Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 2677, 2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177710

RESUMEN

Recent studies have documented the occurrence of shallow very low frequency earthquakes (VLFE) in subduction zones. The heterogeneity of the materials or stresses that act on the plate interface results in the variable slip rate. Stress on the décollement can be controlled by the décollement geometry and the regional stress, which is also able to control the material properties. We determined the distribution of stress along the shallow portion of the décollement in the Nankai Trough using a three-dimensional (3D) seismic survey and regional stress analysis to construct maps of normalized slip tendency (Ts') and dilation tendency (Td). Alignments of VLFEs trend parallel to the trends of [Formula: see text] and [Formula: see text]. On the other hand, very low [Formula: see text] and [Formula: see text] areas probably act as barriers that limit the number of VLFEs that can migrate towards the trench. Because the [Formula: see text] and [Formula: see text] distributions are derived only from the décollement geometry and the regional stress without incorporating any data on sediment properties, the consistency between the trends suggests that the décollement geometry is the primary control on VLFE activity.

2.
Sci Rep ; 11(1): 12222, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34108585

RESUMEN

Although numerous metagenome, amplicon sequencing-based studies have been conducted to date to characterize marine microbial communities, relatively few have employed full metagenome shotgun sequencing to obtain a broader picture of the functional features of these marine microbial communities. Moreover, most of these studies only performed sporadic sampling, which is insufficient to understand an ecosystem comprehensively. In this study, we regularly conducted seawater sampling along the northeastern Pacific coast of Japan between March 2012 and May 2016. We collected 213 seawater samples and prepared size-based fractions to generate 454 subsets of samples for shotgun metagenome sequencing and analysis. We also determined the sequences of 16S rRNA (n = 111) and 18S rRNA (n = 47) gene amplicons from smaller sample subsets. We thereafter developed the Ocean Monitoring Database for time-series metagenomic data ( http://marine-meta.healthscience.sci.waseda.ac.jp/omd/ ), which provides a three-dimensional bird's-eye view of the data. This database includes results of digital DNA chip analysis, a novel method for estimating ocean characteristics such as water temperature from metagenomic data. Furthermore, we developed a novel classification method that includes more information about viruses than that acquired using BLAST. We further report the discovery of a large number of previously overlooked (TAG)n repeat sequences in the genomes of marine microbes. We predict that the availability of this time-series database will lead to major discoveries in marine microbiome research.


Asunto(s)
Bases de Datos Factuales , Metagenoma , Metagenómica/métodos , Microbiota , ARN Ribosómico 16S/genética , Agua de Mar/microbiología , Japón , Análisis de Secuencia de ADN , Factores de Tiempo
3.
Sci Rep ; 10(1): 12281, 2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32747647

RESUMEN

It is thought that extensional structures (extensional cracks and normal faults) generated during the post-seismic period create fluid pathways that enhance the drainage of the subducting plate interface, thus reducing the pore pressure and increasing fault strength. However, it remains to be elucidated how much pore fluid pressure decreases by the extension crack formation. Here we examined (i) the pore fluid pressure decrease, and (ii) the degree fault strength recovery by the extension crack formation during the post-seismic period by analyzing extension quartz veins exposed around the Nobeoka Thrust, southwestern Japan. The Nobeoka Trust is an on-land analog of the modern splay fault at shallow depths (~ 8 km) in the Nankai Trough. The poro-elastic model of extensional quartz vein formation indicates that the formation of extensional cracks only releases up to ~ 7-8% of the total pore fluid pressure at ~ 8 km depth. The pore pressure around the Nobeoka Thrust was close to lithostatic pressure during the entire seismic cycle. The estimated effective frictional coefficient along the Nobeoka Thrust after this small fluid-loss by the extensional crack formation does not exceed 0.15. Hence, the pore fluid pressure reduction due to the post-seismic extensional cracks contributes little to increase the fault strength of the megasplay fault.

4.
FEBS J ; 274(23): 6139-51, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17970746

RESUMEN

Jumonji (Jmj) is a transcriptional repressor that plays important roles in the suppression of cell proliferation and development of various tissues in the mouse. To further clarify the roles of Jmj during development and gain insight into mechanisms of Jmj-mediated transcriptional regulation, we have taken advantage of Drosophila as a model organism. Drosophila Jmj (dJmj) shares high homology with mammalian Jmj in the JmjN, JmjC and AT-rich interaction domains, as well as in the N-terminal repression domain. dJmj localizes to hundreds of euchromatic sites but not to chromocenter heterochromatin on salivary gland polytene chromosomes. In addition, dJmj is excluded from regions stained with an antibody against Ser5-phosphorylated RNA polymerase II, suggesting a function of dJmj in transcriptionally inactive chromatin. Loss of djmj results in larval and pupal lethality with phenotypes similar to those observed in mutants of ecdysone-regulated genes, implying the involvement of dJmj in the repression of gene expression in the ecdysone pathway. Transgenic mouse Jmj mostly colocalizes with dJmj and partially rescues the phenotypes of djmj mutants, indicating that dJmj is a functional homolog of mammalian Jmj. Furthermore, mutation in djmj suppresses position effect variegation of the T(2;3)Sb(V) rearrangement. These findings suggest that dJmj controls expression of developmentally important genes through modification of chromatin into a transcriptionally silenced state.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila/genética , Genes de Insecto , Metamorfosis Biológica/fisiología , Proteínas Nucleares/fisiología , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Células Cultivadas , Cromatina/genética , Cromatina/metabolismo , Drosophila/citología , Drosophila/fisiología , Proteínas de Drosophila/genética , Eucromatina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Silenciador del Gen , Inmunohistoquímica , Metamorfosis Biológica/genética , Datos de Secuencia Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Estructura Terciaria de Proteína , Proteínas Represoras , Glándulas Salivales/citología , Glándulas Salivales/metabolismo , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA