Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(11): e21923, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38034805

RESUMEN

Ruminant animals rely on the activities of ß-glucosidases from residential microbes to convert feed fibers into glucose for further metabolic uses. In this report, we determined the structures of Br2, which is a glycoside hydrolase family 1 ß-glucosidase from the bovine rumen metagenome. Br2 folds into a classical (ß/α)8-TIM barrel domain but displays unique structural features at loop ß5→α5 and α-helix 5, resulting in different positive subsites from those of other GH1 enzymes. Br2 exhibited the highest specificity toward laminaritriose, suggesting its involvement in ß-glucan hydrolysis in digested feed. We then substituted the residues at subsites +1 and + 2 of Br2 with those of Halothermothrix orenii ß-glucosidase. The C170E and C221T mutations provided favorable interactions with glucooligosaccharide substrates at subsite +2, while the A219N mutation probably improved the substrate preference for cellobiose and gentiobiose relative to laminaribiose at subsite +1. The N407Y mutation increased the affinity toward cellooligosaccharides. These results give further insights into the molecular determinants responsible for substrate specificity in GH1 ß-glucosidases and may provide a basis for future enzyme engineering applications.

2.
Carbohydr Polym ; 319: 121185, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37567719

RESUMEN

Isomaltomegalosaccharides with α-(1 â†’ 4) and α-(1 â†’ 6)-segments solubilize water-insoluble ligands since the former complexes with the ligand and the latter solubilizes the complex. Previously, we enzymatically synthesized isomaltomegalosaccharide with a single α-(1 â†’ 4)-segment at the reducing end (S-IMS) by dextran dextrinase (DDase), but the chain length [average degree of polymerization (DP) ≤ 9] was insufficient for strong encapsulation. We hypothesized that the conjugation of longer α-(1 â†’ 4)-segment afforded the promising function although DDase is incapable to do so. In this study, the cyclodextrin glucanotransferase-catalyzed coupling reaction of α-cyclodextrin to S-IMS synthesized a new α-(1 â†’ 4)-segment at the nonreducing end (N-4S) of S-IMS to form D-IMS [IMS harboring double α-(1 â†’ 4)-segments]. The length of N-4S was modulated by the ratio between α-cyclodextrin and S-IMS, generating N-4Ss with DPs of 7-50. Based on phase-solubility analysis, D-IMS-28.3/13/3 bearing amylose-like helical N-4S with DP of 28.3 displayed a water-soluble complex with aromatic drugs and curcumin. Small-angle X-ray scattering revealed the chain adapted to rigid in solution in which the radius of gyration was estimated to 2.4 nm. Furthermore, D-IMS with short N-4S solubilized flavonoids of less-soluble multifunctional substances. In our research, enzyme-generated functional biomaterials from DDase were developed to maximize the hydrophobic binding efficacy towards water-insoluble bioactive compounds.

3.
Appl Microbiol Biotechnol ; 107(7-8): 2335-2349, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36877249

RESUMEN

ß-Xylosidases catalyze the hydrolysis of xylooligosaccharides to xylose in the final step of hemicellulose degradation. AnBX, which is a GH3 ß-xylosidase from Aspergillus niger, has a high catalytic efficiency toward xyloside substrates. In this study, we report the three-dimensional structure and the identification of catalytic and substrate binding residues of AnBX by performing site-directed mutagenesis, kinetic analysis, and NMR spectroscopy-associated analysis of the azide rescue reaction. The structure of the E88A mutant of AnBX, determined at 2.5-Å resolution, contains two molecules in the asymmetric unit, each of which is composed of three domains, namely an N-terminal (ß/α)8 TIM-barrel-like domain, an (α/ß)6 sandwich domain, and a C-terminal fibronectin type III domain. Asp288 and Glu500 of AnBX were experimentally confirmed to act as the catalytic nucleophile and acid/base catalyst, respectively. The crystal structure revealed that Trp86, Glu88 and Cys289, which formed a disulfide bond with Cys321, were located at subsite -1. Although the E88D and C289W mutations reduced catalytic efficiency toward all four substrates tested, the substitution of Trp86 with Ala, Asp and Ser increased the substrate preference for glucoside relative to xyloside substrates, indicating that Trp86 is responsible for the xyloside specificity of AnBX. The structural and biochemical information of AnBX obtained in this study provides invaluable insight into modulating the enzymatic properties for the hydrolysis of lignocellulosic biomass. KEY POINTS: • Asp288 and Glu500 of AnBX are the nucleophile and acid/base catalyst, respectively • Glu88 and the Cys289-Cys321 disulfide bond are crucial for the catalytic activity of AnBX • The W86A and W86S mutations in AnBX increased the preference for glucoside substrates.


Asunto(s)
Aspergillus niger , Xilosidasas , Aspergillus niger/metabolismo , Cinética , Aminoácidos , Dominio Catalítico , Xilosidasas/metabolismo , Catálisis , Glucósidos , Disulfuros , Especificidad por Sustrato , Glicósido Hidrolasas/metabolismo
4.
Carbohydr Polym ; 305: 120565, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36737177

RESUMEN

Lipophilic azo dyes are practically water-insoluble, and their dissolution by organic solvents and surfactants is harmful to biological treatment with living cells and enzymes. This study aimed to evaluate the feasibility of a newly synthesized nonreducing terminal chimeric isomaltomegalosaccharide (N-IMS) as a nontoxic solubilizer of four simulated lipophilic azo dye wastes for enzymatic degradation. N-IMS bearing a helical α-(1 â†’ 4)-glucosidic segment derived from a donor substrate α-cyclodextrin was produced by a coupling reaction of cyclodextrin glucanotransferase. Inclusion complexing by N-IMS overcame the solubility issue with equilibrium constants of 1786-242 M-1 (methyl yellow > ethyl red > methyl red > azo violet). Circular dichroism spectra revealed the axial alignment of the aromatic rings in the N-IMS cavity, while UV-visible absorption quenching revealed that the azo bond of methyl yellow was particularly induced. Desorption of the dyes from acidic and neutral soils was specific to aqueous organic over alkali extraction. The dissolution kinetics of the incorporated dyes followed a sigmoid pattern facilitating the subsequent decolorization process with azoreductase. It was demonstrated that after soil extraction, the solid dyes dissolved with N-IMS assistance and spontaneously digested by coupled azoreductase/glucose dehydrogenase (for a cofactor regeneration system) with the liberation of the corresponding aromatic amine.


Asunto(s)
Colorantes , NADH NADPH Oxidorreductasas , NADH NADPH Oxidorreductasas/metabolismo , Colorantes/metabolismo , Compuestos Azo/química , p-Dimetilaminoazobenceno , Biodegradación Ambiental
5.
Carbohydr Polym ; 307: 120629, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36781280

RESUMEN

Polysaccharides of tamarind seed, a byproduct of the tamarind pulp industry, displayed a potential solubility improvement of lipophilic bioactive molecules but their textural characteristics hinder the dietary formulation. In contrast, the commonly available xyloglucan oligosaccharides (XOSs) with degrees of polymerization (DPs) of 7, 8, and 9 were too short to maintain their ability. The binding capacity of the between sizes is unknown due to a lack of appropriate preparation. We prepared xyloglucan megalosaccharides (XMSs) by partial depolymerization, where term megalosaccharide (MS) defines the middle chain-length saccharide between DPs 10 and 100. Digestion with fungal cellulase enabled reproducible active XMSs. Further identification of pure XMS segments indicated that XMS-B has an average DP of 17.2 (Gal3Glc8Xyl6) with a branched dimer of XOS 8 and 9 and was free of side-chain arabinose, the residue influencing high viscosity. Curcumin, a bioactive pigment, has poor bioavailability because of its water insolubility. XMSs with average DPs of 15.4-24.3 have similarly sufficient capacities to solubilize curcumin. The solubility of curcumin was improved 180-fold by the addition of 50 %, w/v, XMSs, which yielded a clear yellow liquid. Our findings indicated that XMSs were a promising added-value agent in foods and pharmaceuticals for the oral intake of curcumin.


Asunto(s)
Curcumina , Tamarindus , Solubilidad , Secuencia de Carbohidratos , Xilanos/química , Polisacáridos/química , Semillas/química
6.
ACS Omega ; 7(50): 47411-47423, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36570207

RESUMEN

Glucose, a common monosaccharide in nature, is dominated by the d-enantiomer. Meanwhile, the discovery of l-glucose-utilizing bacteria and the elucidation of their metabolic pathways 10 years ago suggests that l-glucose exists naturally. Most carbohydrates exist as glycosides rather than monosaccharides; therefore, we expected that nature also contains l-glucosides. Sequence analysis within glycoside hydrolase family 29 led us to identify two α-l-glucosidases, ClAgl29A and ClAgl29B, derived from Cecembia lonarensis LW9. ClAgl29A and ClAgl29B exhibited higher K m, k cat, and k cat/K m values for p-nitrophenyl α-l-glucoside than that for p-nitrophenyl α-l-fucoside. Structural analysis of ClAgl29B in complex with l-glucose showed that these enzymes have an active-site pocket that preferentially binds α-l-glucoside, but excludes α-l-fucoside. These results suggest that ClAgl29A and ClAgl29B evolved to hydrolyze α-l-glucoside, implying the existence of α-l-glucoside in nature. Furthermore, α-l-glucosidic linkages (α-l-Glc-(1 → 3)-l-Glc, α-l-Glc-(1 → 2)-l-Glc, and α-l-Glc-(1 → 6)-l-Glc) were synthesized by the transglucosylation activity of ClAgl29A and ClAgl29B. We believe that this study will lead to new research on α-l-glucosides, including determining the physiological effects on humans, and the discovery of novel α-l-glucoside-related enzymes.

7.
Carbohydr Polym ; 291: 119562, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35698333

RESUMEN

Isomaltomegalosaccharide (IMS) is a long chimeric glucosaccharide composed of α-(1 â†’ 6)- and α-(1 â†’ 4)-linked segments at nonreducing and reducing ends, respectively; the hydrophilicity and hydrophobicity of these segments are expected to lead to bifunctionality. We enzymatically synthesized IMS with average degrees of polymerization (DPs) of 15.8, 19.3, and 23.5, where α-(1 â†’ 4)-segments had DPs of 3, 6, and 9, respectively. IMS exhibited considerably higher water solubility than maltodextrin because of the α-(1 â†’ 6)-segment and an identical resistance to thermal degradation as short dextran. Interaction of IMS with a fluorescent probe of 2-p-toluidinylnaphthalene-6-sulfonate demonstrated that IMS was more hydrophobic than maltodextrin, where the degree of hydrophobicity increased as DP of α-(1 â†’ 4)-segment increased (9 > 6 > 3). Fluorescent pyrene-estimating polarity of IMS was found to be similar to that of methanol or 1-butanol. The bifunctional IMS enhanced the water solubility of quercetin-3-O-glucoside and quercetin: the solubilization of less-soluble bioactive substances is beneficial in carbohydrate industry.


Asunto(s)
Colorantes , Metanol , Interacciones Hidrofóbicas e Hidrofílicas , Solubilidad , Agua/química
8.
Mar Drugs ; 20(4)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35447923

RESUMEN

The glycoside hydrolase family 17 ß-1,3-glucanase of Vibrio vulnificus (VvGH17) has two unknown regions in the N- and C-termini. Here, we characterized these domains by preparing mutant enzymes. VvGH17 demonstrated hydrolytic activity of ß-(1→3)-glucan, mainly producing laminaribiose, but not of ß-(1→3)/ß-(1→4)-glucan. The C-terminal-truncated mutants (ΔC466 and ΔC441) showed decreased activity, approximately one-third of that of the WT, and ΔC415 lost almost all activity. An analysis using affinity gel containing laminarin or barley ß-glucan revealed a shift in the mobility of the ΔC466, ΔC441, and ΔC415 mutants compared to the WT. Tryptophan residues showed a strong affinity for carbohydrates. Three of four point-mutations of the tryptophan in the C-terminus (W472A, W499A, and W542A) showed a reduction in binding ability to laminarin and barley ß-glucan. The C-terminus was predicted to have a ß-sandwich structure, and three tryptophan residues (Trp472, Trp499, and Trp542) constituted a putative substrate-binding cave. Linker and substrate-binding functions were assigned to the C-terminus. The N-terminal-truncated mutants also showed decreased activity. The WT formed a trimer, while the N-terminal truncations formed monomers, indicating that the N-terminus contributed to the multimeric form of VvGH17. The results of this study are useful for understanding the structure and the function of GH17 ß-1,3-glucanases.


Asunto(s)
Vibrio vulnificus , beta-Glucanos , Glucanos/química , Glicósido Hidrolasas/metabolismo , Especificidad por Sustrato , Triptófano , Vibrio vulnificus/genética , Vibrio vulnificus/metabolismo , beta-Glucanos/química
9.
Appl Microbiol Biotechnol ; 106(2): 689-698, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35024917

RESUMEN

Dextran dextrinase (DDase) catalyzes formation of the polysaccharide dextran from maltodextrin. During the synthesis of dextran, DDase also generates the beneficial material isomaltomegalosaccharide (IMS). The term megalosaccharide is used for a saccharide having DP = 10-100 or 10-200 (DP, degree of polymerization). IMS is a chimeric glucosaccharide comprising α-(1 → 6)- and α-(1 → 4)-linked portions at the nonreducing and reducing ends, respectively, in which the α-(1 → 4)-glucosyl portion originates from maltodextrin of the substrate. In this study, IMS was produced by a practical approach using extracellular DDase (DDext) or cell surface DDase (DDsur) of Gluconobacter oxydans ATCC 11894. DDsur was the original form, so we prepared DDext via secretion from intact cells by incubating with 0.5% G6/G7 (maltohexaose/maltoheptaose); this was followed by generation of IMS from various concentrations of G6/G7 substrate at different temperatures for 96 h. However, IMS synthesis by DDext was limited by insufficient formation of α-(1 → 6)-glucosidic linkages, suggesting that DDase also catalyzes elongation of α-(1 → 4)-glucosyl chain. For production of IMS using DDsur, intact cells bearing DDsur were directly incubated with 20% G6/G7 at 45 °C by optimizing conditions such as cell concentration and agitation efficiency, which resulted in generation of IMS (average DP = 14.7) with 61% α-(1 → 6)-glucosyl content in 51% yield. Increases in substrate concentration and agitation efficiency were found to decrease dextran formation and increase IMS production, which improved the reaction conditions for DDext. Under modified conditions (20% G6/G7, agitation speed of 100 rpm at 45 °C), DDext produced IMS (average DP = 14.5) with 65% α-(1 → 6)-glucosyl content in a good yield of 87%. KEY POINTS: • Beneficial IMS was produced using thermostabilized DDase. • Optimum conditions for reduced dextran formation were successfully determined. • A practical approach was established to provide IMS with a great yield of 87%.


Asunto(s)
Gluconobacter oxydans , Membrana Celular , Gluconobacter oxydans/genética , Glucósidos , Glucosiltransferasas
10.
FEBS J ; 289(4): 1118-1134, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34665923

RESUMEN

Glycoside hydrolase family 15 (GH15) inverting enzymes contain two glutamate residues functioning as a general acid catalyst and a general base catalyst, for isomaltose glucohydrolase (IGHase), Glu178 and Glu335, respectively. Generally, a two-catalytic residue-mediated reaction exhibits a typical bell-shaped pH-activity curve. However, IGHase is found to display atypical non-bell-shaped pH-kcat and pH-kcat /Km profiles, theoretically better-fitted to a three-catalytic residue-associated pH-activity curve. We determined the crystal structure of IGHase by the single-wavelength anomalous dispersion method using sulfur atoms and the cocrystal structure of a catalytic base mutant E335A with isomaltose. Although the activity of E335A was undetectable, the electron density observed in its active site pocket did not correspond to an isomaltose but a glycerol and a ß-glucose, cryoprotectant, and hydrolysis product. Our structural and biochemical analyses of several mutant enzymes suggest that Tyr48 acts as a second catalytic base catalyst. Y48F mutant displayed almost equivalent specific activity to a catalytic acid mutant E178A. Tyr48, highly conserved in all GH15 members, is fixed by another Tyr residue in many GH15 enzymes; the latter Tyr is replaced by Phe290 in IGHase. The pH profile of F290Y mutant changed to a bell-shaped curve, suggesting that Phe290 is a key residue distinguishing Tyr48 of IGHase from other GH15 members. Furthermore, F290Y is found to accelerate the condensation of isomaltose from glucose by modifying a hydrogen-bonding network between Tyr290-Tyr48-Glu335. The present study indicates that the atypical Phe290 makes Tyr48 of IGHase unique among GH15 enzymes.


Asunto(s)
Glicósido Hidrolasas/química , Isomaltosa/metabolismo , Actinobacteria/enzimología , Biocatálisis , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Concentración de Iones de Hidrógeno , Hidrólisis , Isomaltosa/química , Modelos Moleculares , Mutación , Conformación Proteica
11.
J Biol Chem ; 296: 100398, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33571525

RESUMEN

Glycoside hydrolase family 68 (GH68) enzymes catalyze ß-fructosyltransfer from sucrose to another sucrose, the so-called transfructosylation. Although regioselectivity of transfructosylation is divergent in GH68 enzymes, there is insufficient information available on the structural factor(s) involved in the selectivity. Here, we found two GH68 enzymes, ß-fructofuranosidase (FFZm) and levansucrase (LSZm), encoded tandemly in the genome of Zymomonas mobilis, displayed different selectivity: FFZm catalyzed the ß-(2→1)-transfructosylation (1-TF), whereas LSZm did both of 1-TF and ß-(2→6)-transfructosylation (6-TF). We identified His79FFZm and Ala343FFZm and their corresponding Asn84LSZm and Ser345LSZm respectively as the structural factors for those regioselectivities. LSZm with the respective substitution of FFZm-type His and Ala for its Asn84LSZm and Ser345LSZm (N84H/S345A-LSZm) lost 6-TF and enhanced 1-TF. Conversely, the LSZm-type replacement of His79FFZm and Ala343FFZm in FFZm (H79N/A343S-FFZm) almost lost 1-TF and acquired 6-TF. H79N/A343S-FFZm exhibited the selectivity like LSZm but did not produce the ß-(2→6)-fructoside-linked levan and/or long levanooligosaccharides that LSZm did. We assumed Phe189LSZm to be a responsible residue for the elongation of levan chain in LSZm and mutated the corresponding Leu187FFZm in FFZm to Phe. An H79N/L187F/A343S-FFZm produced a higher quantity of long levanooligosaccharides than H79N/A343S-FFZm (or H79N-FFZm), although without levan formation, suggesting that LSZm has another structural factor for levan production. We also found that FFZm generated a sucrose analog, ß-D-fructofuranosyl α-D-mannopyranoside, by ß-fructosyltransfer to d-mannose and regarded His79FFZm and Ala343FFZm as key residues for this acceptor specificity. In summary, this study provides insight into the structural factors of regioselectivity and acceptor specificity in transfructosylation of GH68 enzymes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Hexosiltransferasas/metabolismo , Sacarosa/química , Sacarosa/metabolismo , Zymomonas/enzimología , beta-Fructofuranosidasa/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Catálisis , Dominio Catalítico , Hexosiltransferasas/química , Hexosiltransferasas/genética , Mutagénesis Sitio-Dirigida , Estereoisomerismo , Relación Estructura-Actividad , Zymomonas/aislamiento & purificación , Zymomonas/metabolismo , beta-Fructofuranosidasa/química , beta-Fructofuranosidasa/genética
12.
Surg Today ; 51(6): 971-977, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33389173

RESUMEN

PURPOSE: Thoracoscopic bullectomy is a common treatment modality for spontaneous pneumothorax but can result in a high frequency of postoperative recurrent pneumothorax in young patients. This retrospective study compared the recurrence rate of pneumothorax following conventional thoracoscopic bullectomy to that following bullectomy using a low-density polyglycolic acid mesh to cover the staple line. METHODS: Group A comprised 237 patients who experienced 294 episodes of pneumothorax and underwent thoracoscopic bullectomy alone, and Group B comprised 130 patients who experienced 155 episodes of pneumothorax and underwent bullectomy with polyglycolic acid mesh used to cover the visceral pleura. To compare the postoperative inflammatory response between the two groups, we measured three inflammatory parameters: highest body temperature after surgery, C-reactive protein level on postoperative day 3, and change in eosinophil count from the day before the surgery to postoperative day 3. RESULTS: The recurrence rate was significantly lower in Group B than in Group A (2.6% vs. 24.8%, P < 0.000001). All three inflammatory parameters were significantly higher in Group B than in Group A. CONCLUSIONS: Using a polyglycolic acid mesh covering after thoracoscopic bullectomy resulted in acceptable long-term results (recurrence rate: 2.6%). This method was associated with a slightly elevated inflammatory response.


Asunto(s)
Neumotórax/cirugía , Ácido Poliglicólico , Prevención Secundaria/métodos , Mallas Quirúrgicas , Cirugía Torácica Asistida por Video/métodos , Toracotomía/métodos , Adolescente , Femenino , Humanos , Masculino , Neumotórax/epidemiología , Recurrencia , Cirugía Torácica Asistida por Video/efectos adversos , Resultado del Tratamiento , Adulto Joven
13.
Appl Microbiol Biotechnol ; 103(16): 6581-6592, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31273396

RESUMEN

Paenibacillus sp. 598K produces cycloisomaltooligosaccharides (CIs) in culture from dextran and starch. CIs are cyclic oligosaccharides consisting of seven or more α-(1 → 6)-linked-D-glucose residues. The extracellular enzyme CI glucanotransferase (PsCITase), which is the member of glycoside hydrolase family 66, catalyzes the final stage of CI production and produces mainly cycloisomaltoheptaose. We have discovered a novel intracellular CI-degrading dextranase (PsDEX598) from Paenibacillus sp. 598K. The 69.7-kDa recombinant PsDEX598 does not digest isomaltotetraose or shorter isomaltooligosaccharides, but digests longer ones of at least up to isomaltoheptaose. It also digests oligoCIs of cycloisomaltoheptaose, cycloisomaltooctaose, and cycloisomaltononaose better than it does with megaloCIs of cycloisomaltodecaose, cycloisomaltoundecaose, and cycloisomaltododecaose, as well as an α-(1 → 6)-D-glucan of dextran 40. PsDEX598 is produced intracellularly when culture medium is supplemented with cycloisomaltoheptaose or dextran, but not with isomaltooligosaccharides (a mixture of isomaltose, isomaltotriose, and panose), starch, or glucose. The whole genomic DNA sequence of the strain 598K implies that it harbors two genes for enzymes belonging to glycoside hydrolase family 66 (PsCITase and PsDEX598), and PsDEX598 is the only dextranase in the strain. PsDEX598 does not have any carbohydrate-binding modules (CBMs) and has a low similarity (< 30%) with other family 66 dextranases, and the catalytic amino acids of this enzyme are predicted to be Asp191, Asp303, and Glu368. The strain Paenibacillus sp. 598K appears to take up CI-7, so these findings indicate that this bacterium can degrade CIs using a dextranase within the cells and so utilize them as a carbon source for growth.


Asunto(s)
Ciclodextrinas/metabolismo , Dextranasa/metabolismo , Paenibacillus/enzimología , Paenibacillus/metabolismo , Biotransformación , Biología Computacional , Dextranasa/química , Dextranasa/genética , Genoma Bacteriano , Peso Molecular , Paenibacillus/genética , Paenibacillus/crecimiento & desarrollo , Especificidad por Sustrato
14.
J Agric Food Chem ; 67(12): 3380-3388, 2019 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-30807133

RESUMEN

α-Glucosidase from Aspergillus niger (AgdA; typical α-1,4-glucosidase) is known to industrially produce α-(1→6)-glucooligosaccharides. This fungus also has another α-glucosidase-like protein, AgdB. To learn its function, wild-type AgdB was expressed in Pichia pastoris. However, the enzyme displayed two electrophoretic forms due to heterogeneity of N-glycosylation at Asn354. The deglycosylation mutant N354D shared the same properties with wild-type AgdB. N354D demonstrated hydrolytic specificity toward α-(1→3)- and α-(1→4)-glucosidic linkages, indicating that AgdB is an α-1,3-/α-1,4-glucosidase. N354D-catalyzed transglucosylation from maltose was analyzed in short- and long-term reactions, enabling us to learn the transglucosylation specificity and product accumulation, respectively. A short-term reaction (<15 min) synthesized 3II- O-α-glucosyl-maltose and maltotriose, indicating α-1,3-/α-1,4-transferring specificity. A long-term reaction (<24 h) accumulated kojibiose and nigerose using formed glucose as an acceptor substrate. AgdA and AgdB are distinct α-glucosidases. At a high concentration of glucose added exogenously, AgdB largely generated the rare sugars kojibiose and nigerose (exhibiting beneficial physiological functions) with 19% and 24% yields from maltose, respectively.


Asunto(s)
Aspergillus niger/enzimología , Disacáridos/química , Proteínas Fúngicas/química , alfa-Glucosidasas/química , Biocatálisis , Glicosilación , Hidrólisis , Especificidad por Sustrato
15.
Food Sci Nutr ; 6(8): 2293-2300, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30510729

RESUMEN

Makgeolli is a traditional Korean alcoholic rice beverage. It is brewed of ingredients containing starch, Nuruk, and water. In order to improve the quality and functionality of Makgeolli, the Rhizopus oligosporus fermented buckwheat containing 18.7 mg/kg of l-carnitine were utilized to brew l-carnitine fortified Makgeolli with rice. Makgeolli was prepared in two-stage fermentation method and total rutin and quercetin in each fermented buckwheat Makgeolli were increased 1.8-fold greater than buckwheat Makgeolli. DPPH antioxidant activity was enhanced in fermented buckwheat Makgeolli than buckwheat Makgeolli (21.9%-65.7%). The amounts of l-carnitine in rice Makgeolli, buckwheat Makgeolli, and fermented buckwheat Makgeolli were 0.9, 0.8-1.0, and 1.0-1.9 mg/L, respectively. The fermented buckwheat Makgeolli not only promoted health benefit by increasing l-carnitine and flavonols, but also made effective alcohol production (2.8%-8.4%) compared to common buckwheat Makgeolli, indicating the potential industrial application with health benefits.

16.
Biosci Biotechnol Biochem ; 82(9): 1480-1487, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29806555

RESUMEN

Herein, we investigated enzymatic properties and reaction specificities of Streptococcus mutans dextranase, which hydrolyzes α-(1→6)-glucosidic linkages in dextran to produce isomaltooligosaccharides. Reaction specificities of wild-type dextranase and its mutant derivatives were examined using dextran and a series of enzymatically prepared p-nitrophenyl α-isomaltooligosaccharides. In experiments with 4-mg·mL-1 dextran, isomaltooligosaccharides with degrees of polymerization (DP) of 3 and 4 were present at the beginning of the reaction, and glucose and isomaltose were produced by the end of the reaction. Increased concentrations of the substrate dextran (40 mg·mL-1) yielded isomaltooligosaccharides with higher DP, and the mutations T558H, W279A/T563N, and W279F/T563N at the -3 and -4 subsites affected hydrolytic activities of the enzyme, likely reflecting decreases in substrate affinity at the -4 subsite. In particular, T558H increased the proportion of isomaltooligosaccharide with DP of 5 in hydrolysates following reactions with 4-mg·mL-1 dextran.Abbreviations CI: cycloisomaltooligosaccharide; CITase: CI glucanotransferase; CITase-Bc: CITase from Bacillus circulans T-3040; DP: degree of polymerization of glucose unit; GH: glycoside hydrolase family; GTF: glucansucrase; HPAEC-PAD: high performance anion-exchange chromatography-pulsed amperometric detection; IG: isomaltooligosaccharide; IGn: IG with DP of n (n, 2‒5); PNP: p-nitrophenol; PNP-Glc: p-nitrophenyl α-glucoside; PNP-IG: p-nitrophenyl isomaltooligosaccharide; PNP-IGn: PNP-IG with DP of n (n, 2‒6); SmDex: dextranase from Streptococcus mutans; SmDexTM: S. mutans ATCC25175 SmDex bearing Gln100‒Ile732.


Asunto(s)
Dextranasa/metabolismo , Oligosacáridos/metabolismo , Streptococcus mutans/enzimología , Secuencia de Aminoácidos , Hidrólisis , Oligosacáridos/química , Polimerizacion , Streptococcus mutans/metabolismo , Especificidad por Sustrato
17.
Biosci Biotechnol Biochem ; 82(4): 629-635, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29173029

RESUMEN

Megalo-type isomaltosaccharides are an enzymatically synthesized foodstuff produced by transglucosylation from maltodextrin, and they contain a mid-chain length polymer of D-glucose with α-1,6-glycoside linkages. The injection of a solution of megalo-type isomaltosaccharides (1-4%(w/v), average DP = 12.6), but not oligo-type isomaltosaccharides (average DP = 3.3), into the intestinal lumen dose-dependently reduced the transport rates of tight junction permeable markers in a ligated loop of the anesthetized rat jejunum. Application of the megalosaccharide also suppressed the transport of tight junction markers and enhanced transepithelial electrical resistance (TEER) in Caco-2 cell monolayers. Cholesterol sequestration by methyl-ß-cyclodextrin in the Caco-2 monolayers abolished the effect of megalosaccharide. Treatment with anti-caveolin-1 and a caveolae inhibitor, but not clathrin-dependent endocytosis and macropinocytosis inhibitors, suppressed the increase in TEER. These results indicate that isomaltosaccharides promote the barrier function of tight junctions in the intestinal epithelium in a chain-length dependent manner and that caveolae play a role in the effect.


Asunto(s)
Carbohidratos de la Dieta/farmacología , Mucosa Intestinal/efectos de los fármacos , Uniones Estrechas/efectos de los fármacos , Animales , Células CACO-2 , Colesterol/metabolismo , Relación Dosis-Respuesta a Droga , Impedancia Eléctrica , Humanos , Mucosa Intestinal/fisiología , Yeyuno/efectos de los fármacos , Yeyuno/metabolismo , Masculino , Permeabilidad , Ratas Sprague-Dawley , Uniones Estrechas/fisiología , beta-Ciclodextrinas/farmacología
18.
Biochimie ; 142: 41-50, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28804002

RESUMEN

Glycoside hydrolase family 97 (GH97) is one of the most interesting glycosidase families, which contains inverting and retaining glycosidases. Currently, only two enzyme types, α-glucoside hydrolase and α-galactosidase, are registered in the carbohydrate active enzyme database as GH97 function-known proteins. To explore new specificities, BT3661 and BT3664, which have distinct amino acid sequences when compared with that of GH97 α-glucoside hydrolase and α-galactosidase, were characterized in this study. BT3664 was identified to be an α-galactosidase, whereas BT3661 exhibits hydrolytic activity toward both ß-l-arabinopyranoside and α-d-galactopyranoside, and thus we designate BT3661 as a ß-l-arabinopyranosidase/α-d-galactosidase. Since this is the first dual substrate specificity enzyme in GH97, we investigated the substrate recognition mechanism of BT3661 by determining its three-dimensional structure and based on this structural data generated a number of mutants to probe the enzymatic mechanism. Structural comparison shows that the active-site pocket of BT3661 is similar to GH97 α-galactosidase BT1871, but the environment around the hydroxymethyl group of the galactopyranoside is different. While BT1871 bears Glu361 to stabilize the hydroxy group of C6 through a hydrogen bond with its carboxy group, BT3661 has Asn338 at the equivalent position. Amino acid mutation analysis indicates that the length of the side chain at Asn338 is important for defining specificity of BT3661. The kcat/Km value for the hydrolysis of p-nitrophenyl α-galactoside decreases when Asn338 is substituted with Glu, whereas an increase is observed when the mutation is Ala. Interestingly, mutation of Asn338 to Ala reduces the kcat/Km value for hydrolysis of p-nitrophenyl ß-l-arabinopyranoside.


Asunto(s)
Bacteroides thetaiotaomicron/enzimología , alfa-Galactosidasa/química , alfa-Galactosidasa/metabolismo , Modelos Moleculares , Dominios Proteicos , Análisis de Secuencia , Especificidad por Sustrato , alfa-Galactosidasa/genética
19.
Biochem J ; 474(16): 2763-2778, 2017 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-28698247

RESUMEN

Paenibacillus sp. 598K α-1,6-glucosyltransferase (Ps6TG31A), a member of glycoside hydrolase family 31, catalyzes exo-α-glucohydrolysis and transglucosylation and produces α-1,6-glucosyl-α-glucosaccharides from α-glucan via its disproportionation activity. The crystal structure of Ps6TG31A was determined by an anomalous dispersion method using a terbium derivative. The monomeric Ps6TG31A consisted of one catalytic (ß/α)8-barrel domain and six small domains, one on the N-terminal and five on the C-terminal side. The structures of the enzyme complexed with maltohexaose, isomaltohexaose, and acarbose demonstrated that the ligands were observed in the catalytic cleft and the sugar-binding sites of four ß-domains. The catalytic site was structured by a glucose-binding pocket and an aglycon-binding cleft built by two sidewalls. The bound acarbose was located with its non-reducing end pseudosugar docked in the pocket, and the other moieties along one sidewall serving three subsites for the α-1,4-glucan. The bound isomaltooligosaccharide was found on the opposite sidewall, which provided the space for the acceptor molecule to be positioned for attack of the catalytic intermediate covalent complex during transglucosylation. The N-terminal domain recognized the α-1,4-glucan in a surface-binding mode. Two of the five C-terminal domains belong to the carbohydrate-binding modules family 35 and one to family 61. The sugar complex structures indicated that the first family 35 module preferred α-1,6-glucan, whereas the second family 35 module and family 61 module preferred α-1,4-glucan. Ps6TG31A appears to have enhanced transglucosylation activity facilitated by its carbohydrate-binding modules and substrate-binding cleft that positions the substrate and acceptor sugar for the transglucosylation.


Asunto(s)
Acarbosa/metabolismo , Proteínas Bacterianas/metabolismo , Glucosiltransferasas/metabolismo , Oligosacáridos/metabolismo , Paenibacillus/enzimología , Acarbosa/química , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Biocatálisis , Conformación de Carbohidratos , Dominio Catalítico , Cristalización , Cristalografía por Rayos X , Dimerización , Glucosiltransferasas/química , Glucosiltransferasas/genética , Indicadores y Reactivos/química , Ligandos , Oligosacáridos/química , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Terbio/química
20.
Appl Microbiol Biotechnol ; 101(16): 6399-6408, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28688044

RESUMEN

Aspergillus niger α-glucosidase (ANG), a member of glycoside hydrolase family 31, catalyzes hydrolysis of α-glucosidic linkages at the non-reducing end. In the presence of high concentrations of maltose, the enzyme also catalyzes the formation of α-(1→6)-glucosyl products by transglucosylation and it is used for production of the industrially useful panose and isomaltooligosaccharides. The initial transglucosylation by wild-type ANG in the presence of 100 mM maltose [Glc(α1-4)Glc] yields both α-(1→6)- and α-(1→4)-glucosidic linkages, the latter constituting ~25% of the total transfer reaction product. The maltotriose [Glc(α1-4)Glc(α1-4)Glc], α-(1→4)-glucosyl product disappears quickly, whereas the α-(1→6)-glucosyl products panose [Glc(α1-6)Glc(α1-4)Glc], isomaltose [Glc(α1-6)Glc], and isomaltotriose [Glc(α1-6)Glc(α1-6)Glc] accumulate. To modify the transglucosylation properties of ANG, residue Asn694, which was predicted to be involved in formation of the plus subsites of ANG, was replaced with Ala, Leu, Phe, and Trp. Except for N694A, the mutations enhanced the initial velocity of the α-(1→4)-transfer reaction to produce maltotriose, which was then degraded at a rate similar to that by wild-type ANG. With increasing reaction time, N694F and N694W mutations led to the accumulation of larger amounts of isomaltose and isomaltotriose than achieved with the wild-type enzyme. In the final stage of the reaction, the major product was panose (N694A and N694L) or isomaltose (N694F and N694W).


Asunto(s)
Aspergillus niger/genética , Aspergillus niger/metabolismo , Mutación , alfa-Glucosidasas/química , alfa-Glucosidasas/genética , Aspergillus niger/efectos de los fármacos , Aspergillus niger/enzimología , Glucanos/metabolismo , Glucanos/farmacología , Concentración de Iones de Hidrógeno , Hidrólisis , Isomaltosa/metabolismo , Cinética , Maltosa/metabolismo , Maltosa/farmacología , Mutagénesis Sitio-Dirigida , Especificidad por Sustrato , Trisacáridos/metabolismo , alfa-Glucosidasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...