Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Nature ; 626(8001): 1084-1093, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38355799

RESUMEN

The house mouse (Mus musculus) is an exceptional model system, combining genetic tractability with close evolutionary affinity to humans1,2. Mouse gestation lasts only 3 weeks, during which the genome orchestrates the astonishing transformation of a single-cell zygote into a free-living pup composed of more than 500 million cells. Here, to establish a global framework for exploring mammalian development, we applied optimized single-cell combinatorial indexing3 to profile the transcriptional states of 12.4 million nuclei from 83 embryos, precisely staged at 2- to 6-hour intervals spanning late gastrulation (embryonic day 8) to birth (postnatal day 0). From these data, we annotate hundreds of cell types and explore the ontogenesis of the posterior embryo during somitogenesis and of kidney, mesenchyme, retina and early neurons. We leverage the temporal resolution and sampling depth of these whole-embryo snapshots, together with published data4-8 from earlier timepoints, to construct a rooted tree of cell-type relationships that spans the entirety of prenatal development, from zygote to birth. Throughout this tree, we systematically nominate genes encoding transcription factors and other proteins as candidate drivers of the in vivo differentiation of hundreds of cell types. Remarkably, the most marked temporal shifts in cell states are observed within one hour of birth and presumably underlie the massive physiological adaptations that must accompany the successful transition of a mammalian fetus to life outside the womb.


Asunto(s)
Animales Recién Nacidos , Embrión de Mamíferos , Desarrollo Embrionario , Gástrula , Análisis de la Célula Individual , Imagen de Lapso de Tiempo , Animales , Femenino , Ratones , Embarazo , Animales Recién Nacidos/embriología , Animales Recién Nacidos/genética , Diferenciación Celular/genética , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Desarrollo Embrionario/genética , Gástrula/citología , Gástrula/embriología , Gastrulación/genética , Riñón/citología , Riñón/embriología , Mesodermo/citología , Mesodermo/enzimología , Neuronas/citología , Neuronas/metabolismo , Retina/citología , Retina/embriología , Somitos/citología , Somitos/embriología , Factores de Tiempo , Factores de Transcripción/genética , Transcripción Genética , Especificidad de Órganos/genética
2.
Cell ; 186(23): 5015-5027.e12, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37949057

RESUMEN

Embryonic development is remarkably robust, but temperature stress can degrade its ability to generate animals with invariant anatomy. Phenotypes associated with environmental stress suggest that some cell types are more sensitive to stress than others, but the basis of this sensitivity is unknown. Here, we characterize hundreds of individual zebrafish embryos under temperature stress using whole-animal single-cell RNA sequencing (RNA-seq) to identify cell types and molecular programs driving phenotypic variability. We find that temperature perturbs the normal proportions and gene expression programs of numerous cell types and also introduces asynchrony in developmental timing. The notochord is particularly sensitive to temperature, which we map to a specialized cell type: sheath cells. These cells accumulate misfolded protein at elevated temperature, leading to a cascading structural failure of the notochord and anatomic defects. Our study demonstrates that whole-animal single-cell RNA-seq can identify mechanisms for developmental robustness and pinpoint cell types that constitute key failure points.


Asunto(s)
Proteostasis , Pez Cebra , Animales , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Temperatura , Pez Cebra/crecimiento & desarrollo
3.
Nature ; 623(7988): 782-791, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37968389

RESUMEN

The maturation of single-cell transcriptomic technologies has facilitated the generation of comprehensive cellular atlases from whole embryos1-4. A majority of these data, however, has been collected from wild-type embryos without an appreciation for the latent variation that is present in development. Here we present the 'zebrafish single-cell atlas of perturbed embryos': single-cell transcriptomic data from 1,812 individually resolved developing zebrafish embryos, encompassing 19 timepoints, 23 genetic perturbations and a total of 3.2 million cells. The high degree of replication in our study (eight or more embryos per condition) enables us to estimate the variance in cell type abundance organism-wide and to detect perturbation-dependent deviance in cell type composition relative to wild-type embryos. Our approach is sensitive to rare cell types, resolving developmental trajectories and genetic dependencies in the cranial ganglia neurons, a cell population that comprises less than 1% of the embryo. Additionally, time-series profiling of individual mutants identified a group of brachyury-independent cells with strikingly similar transcriptomes to notochord sheath cells, leading to new hypotheses about early origins of the skull. We anticipate that standardized collection of high-resolution, organism-scale single-cell data from large numbers of individual embryos will enable mapping of the genetic dependencies of zebrafish cell types, while also addressing longstanding challenges in developmental genetics, including the cellular and transcriptional plasticity underlying phenotypic diversity across individuals.


Asunto(s)
Embrión de Mamíferos , Genética Inversa , Análisis de la Célula Individual , Pez Cebra , Animales , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genética Inversa/métodos , Transcriptoma/genética , Pez Cebra/embriología , Pez Cebra/genética , Mutación , Análisis de la Célula Individual/métodos , Notocorda/citología , Notocorda/embriología
4.
bioRxiv ; 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37066300

RESUMEN

The house mouse, Mus musculus, is an exceptional model system, combining genetic tractability with close homology to human biology. Gestation in mouse development lasts just under three weeks, a period during which its genome orchestrates the astonishing transformation of a single cell zygote into a free-living pup composed of >500 million cells. Towards a global framework for exploring mammalian development, we applied single cell combinatorial indexing (sci-*) to profile the transcriptional states of 12.4 million nuclei from 83 precisely staged embryos spanning late gastrulation (embryonic day 8 or E8) to birth (postnatal day 0 or P0), with 2-hr temporal resolution during somitogenesis, 6-hr resolution through to birth, and 20-min resolution during the immediate postpartum period. From these data (E8 to P0), we annotate dozens of trajectories and hundreds of cell types and perform deeper analyses of the unfolding of the posterior embryo during somitogenesis as well as the ontogenesis of the kidney, mesenchyme, retina, and early neurons. Finally, we leverage the depth and temporal resolution of these whole embryo snapshots, together with other published data, to construct and curate a rooted tree of cell type relationships that spans mouse development from zygote to pup. Throughout this tree, we systematically nominate sets of transcription factors (TFs) and other genes as candidate drivers of the in vivo differentiation of hundreds of mammalian cell types. Remarkably, the most dramatic shifts in transcriptional state are observed in a restricted set of cell types in the hours immediately following birth, and presumably underlie the massive changes in physiology that must accompany the successful transition of a placental mammal to extrauterine life.

5.
Development ; 148(11)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34061173

RESUMEN

During early embryogenesis, the vertebrate embryo extends from anterior to posterior because of the progressive addition of cells from a posteriorly localized neuromesodermal progenitor (NMp) population. An autoregulatory loop between Wnt and Brachyury/Tbxt is required for NMps to retain mesodermal potential and, hence, normal axis development. We recently showed that Hox13 genes help to support body axis formation and to maintain the autoregulatory loop, although the direct Hox13 target genes were unknown. Here, using a new method for identifying in vivo transcription factor-binding sites, we identified more than 500 potential Hox13 target genes in zebrafish. Importantly, we found two highly conserved Hox13-binding elements far from the tbxta transcription start site that also contain a conserved Tcf7/Lef1 (Wnt response) site. We show that the proximal of the two elements is sufficient to confer somitogenesis-stage expression to a tbxta promoter that, on its own, only drives NMp expression during gastrulation. Importantly, elimination of this proximal element produces shortened embryos due to aberrant formation of the most posterior somites. Our study provides a potential direct connection between Hox13 and regulation of the Wnt/Brachyury loop.


Asunto(s)
Proteínas Fetales/genética , Proteínas Fetales/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Animales , Sitios de Unión , Tipificación del Cuerpo , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Mesodermo/metabolismo , Somitos/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Vía de Señalización Wnt , Pez Cebra/embriología
6.
Development ; 147(22)2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33154036

RESUMEN

The early vertebrate embryo extends from anterior to posterior due to the addition of neural and mesodermal cells from a neuromesodermal progenitor (NMp) population located at the most posterior end of the embryo. In order to produce mesoderm throughout this time, the NMps produce their own niche, which is high in Wnt and low in retinoic acid. Using a loss-of-function approach, we demonstrate here that the two most abundant Hox13 genes in zebrafish have a novel role in providing robustness to the NMp niche by working in concert with the niche-establishing factor Brachyury to allow mesoderm formation. Mutants lacking both hoxa13b and hoxd13a in combination with reduced Brachyury activity have synergistic posterior body defects, in the strongest case producing embryos with severe mesodermal defects that phenocopy brachyury null mutants. Our results provide a new way of understanding the essential role of the Hox13 genes in early vertebrate development.This article has an associated 'The people behind the papers' interview.


Asunto(s)
Embrión no Mamífero/embriología , Proteínas de Homeodominio/metabolismo , Mesodermo/embriología , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Proteínas Fetales/genética , Proteínas Fetales/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
7.
Zebrafish ; 15(6): 648-651, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30256732

RESUMEN

In June 2018, I traveled to India to teach in a Tibetan Buddhist monastery under the auspices of the Emory-Tibet Science Initiative (ETSI), a program that brings aspects of science education to the three major Tibetan monastic universities in exile. My role was to teach developmental biology to the monks over a 9-day period, and I found zebrafish development to be an excellent vehicle for introducing them to both the wonder of embryonic development and to some of the most advanced findings in the field of developmental biology. I describe here my experiences, observations, and thoughts about how the monastic system will need to change if the monks are really to develop the ability to think like scientists.


Asunto(s)
Budismo , Biología Evolutiva/educación , Desarrollo Embrionario , Monjes/educación , Pez Cebra/embriología , Animales , Humanos , India , Tibet
8.
Elife ; 62017 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-29283341

RESUMEN

The vertebrate embryo undergoes a series of dramatic morphological changes as the body extends to form the complete anterior-posterior axis during the somite-forming stages. The molecular mechanisms regulating these complex processes are still largely unknown. We show that the Hippo pathway transcriptional coactivators Yap1 and Wwtr1 are specifically localized to the presumptive epidermis and notochord, and play a critical and unexpected role in posterior body extension by regulating Fibronectin assembly underneath the presumptive epidermis and surrounding the notochord. We further find that Yap1 and Wwtr1, also via Fibronectin, have an essential role in the epidermal morphogenesis necessary to form the initial dorsal and ventral fins, a process previously thought to involve bending of an epithelial sheet, but which we now show involves concerted active cell movement. Our results reveal how the Hippo pathway transcriptional program, localized to two specific tissues, acts to control essential morphological events in the vertebrate embryo.


Asunto(s)
Epidermis/embriología , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Morfogénesis , Notocorda/embriología , Transactivadores/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Fibronectinas/metabolismo , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Proteínas Señalizadoras YAP
9.
Dev Dyn ; 245(8): 874-80, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27153483

RESUMEN

BACKGROUND: With the exception of the head, the vertebrate embryonic body is formed progressively in an anterior-posterior direction, originating from a posteriorly located bipotential neural-mesodermal progenitor population. The T-box transcription factor Brachyury is expressed within the progenitors and is essential for the formation of the posterior mesoderm. A novel cold-sensitive mutant of Zebrafish Brachyury (ntla(cs) ) is described that allows exploration of the temporal role of this key factor. RESULTS: The ntla(cs) mutant is used to show that Ntla has an essential role during early gastrulation, but as gastrulation proceeds the importance of Ntla declines as Ntlb acquires a capacity to form the posterior mesoderm. Remarkably, ntla(cs) embryos held at the nonpermissive temperature just during the gastrula stages show recovery of normal levels of mesodermal gene expression, demonstrating the plasticity of the posterior progenitors. CONCLUSION: ntla(cs) is a valuable tool for exploring the processes forming the posterior body since it allows temporally specific activation and inactivation of Brachyury function. It is used here to show the changing roles of Ntla during early development and the dynamics of the neuromesodermal progenitors. Developmental Dynamics 245:874-880, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Proteínas Fetales/metabolismo , Proteínas de Dominio T Box/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Frío , Proteínas Fetales/genética , Técnica del Anticuerpo Fluorescente , Gástrula/embriología , Gástrula/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Hibridación in Situ , Mesodermo/embriología , Mesodermo/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Proteínas de Dominio T Box/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
10.
Curr Top Dev Biol ; 116: 517-36, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26970638

RESUMEN

A major question in developmental biology is how the early embryonic axes are established. Recent studies using different model organisms and mammalian in vitro systems have revealed the surprising result that most of the early posterior embryonic body forms from a Wnt-regulated bipotential neuromesodermal progenitor population that escapes early germ layer patterning. Part of the regulatory network that drives the maintenance and differentiation of these progenitors has recently been determined, but much remains to be discovered. This review discusses some of the common features present in all vertebrates, as well as unique aspects that different species utilize to establish their anterior-posterior (A-P) axis.


Asunto(s)
Tipificación del Cuerpo , Diferenciación Celular , Vertebrados/embriología , Animales , Regulación del Desarrollo de la Expresión Génica , Transducción de Señal , Vertebrados/metabolismo , Proteínas Wnt/metabolismo
11.
Nat Commun ; 7: 10590, 2016 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-26838932

RESUMEN

Whether neurons can restore their original connectivity patterns during circuit repair is unclear. Taking advantage of the regenerative capacity of zebrafish retina, we show here the remarkable specificity by which surviving neurons reassemble their connectivity upon regeneration of their major input. H3 horizontal cells (HCs) normally avoid red and green cones, and prefer ultraviolet over blue cones. Upon ablation of the major (ultraviolet) input, H3 HCs do not immediately increase connectivity with other cone types. Instead, H3 dendrites retract and re-extend to contact new ultraviolet cones. But, if regeneration is delayed or absent, blue-cone synaptogenesis increases and ectopic synapses are made with red and green cones. Thus, cues directing synapse specificity can be maintained following input loss, but only within a limited time period. Further, we postulate that signals from the major input that shape the H3 HC's wiring pattern during development persist to restrict miswiring after damage.


Asunto(s)
Dendritas/fisiología , Regeneración/fisiología , Células Fotorreceptoras Retinianas Conos/fisiología , Células Horizontales de la Retina/fisiología , Sinapsis/fisiología , Animales , Señales (Psicología) , Inmunohistoquímica , Microscopía Confocal , Imagen Óptica , Neuronas Retinianas/fisiología , Rayos Ultravioleta , Pez Cebra
12.
Dev Biol ; 406(2): 172-85, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26368502

RESUMEN

The epithelial to mesenchymal transition (EMT) is an essential process that occurs repeatedly during embryogenesis whereby stably adherent cells convert to an actively migrating state. While much is known about the factors and events that initiate the EMT, the steps that cells undergo to become directionally migratory are far less well understood. Zebrafish embryos lacking the transcription factors Tbx16/Spadetail and Mesogenin1 (Msgn1) are a valuable system for investigating the EMT. Mesodermal cells in these embryos are unable to perform the EMT necessary to leave the most posterior end of the body (the tailbud) and join the pre-somitic mesoderm, a process that is conserved in all vertebrates. It has previously been very difficult to study this EMT in vertebrates because of the multiple cell types in the tailbud and the morphogenetic changes the whole embryo undergoes. Here, we describe a novel tissue explant system for imaging the mesodermal cell EMT in vivo that allows us to investigate the requirements for cells to acquire migratory properties during the EMT with high spatio-temporal resolution. This method revealed that, despite the inability of tbx16;msgn1-deficient cells to leave the tailbud, actin-based protrusions form surprisingly normally in these cells and they become highly motile. However, tbx16;msgn1-deficient cells have specific cell-autonomous defects in the persistence and anterior direction of migration because the lamellipodia they form are not productive in driving anteriorward migration. Additionally, we show that mesoderm morphogenesis and differentiation are separable and that there is a migratory cue that directs mesodermal cell migration that is independent of Tbx16 and Msgn1. This work defines changes that cells undergo as they complete the EMT and provides new insight into the mechanisms required in vivo for cells to become mesenchymal.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Movimiento Celular/fisiología , Transición Epitelial-Mesenquimal/fisiología , Mesodermo/citología , Células Madre/fisiología , Proteínas de Dominio T Box/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Procesamiento de Imagen Asistido por Computador , Morfogénesis/fisiología , Cola (estructura animal)/embriología , Imagen de Lapso de Tiempo
13.
Development ; 142(14): 2499-507, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26062939

RESUMEN

Anterior to posterior growth of the vertebrate body is fueled by a posteriorly located population of bipotential neuro-mesodermal progenitor cells. These progenitors have a limited rate of proliferation and their maintenance is crucial for completion of the anterior-posterior axis. How they leave the progenitor state and commit to differentiation is largely unknown, in part because widespread modulation of factors essential for this process causes organism-wide effects. Using a novel assay, we show that zebrafish Tbx16 (Spadetail) is capable of advancing mesodermal differentiation cell-autonomously. Tbx16 locks cells into the mesodermal state by not only activating downstream mesodermal genes, but also by repressing bipotential progenitor genes, in part through a direct repression of sox2. We demonstrate that tbx16 is activated as cells move from an intermediate Wnt environment to a high Wnt environment, and show that Wnt signaling activates the tbx16 promoter. Importantly, high-level Wnt signaling is able to accelerate mesodermal differentiation cell-autonomously, just as we observe with Tbx16. Finally, because our assay for mesodermal commitment is quantitative we are able to show that the acceleration of mesodermal differentiation is surprisingly incomplete, implicating a potential separation of cell movement and differentiation during this process. Together, our data suggest a model in which high levels of Wnt signaling induce a transition to mesoderm by directly activating tbx16, which in turn acts to irreversibly flip a bistable switch, leading to maintenance of the mesodermal fate and repression of the bipotential progenitor state, even as cells leave the initial high-Wnt environment.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Mesodermo/metabolismo , Proteínas de Dominio T Box/metabolismo , Vía de Señalización Wnt , Proteínas de Pez Cebra/metabolismo , Animales , Tipificación del Cuerpo , Diferenciación Celular , Linaje de la Célula , Movimiento Celular , Proteínas de Choque Térmico/metabolismo , Hibridación in Situ , Ratones , Microscopía Fluorescente , Músculos/embriología , Músculos/metabolismo , Neuronas/metabolismo , Oligonucleótidos/química , Regiones Promotoras Genéticas , Células Madre/citología , Transgenes , Proteína Wnt3A/metabolismo , Pez Cebra
14.
Cell Cycle ; 13(14): 2165-71, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24914680

RESUMEN

While cell proliferation is an essential part of embryonic development, cells within an embryo cannot proliferate freely. Instead, they must balance proliferation and other cellular events such as differentiation and morphogenesis throughout embryonic growth. Although the G1 phase has been a major focus of study in cell cycle control, it is becoming increasingly clear that G2 regulation also plays an essential role during embryonic development. Here we discuss the role of Cdc25, a key regulator of mitotic entry, with a focus on several recent examples that show how the precise control of Cdc25 activity and the G2/M transition are critical for different aspects of embryogenesis. We finish by discussing a promising technology that allows easy visualization of embryonic and adult cells potentially regulated at mitotic entry, permitting the rapid identification of other instances where the exit from G2 plays an essential role in development and tissue homeostasis.


Asunto(s)
Proliferación Celular , Embrión de Mamíferos/enzimología , Embrión no Mamífero/enzimología , Puntos de Control de la Fase G2 del Ciclo Celular , Mitosis , Fosfatasas cdc25/metabolismo , Animales , Blástula/enzimología , Diferenciación Celular , Fase de Segmentación del Huevo/enzimología , Regulación del Desarrollo de la Expresión Génica , Humanos , Morfogénesis , Transducción de Señal , Fosfatasas cdc25/genética
16.
Development ; 141(5): 1167-74, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24550120

RESUMEN

The ability to visualize and manipulate cell fate and gene expression in specific cell populations has made gene expression systems valuable tools in developmental biology studies. Here, we describe a new system that uses the E. coli tryptophan repressor and its upstream activation sequence (TrpR/tUAS) to drive gene expression in stable zebrafish transgenic lines and in mammalian cells. We show that TrpR/tUAS transgenes are not silenced in subsequent generations of zebrafish, which is a major improvement over some of the existing systems, such as Gal4/gUAS and the Q-system. TrpR transcriptional activity can be tuned by mutations in its DNA-binding domain, or silenced by Gal80 when fused to the Gal4 activation domain. In cases in which more than one cell population needs to be manipulated, TrpR/tUAS can be used in combination with other, existing systems.


Asunto(s)
Proteínas Bacterianas/genética , Silenciador del Gen/fisiología , Proteínas Represoras/genética , Animales , Animales Modificados Genéticamente , Pez Cebra
17.
Genes Dev ; 28(4): 384-95, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24478331

RESUMEN

The vertebrate body forms from a multipotent stem cell-like progenitor population that progressively contributes newly differentiated cells to the most posterior end of the embryo. How the progenitor population balances proliferation and other cellular functions is unknown due to the difficulty of analyzing cell division in vivo. Here, we show that proliferation is compartmentalized at the posterior end of the embryo during early zebrafish development by the regulated expression of cdc25a, a key controller of mitotic entry. Through the use of a transgenic line that misexpresses cdc25a, we show that this compartmentalization is critical for the formation of the posterior body. Upon misexpression of cdc25a, several essential T-box transcription factors are abnormally expressed, including Spadetail/Tbx16, which specifically prevents the normal onset of myoD transcription, leading to aberrant muscle formation. Our results demonstrate that compartmentalization of proliferation during early embryogenesis is critical for both extension of the vertebrate body and differentiation of the multipotent posterior progenitor cells to the muscle cell fate.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Células Madre/citología , Pez Cebra/embriología , Pez Cebra/genética , Fosfatasas cdc25/genética , Fosfatasas cdc25/metabolismo , Animales , Diferenciación Celular , División Celular , Proliferación Celular , Células Musculares/citología , Fosforilación , Células Madre/enzimología , Proteínas de Dominio T Box/genética , Proteínas de Pez Cebra/genética
18.
PLoS Biol ; 11(6): e1001590, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23853546

RESUMEN

Etsrp/Etv2 (Etv2) is an evolutionarily conserved master regulator of vascular development in vertebrates. Etv2 deficiency prevents the proper specification of the endothelial cell lineage, while its overexpression causes expansion of the endothelial cell lineage in the early embryo or in embryonic stem cells. We hypothesized that Etv2 alone is capable of transdifferentiating later somatic cells into endothelial cells. Using heat shock inducible Etv2 transgenic zebrafish, we demonstrate that Etv2 expression alone is sufficient to transdifferentiate fast skeletal muscle cells into functional blood vessels. Following heat treatment, fast skeletal muscle cells turn on vascular genes and repress muscle genes. Time-lapse imaging clearly shows that muscle cells turn on vascular gene expression, undergo dramatic morphological changes, and integrate into the existing vascular network. Lineage tracing and immunostaining confirm that fast skeletal muscle cells are the source of these newly generated vessels. Microangiography and observed blood flow demonstrated that this new vasculature is capable of supporting circulation. Using pharmacological, transgenic, and morpholino approaches, we further establish that the canonical Wnt pathway is important for induction of the transdifferentiation process, whereas the VEGF pathway provides a maturation signal for the endothelial fate. Additionally, overexpression of Etv2 in mammalian myoblast cells, but not in other cell types examined, induced expression of vascular genes. We have demonstrated in zebrafish that expression of Etv2 alone is sufficient to transdifferentiate fast skeletal muscle into functional endothelial cells in vivo. Given the evolutionarily conserved function of this transcription factor and the responsiveness of mammalian myoblasts to Etv2, it is likely that mammalian muscle cells will respond similarly.


Asunto(s)
Transdiferenciación Celular , Endotelio Vascular/citología , Músculo Esquelético/citología , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Línea Celular , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Endotelio Vascular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , Fibras Musculares de Contracción Rápida/citología , Fibras Musculares de Contracción Rápida/metabolismo , Músculo Esquelético/metabolismo , Transducción de Señal/genética , Factores de Transcripción/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas Wnt/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
19.
Biol Open ; 2(1): 30-6, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23336074

RESUMEN

Wnt/ß-catenin signaling plays multiple roles in liver development including hepatoblast proliferation and differentiation, hepatocyte differentiation, and liver zonation. A positive role for Wnt/ß-catenin signaling in liver specification was recently identified in zebrafish; however, its underlying cellular mechanisms are unknown. Here, we present two cellular mechanisms by which Wnt/ß-catenin signaling regulates liver specification. First, using lineage tracing we show that ectopic hepatoblasts, which form in the endoderm posterior to the liver upon activation of Wnt/ß-catenin signaling, are derived from the direct conversion of non-hepatic endodermal cells, but not from the posterior migration of hepatoblasts. We found that endodermal cells at the 4-6(th) somite levels, which normally give rise to the intestinal bulb or intestine, gave rise to hepatoblasts in Wnt8a-overexpressing embryos, and that the distribution of traced endodermal cells in Wnt8a-overexpressing embryos was similar to that in controls. Second, by using an endoderm-restricted cell-transplantation technique and mosaic analysis with transgenic lines that cell-autonomously suppress or activate Wnt/ß-catenin signaling upon heat-shock, we show that Wnt/ß-catenin signaling acts cell-autonomously in endodermal cells to induce hepatic conversion. Altogether, these data demonstrate that Wnt/ß-catenin signaling can induce the fate-change of non-hepatic endodermal cells into a liver fate in a cell-autonomous manner. These findings have potential application to hepatocyte differentiation protocols for the generation of mature hepatocytes from induced pluripotent stem cells, supplying a sufficient amount of hepatocytes for cell-based therapies to treat patients with severe liver diseases.

20.
Cell Res ; 22(12): 1621-3, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22777423

RESUMEN

Proper control of intercellular communication through the Wnt signaling pathway is of critical importance for many aspects of biology, including head formation during vertebrate embryogenesis. A recent Cell paper describes the discovery of a novel protein, TIKI, which controls head size through a surprising new mechanism of Wnt antagonism.


Asunto(s)
Proteínas Wnt/metabolismo , Animales , Cabeza/fisiología , Metaloproteasas/genética , Metaloproteasas/metabolismo , Mutación , Proteínas Wnt/antagonistas & inhibidores , Proteínas Wnt/genética , Vía de Señalización Wnt , Xenopus , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...