Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Data ; 3: 160058, 2016 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-27479514

RESUMEN

Structural studies on living cells by conventional methods are limited to low resolution because radiation damage kills cells long before the necessary dose for high resolution can be delivered. X-ray free-electron lasers circumvent this problem by outrunning key damage processes with an ultra-short and extremely bright coherent X-ray pulse. Diffraction-before-destruction experiments provide high-resolution data from cells that are alive when the femtosecond X-ray pulse traverses the sample. This paper presents two data sets from micron-sized cyanobacteria obtained at the Linac Coherent Light Source, containing a total of 199,000 diffraction patterns. Utilizing this type of diffraction data will require the development of new analysis methods and algorithms for studying structure and structural variability in large populations of cells and to create abstract models. Such studies will allow us to understand living cells and populations of cells in new ways. New X-ray lasers, like the European XFEL, will produce billions of pulses per day, and could open new areas in structural sciences.


Asunto(s)
Rayos Láser , Difracción de Rayos X , Células , Cristalografía por Rayos X , Cianobacterias , Electrones , Modelos Moleculares , Modelos Teóricos , Nanopartículas , Proteínas , Pulso Arterial , Factores de Tiempo , Rayos X
2.
Sci Data ; 3: 160060, 2016 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-27479754

RESUMEN

Free-electron lasers (FEL) hold the potential to revolutionize structural biology by producing X-ray pules short enough to outrun radiation damage, thus allowing imaging of biological samples without the limitation from radiation damage. Thus, a major part of the scientific case for the first FELs was three-dimensional (3D) reconstruction of non-crystalline biological objects. In a recent publication we demonstrated the first 3D reconstruction of a biological object from an X-ray FEL using this technique. The sample was the giant Mimivirus, which is one of the largest known viruses with a diameter of 450 nm. Here we present the dataset used for this successful reconstruction. Data-analysis methods for single-particle imaging at FELs are undergoing heavy development but data collection relies on very limited time available through a highly competitive proposal process. This dataset provides experimental data to the entire community and could boost algorithm development and provide a benchmark dataset for new algorithms.


Asunto(s)
Mimiviridae , Difracción de Rayos X , Algoritmos , Simulación por Computador , Cristalografía por Rayos X , Recolección de Datos , Electrones , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Rayos Láser , Modelos Teóricos , Tamaño de la Partícula , Dispersión de Radiación , Rayos X
3.
Sci Data ; 3: 160061, 2016 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-27479842

RESUMEN

Ultra-intense femtosecond X-ray pulses from X-ray lasers permit structural studies on single particles and biomolecules without crystals. We present a large data set on inherently heterogeneous, polyhedral carboxysome particles. Carboxysomes are cell organelles that vary in size and facilitate up to 40% of Earth's carbon fixation by cyanobacteria and certain proteobacteria. Variation in size hinders crystallization. Carboxysomes appear icosahedral in the electron microscope. A protein shell encapsulates a large number of Rubisco molecules in paracrystalline arrays inside the organelle. We used carboxysomes with a mean diameter of 115±26 nm from Halothiobacillus neapolitanus. A new aerosol sample-injector allowed us to record 70,000 low-noise diffraction patterns in 12 min. Every diffraction pattern is a unique structure measurement and high-throughput imaging allows sampling the space of structural variability. The different structures can be separated and phased directly from the diffraction data and open a way for accurate, high-throughput studies on structures and structural heterogeneity in biology and elsewhere.


Asunto(s)
Ciclo del Carbono , Halothiobacillus/ultraestructura , Orgánulos , Halothiobacillus/metabolismo , Orgánulos/ultraestructura , Rayos X
4.
Phys Rev Lett ; 114(9): 098102, 2015 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-25793853

RESUMEN

We present a proof-of-concept three-dimensional reconstruction of the giant mimivirus particle from experimentally measured diffraction patterns from an x-ray free-electron laser. Three-dimensional imaging requires the assembly of many two-dimensional patterns into an internally consistent Fourier volume. Since each particle is randomly oriented when exposed to the x-ray pulse, relative orientations have to be retrieved from the diffraction data alone. We achieve this with a modified version of the expand, maximize and compress algorithm and validate our result using new methods.


Asunto(s)
Imagenología Tridimensional/métodos , Mimiviridae/ultraestructura , Difracción de Rayos X/métodos , Algoritmos , Electrones , Rayos Láser , Difracción de Rayos X/instrumentación
5.
Nat Commun ; 6: 5704, 2015 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-25669616

RESUMEN

There exists a conspicuous gap of knowledge about the organization of life at mesoscopic levels. Ultra-fast coherent diffractive imaging with X-ray free-electron lasers can probe structures at the relevant length scales and may reach sub-nanometer resolution on micron-sized living cells. Here we show that we can introduce a beam of aerosolised cyanobacteria into the focus of the Linac Coherent Light Source and record diffraction patterns from individual living cells at very low noise levels and at high hit ratios. We obtain two-dimensional projection images directly from the diffraction patterns, and present the results as synthetic X-ray Nomarski images calculated from the complex-valued reconstructions. We further demonstrate that it is possible to record diffraction data to nanometer resolution on live cells with X-ray lasers. Extension to sub-nanometer resolution is within reach, although improvements in pulse parameters and X-ray area detectors will be necessary to unlock this potential.


Asunto(s)
Cianobacterias/citología , Imagenología Tridimensional/métodos , Rayos Láser , Análisis de la Célula Individual/métodos , Aerosoles , Exactitud de los Datos , Electrones , Inyecciones , Fenómenos Ópticos , Fotones , Difracción de Rayos X , Rayos X
6.
Opt Express ; 21(10): 12385-94, 2013 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-23736456

RESUMEN

Characterizing intense, focused x-ray free electron laser (FEL) pulses is crucial for their use in diffractive imaging. We describe how the distribution of average phase tilts and intensities on hard x-ray pulses with peak intensities of 10(21) W/m(2) can be retrieved from an ensemble of diffraction patterns produced by 70 nm-radius polystyrene spheres, in a manner that mimics wavefront sensors. Besides showing that an adaptive geometric correction may be necessary for diffraction data from randomly injected sample sources, our paper demonstrates the possibility of collecting statistics on structured pulses using only the diffraction patterns they generate and highlights the imperative to study its impact on single-particle diffractive imaging.


Asunto(s)
Aerosoles/análisis , Aerosoles/química , Rayos Láser , Fotometría/métodos , Refractometría/métodos , Resonancia por Plasmón de Superficie/métodos , Rayos X , Electrones , Diseño de Equipo , Análisis de Falla de Equipo , Microesferas
7.
Opt Express ; 21(23): 28729-42, 2013 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-24514385

RESUMEN

Single shot diffraction imaging experiments via X-ray free-electron lasers can generate as many as hundreds of thousands of diffraction patterns of scattering objects. Recovering the real space contrast of a scattering object from these patterns currently requires a reconstruction process with user guidance in a number of steps, introducing severe bottlenecks in data processing. We present a series of measures that replace user guidance with algorithms that reconstruct contrasts in an unsupervised fashion. We demonstrate the feasibility of automating the reconstruction process by generating hundreds of contrasts obtained from soot particle diffraction experiments.

8.
Opt Express ; 20(4): 4149-58, 2012 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-22418172

RESUMEN

We describe femtosecond X-ray diffraction data sets of viruses and nanoparticles collected at the Linac Coherent Light Source. The data establish the first large benchmark data sets for coherent diffraction methods freely available to the public, to bolster the development of algorithms that are essential for developing this novel approach as a useful imaging technique. Applications are 2D reconstructions, orientation classification and finally 3D imaging by assembling 2D patterns into a 3D diffraction volume.

9.
Opt Express ; 20(3): 2706-16, 2012 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-22330507

RESUMEN

We demonstrate the use of an X-ray free electron laser synchronized with an optical pump laser to obtain X-ray diffraction snapshots from the photoactivated states of large membrane protein complexes in the form of nanocrystals flowing in a liquid jet. Light-induced changes of Photosystem I-Ferredoxin co-crystals were observed at time delays of 5 to 10 µs after excitation. The result correlates with the microsecond kinetics of electron transfer from Photosystem I to ferredoxin. The undocking process that follows the electron transfer leads to large rearrangements in the crystals that will terminally lead to the disintegration of the crystals. We describe the experimental setup and obtain the first time-resolved femtosecond serial X-ray crystallography results from an irreversible photo-chemical reaction at the Linac Coherent Light Source. This technique opens the door to time-resolved structural studies of reaction dynamics in biological systems.


Asunto(s)
Cristalografía por Rayos X/métodos , Ferredoxinas/ultraestructura , Rayos Láser , Nanoestructuras/ultraestructura , Difracción de Rayos X/métodos , Electrones , Conformación Proteica , Rayos X
10.
Nat Methods ; 9(3): 263-5, 2012 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-22286383

RESUMEN

X-ray free electron laser (X-FEL)-based serial femtosecond crystallography is an emerging method with potential to rapidly advance the challenging field of membrane protein structural biology. Here we recorded interpretable diffraction data from micrometer-sized lipidic sponge phase crystals of the Blastochloris viridis photosynthetic reaction center delivered into an X-FEL beam using a sponge phase micro-jet.


Asunto(s)
Cristalografía por Rayos X/métodos , Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Proteínas de la Membrana/ultraestructura , Unión Proteica , Conformación Proteica/efectos de la radiación , Rayos X
11.
Nat Methods ; 9(3): 259-62, 2012 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-22286384

RESUMEN

Protein crystallization in cells has been observed several times in nature. However, owing to their small size these crystals have not yet been used for X-ray crystallographic analysis. We prepared nano-sized in vivo-grown crystals of Trypanosoma brucei enzymes and applied the emerging method of free-electron laser-based serial femtosecond crystallography to record interpretable diffraction data. This combined approach will open new opportunities in structural systems biology.


Asunto(s)
Cristalografía por Rayos X/métodos , Cristalografía/métodos , Proteínas/química , Proteínas/ultraestructura , Unión Proteica/efectos de la radiación , Conformación Proteica/efectos de la radiación , Proteínas/efectos de la radiación , Solubilidad/efectos de la radiación , Rayos X
12.
Nat Photonics ; 6: 35-40, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-24078834

RESUMEN

X-ray free-electron lasers have enabled new approaches to the structural determination of protein crystals that are too small or radiation-sensitive for conventional analysis1. For sufficiently short pulses, diffraction is collected before significant changes occur to the sample, and it has been predicted that pulses as short as 10 fs may be required to acquire atomic-resolution structural information1-4. Here, we describe a mechanism unique to ultrafast, ultra-intense X-ray experiments that allows structural information to be collected from crystalline samples using high radiation doses without the requirement for the pulse to terminate before the onset of sample damage. Instead, the diffracted X-rays are gated by a rapid loss of crystalline periodicity, producing apparent pulse lengths significantly shorter than the duration of the incident pulse. The shortest apparent pulse lengths occur at the highest resolution, and our measurements indicate that current X-ray free-electron laser technology5 should enable structural determination from submicrometre protein crystals with atomic resolution.

13.
Opt Express ; 19(17): 16542-9, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21935018

RESUMEN

Single-particle experiments using X-ray Free Electron Lasers produce more than 10(5) snapshots per hour, consisting of an admixture of blank shots (no particle intercepted), and exposures of one or more particles. Experimental data sets also often contain unintentional contamination with different species. We present an unsupervised method able to sort experimental snapshots without recourse to templates, specific noise models, or user-directed learning. The results show 90% agreement with manual classification.

14.
Nature ; 470(7332): 73-7, 2011 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-21293373

RESUMEN

X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction 'snapshots' are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (∼200 nm to 2 µm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.


Asunto(s)
Cristalografía por Rayos X/métodos , Nanopartículas/química , Nanotecnología/métodos , Complejo de Proteína del Fotosistema I/química , Cristalografía por Rayos X/instrumentación , Rayos Láser , Modelos Moleculares , Nanotecnología/instrumentación , Conformación Proteica , Factores de Tiempo , Rayos X
15.
Phys Rev B Condens Matter Mater Phys ; 84(21): 214111, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24089594

RESUMEN

X-ray free-electron lasers deliver intense femtosecond pulses that promise to yield high resolution diffraction data of nanocrystals before the destruction of the sample by radiation damage. Diffraction intensities of lysozyme nanocrystals collected at the Linac Coherent Light Source using 2 keV photons were used for structure determination by molecular replacement and analyzed for radiation damage as a function of pulse length and fluence. Signatures of radiation damage are observed for pulses as short as 70 fs. Parametric scaling used in conventional crystallography does not account for the observed effects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...