Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JACS Au ; 3(11): 3155-3164, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38034954

RESUMEN

Keratan sulfate (KS) is a glycosaminoglycan that is widely expressed in the extracellular matrix of various tissue types, where it is involved in many biological processes. Herein, we describe a chemo-enzymatic approach to preparing well-defined KS oligosaccharides by exploiting the known and newly discovered substrate specificities of relevant sulfotransferases. The premise of the approach is that recombinant GlcNAc-6-O-sulfotransferases (CHST2) only sulfate terminal GlcNAc moieties to give GlcNAc6S that can be galactosylated by B4GalT4. Furthermore, CHST1 can modify the internal galactosides of a poly-LacNAc chain; however, it was found that a GlcNAc6S residue greatly increases the reactivity of CHST1 of a neighboring and internal galactoside. The presence of a 2,3-linked sialoside further modulates the site of modification by CHST1, and a galactoside flanked by 2,3-Neu5Ac and GlcNAc6S is preferentially sulfated over the other Gal residues. The substrate specificities of CHST1 and 2 were exploited to prepare a panel of KS oligosaccharides, including selectively sulfated N-glycans. The compounds and several other reference derivatives were used to construct a microarray that was probed for binding by several plant lectins, Siglec proteins, and hemagglutinins of influenza viruses. It was found that not only the sulfation pattern but also the presentation of epitopes as part of an O- or N-glycan determines binding properties.

2.
ACS Chem Biol ; 18(5): 1180-1191, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37104622

RESUMEN

SARS-CoV-2 viruses engage ACE2 as a functional receptor with their spike protein. The S1 domain of the spike protein contains a C-terminal receptor binding domain (RBD) and an N-terminal domain (NTD). The NTD of other coronaviruses includes a glycan binding cleft. However, for the SARS-CoV-2 NTD, protein-glycan binding was only observed weakly for sialic acids with highly sensitive methods. Amino acid changes in the NTD of variants of concern (VoC) show antigenic pressure, which can be an indication of NTD-mediated receptor binding. Trimeric NTD proteins of SARS-CoV-2, alpha, beta, delta, and omicron did not reveal a receptor binding capability. Unexpectedly, the SARS-CoV-2 beta subvariant strain (501Y.V2-1) NTD binding to Vero E6 cells was sensitive to sialidase pretreatment. Glycan microarray analyses identified a putative 9-O-acetylated sialic acid as a ligand, which was confirmed by catch-and-release ESI-MS, STD-NMR analyses, and a graphene-based electrochemical sensor. The beta (501Y.V2-1) variant attained an enhanced glycan binding modality in the NTD with specificity toward 9-O-acetylated structures, suggesting a dual-receptor functionality of the SARS-CoV-2 S1 domain, which was quickly selected against. These results indicate that SARS-CoV-2 can probe additional evolutionary space, allowing binding to glycan receptors on the surface of target cells.


Asunto(s)
COVID-19 , Ácidos Siálicos , Humanos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Ácido N-Acetilneuramínico
3.
bioRxiv ; 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36263070

RESUMEN

SARS-CoV-2 viruses engage ACE2 as a functional receptor with their spike protein. The S1 domain of the spike protein contains a C-terminal receptor-binding domain (RBD) and an N-terminal domain (NTD). The NTD of other coronaviruses includes a glycan-binding cleft. However, for the SARS-CoV-2 NTD protein-glycan binding was only observed weakly for sialic acids with highly sensitive methods. Amino acid changes in the NTD of Variants of Concern (VoC) shows antigenic pressure, which can be an indication of NTD-mediated receptor binding. Trimeric NTD proteins of SARS-CoV-2, Alpha, Beta, Delta, and Omicron did not reveal a receptor binding capability. Unexpectedly, the SARS-CoV-2 Beta subvariant strain (501Y.V2-1) NTD binding to Vero E6 cells was sensitive to sialidase pretreatment. Glycan microarray analyses identified a putative 9- O -acetylated sialic acid as a ligand, which was confirmed by catch-and-release ESI-MS, STD-NMR analyses, and a graphene-based electrochemical sensor. The Beta (501Y.V2-1) variant attained an enhanced glycan binding modality in the NTD with specificity towards 9- O -acetylated structures, suggesting a dual-receptor functionality of the SARS-CoV-2 S1 domain, which was quickly selected against. These results indicate that SARS-CoV-2 can probe additional evolutionary space, allowing binding to glycan receptors on the surface of target cells. Synopsis: Coronaviruses utilize their N-terminal domain (NTD) for initial reversible low-affinity interaction to (sialylated) glycans. This initial low-affinity/high-avidity engagement enables viral surfing on the target membrane, potentially followed by a stronger secondary receptor interaction. Several coronaviruses, such as HKU1 and OC43, possess a hemagglutinin-esterase for viral release after sialic acid interaction, thus allowing viral dissemination. Other coronaviruses, such as MERS-CoV, do not possess a hemagglutinin-esterase, but interact reversibly to sialic acids allowing for viral surfing and dissemination. The early 501Y.V2-1 subvariant of the Beta SARS-CoV-2 Variant of Concern has attained a receptor-binding functionality towards 9- O -acetylated sialic acid using its NTD. This binding functionality was selected against rapidly, most likely due to poor dissemination. Ablation of sialic acid binding in more recent SARS-CoV-2 Variants of Concern suggests a fine balance of sialic acid interaction of SARS-CoV-2 is required for infection and/or transmission.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...