized by a severe distortion of the delicate hepatic vascular architecture, the shunting of the blood supply away from hepatocytes and the resultant functional liver failure. Cirrhosis is associated with a highly increased morbidity and mortality and represents the major hard endpoint in clinical studies of chronic liver diseases. Moreover, cirrhosis is a strong cofactor of primary liver cancer. In vivo models are indispensable tools to study the cellular and molecular mechanisms of liver fibrosis and to develop specific antifibrotic therapies towards clinical translation. Here, we provide a detailed description of select optimized mouse models of liver fibrosis and state-of-the-art fibrosis readouts.


Asunto(s)
Modelos Animales de Enfermedad , Matriz Extracelular/patología , Histocitoquímica/métodos , Cirrosis Hepática/patología , Hígado/patología , Subfamilia B de Transportador de Casetes de Unión a ATP/deficiencia , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Animales , Compuestos Azo/química , Biomarcadores/metabolismo , Tetracloruro de Carbono , Colágeno/biosíntesis , Progresión de la Enfermedad , Matriz Extracelular/metabolismo , Expresión Génica , Humanos , Hidroxiprolina/biosíntesis , Hígado/metabolismo , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Tioacetamida , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...