Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 907
Filtrar
1.
Nat Commun ; 15(1): 3657, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719795

RESUMEN

Cell states are regulated by the response of signaling pathways to receptor ligand-binding and intercellular interactions. High-resolution imaging has been attempted to explore the dynamics of these processes and, recently, multiplexed imaging has profiled cell states by achieving a comprehensive acquisition of spatial protein information from cells. However, the specificity of antibodies is still compromised when visualizing activated signals. Here, we develop Precise Emission Canceling Antibodies (PECAbs) that have cleavable fluorescent labeling. PECAbs enable high-specificity sequential imaging using hundreds of antibodies, allowing for reconstruction of the spatiotemporal dynamics of signaling pathways. Additionally, combining this approach with seq-smFISH can effectively classify cells and identify their signal activation states in human tissue. Overall, the PECAb system can serve as a comprehensive platform for analyzing complex cell processes.


Asunto(s)
Técnica del Anticuerpo Fluorescente , Humanos , Técnica del Anticuerpo Fluorescente/métodos , Transducción de Señal , Anticuerpos/inmunología , Animales , Hibridación Fluorescente in Situ/métodos , Microscopía Fluorescente/métodos , Colorantes Fluorescentes/química , Imagen Individual de Molécula/métodos
2.
J Cell Biol ; 223(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38709169

RESUMEN

Histone H3 lysine36 dimethylation (H3K36me2) is generally distributed in the gene body and euchromatic intergenic regions. However, we found that H3K36me2 is enriched in pericentromeric heterochromatin in some mouse cell lines. We here revealed the mechanism of heterochromatin targeting of H3K36me2. Among several H3K36 methyltransferases, NSD2 was responsible for inducing heterochromatic H3K36me2. Depletion and overexpression analyses of NSD2-associating proteins revealed that NSD2 recruitment to heterochromatin was mediated through the imitation switch (ISWI) chromatin remodeling complexes, such as BAZ1B-SMARCA5 (WICH), which directly binds to AT-rich DNA via a BAZ1B domain-containing AT-hook-like motifs. The abundance and stoichiometry of NSD2, SMARCA5, and BAZ1B could determine the localization of H3K36me2 in different cell types. In mouse embryos, H3K36me2 heterochromatin localization was observed at the two- to four-cell stages, suggesting its physiological relevance.


Asunto(s)
Ensamble y Desensamble de Cromatina , Heterocromatina , N-Metiltransferasa de Histona-Lisina , Histonas , Proteínas Represoras , Animales , Humanos , Ratones , Adenosina Trifosfatasas , Proteínas que Contienen Bromodominio/genética , Proteínas que Contienen Bromodominio/metabolismo , Centrómero/metabolismo , Centrómero/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Heterocromatina/metabolismo , Heterocromatina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Histonas/genética , Metilación , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
3.
Philos Trans A Math Phys Eng Sci ; 382(2273): 20230199, 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38736332

RESUMEN

The DESTINY+(Demonstration and Experiment of Space Technology for INterplanetary voYage with Phaethon fLyby and dUst Science) Dust Analyser (DDA) is a state-of-the-art dust telescope for the in situ analysis of cosmic dust particles. As the primary scientific payload of the DESTINY+ mission, it serves the purpose of characterizing the dust environment within the Earth-Moon system, investigating interplanetary and interstellar dust populations at 1 AU from the Sun and studying the dust cloud enveloping the asteroid (3200) Phaethon. DDA features a two-axis pointing platform for increasing the accessible fraction of the sky. The instrument combines a trajectory sensor with an impact ionization time-of-flight mass spectrometer, enabling the correlation of dynamical, physical and compositional properties for individual dust grains. For each dust measurement, a set of nine signals provides the surface charge, particle size, velocity vector, as well as the atomic, molecular and isotopic composition of the dust grain. With its capabilities, DDA is a key asset in advancing our understanding of the cosmic dust populations present along the orbit of DESTINY+. In addition to providing the scientific context, we are presenting an overview of the instrument's design and functionality, showing first laboratory measurements and giving insights into the observation planning. This article is part of a theme issue 'Dust in the Solar System and beyond'.

4.
J Clin Immunol ; 44(4): 103, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642164

RESUMEN

Epstein-Barr virus (EBV) infection can lead to infectious mononucleosis (EBV-IM) and, more rarely, EBV-associated hemophagocytic lymphohistiocytosis (EBV-HLH), which is characterized by a life-threatening hyperinflammatory cytokine storm with immune dysregulation. Interferon-gamma (IFNγ) has been identified as a critical mediator for primary HLH; however, the detailed role of IFNγ and other cytokines in EBV-HLH is not fully understood. In this study, we used single-cell RNA sequencing to characterize the immune landscape of EBV-HLH and compared it with EBV-IM. Three pediatric patients with EBV-HLH with different backgrounds, one with X-linked lymphoproliferative syndrome type 1 (XLP1), two with chronic active EBV disease (CAEBV), and two patients with EBV-IM were enrolled. The TUBA1B + STMN1 + CD8 + T cell cluster, a responsive proliferating cluster with rich mRNA detection, was explicitly observed in EBV-IM, and the upregulation of SH2D1A-the gene responsible for XLP1-was localized in this cluster. This proliferative cluster was scarcely observed in EBV-HLH cases. In EBV-HLH cases with CAEBV, upregulation of LAG3 was observed in EBV-infected cells, which may be associated with an impaired response by CD8 + T cells. Additionally, genes involved in type I interferon (IFN) signaling were commonly upregulated in each cell fraction of EBV-HLH, and activation of type II IFN signaling was observed in CD4 + T cells, natural killer cells, and monocytes but not in CD8 + T cells in EBV-HLH. In conclusion, impaired responsive proliferation of CD8 + T cells and upregulation of type I IFN signaling were commonly observed in EBV-HLH cases, regardless of the patients' background, indicating the key features of EBV-HLH.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Linfohistiocitosis Hemofagocítica , Trastornos Linfoproliferativos , Humanos , Niño , Herpesvirus Humano 4 , Linfohistiocitosis Hemofagocítica/diagnóstico , Linfohistiocitosis Hemofagocítica/genética , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/genética , Linfocitos T CD8-positivos , Interferón gamma/genética , Trastornos Linfoproliferativos/diagnóstico , Trastornos Linfoproliferativos/genética , Trastornos Linfoproliferativos/complicaciones , Perfilación de la Expresión Génica
5.
Nat Cell Biol ; 26(4): 604-612, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38589534

RESUMEN

The localization of transcriptional activity in specialized transcription bodies is a hallmark of gene expression in eukaryotic cells. It remains unclear, however, if and how transcription bodies affect gene expression. Here we disrupted the formation of two prominent endogenous transcription bodies that mark the onset of zygotic transcription in zebrafish embryos and analysed the effect on gene expression using enriched SLAM-seq and live-cell imaging. We find that the disruption of transcription bodies results in the misregulation of hundreds of genes. Here we focus on genes that are upregulated. These genes have accessible chromatin and are poised to be transcribed in the presence of the two transcription bodies, but they do not go into elongation. Live-cell imaging shows that disruption of the two large transcription bodies enables these poised genes to be transcribed in ectopic transcription bodies, suggesting that the large transcription bodies sequester a pause release factor. Supporting this hypothesis, we find that CDK9-the kinase that releases paused polymerase II-is highly enriched in the two large transcription bodies. Overexpression of CDK9 in wild-type embryos results in the formation of ectopic transcription bodies and thus phenocopies the removal of the two large transcription bodies. Taken together, our results show that transcription bodies regulate transcription by sequestering machinery, thereby preventing genes elsewhere in the nucleus from being transcribed.


Asunto(s)
Factor B de Elongación Transcripcional Positiva , ARN Polimerasa II , Animales , Cromatina/genética , Expresión Génica , Factor B de Elongación Transcripcional Positiva/genética , Factor B de Elongación Transcripcional Positiva/metabolismo , ARN Polimerasa II/genética , Transcripción Genética , Pez Cebra/genética , Pez Cebra/metabolismo
6.
iScience ; 27(4): 109398, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38544573

RESUMEN

Mitochondria play a vital role in non-shivering thermogenesis in both brown and subcutaneous white adipose tissues (BAT and scWAT, respectively). However, specific regulatory mechanisms driving mitochondrial function in these tissues have been unclear. Here we demonstrate that prolonged activation of ß-adrenergic signaling induces epigenetic modifications in scWAT, specifically targeting the enhancers for the mitochondria master regulator genes Pgc1a/b. This is mediated at least partially through JMJD1A, a histone demethylase that in response to ß-adrenergic signals, facilitates H3K9 demethylation of the Pgc1a/b enhancers, promoting mitochondrial biogenesis and the formation of beige adipocytes. Disruption of demethylation activity of JMJD1A in mice impairs activation of Pgc1a/b driven mitochondrial biogenesis and limits scWAT beiging, contributing to reduced energy expenditure, obesity, insulin resistance, and metabolic disorders. Notably, JMJD1A demethylase activity is not required for Pgc1a/b dependent thermogenic capacity of BAT especially during acute cold stress, emphasizing the importance of scWAT thermogenesis in overall energy metabolism.

7.
J Cell Sci ; 137(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38357971

RESUMEN

The SWI/SNF chromatin remodeling complex consists of more than ten component proteins that form a large protein complex of >1 MDa. The catalytic proteins Smarca4 or Smarca2 work in concert with the component proteins to form a chromatin platform suitable for transcriptional regulation. However, the mechanism by which each component protein works synergistically with the catalytic proteins remains largely unknown. Here, we report on the function of Smarce1, a component of the SWI/SNF complex, through the phenotypic analysis of homozygous mutant embryonic stem cells (ESCs). Disruption of Smarce1 induced the dissociation of other complex components from the SWI/SNF complex. Histone binding to DNA was loosened in homozygous mutant ESCs, indicating that disruption of Smarce1 decreased nucleosome stability. Sucrose gradient sedimentation analysis suggested that there was an ectopic genomic distribution of the SWI/SNF complex upon disruption of Smarce1, accounting for the misregulation of chromatin conformations. Unstable nucleosomes remained during ESC differentiation, impairing the heterochromatin formation that is characteristic of the differentiation process. These results suggest that Smarce1 guides the SWI/SNF complex to the appropriate genomic regions to generate chromatin structures adequate for transcriptional regulation.


Asunto(s)
Cromatina , Nucleosomas , Nucleosomas/genética , Cromatina/genética , ADN/metabolismo , Mutación/genética , Células Madre Embrionarias/metabolismo
8.
PNAS Nexus ; 3(2): pgae070, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38384383

RESUMEN

The small intestine and liver play important role in determining oral drug's fate. Both organs are also interconnected through enterohepatic circulation, which imply there are crosstalk through circulating factors such as signaling molecules or metabolites that may affect drug metabolism. Coculture of hepatocytes and intestinal cells have shown to increase hepatic drug metabolism, yet its crosstalk mechanism is still unclear. In this study, we aim to elucidate such crosstalk by coculturing primary human hepatocytes harvested from chimeric mouse (PXB-cells) and iPSc-derived intestinal cells in a microphysiological systems (MPS). Perfusion and direct oxygenation from the MPS were chosen and confirmed to be suitable features that enhanced PXB-cells albumin secretion, cytochrome P450 (CYP) enzymes activity while also maintaining barrier integrity of iPSc-derived intestine cells. Results from RNA-sequencing showed significant upregulation in gene ontology terms related to fatty acids metabolism in PXB-cells. One of such fatty acids, arachidonic acid, enhanced several CYP enzyme activity in similar manner as coculture. From the current evidences, it is speculated that the release of bile acids from PXB-cells acted as stimuli for iPSc-derived intestine cells to release lipoprotein which was ultimately taken by PXB-cells and enhanced CYP activity.

9.
Genes Cells ; 29(5): 361-379, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38403935

RESUMEN

Constitutive heterochromatin is transcriptionally repressed and densely packed chromatin, typically harboring histone H3 Lys9 trimethylation (H3K9me3) and heterochromatin protein 1 (HP1). SUV420H2, a histone H4 Lys20 methyltransferase, is recruited to heterochromatin by binding to HP1 through its Heterochromatic Targeting Module (HTM). Here, we have identified three HP1 binding motifs within the HTM. Both the full-length HTM and its N-terminal region (HTM-N), which contains the first and second motifs, stabilized HP1 on heterochromatin. The intervening region between the first and second HP1 binding motifs in HTM-N was also crucial for HP1 binding. In contrast, the C-terminal region of HTM (HTM-C), containing the third motif, destabilized HP1 on chromatin. An HTM V374D mutant, featuring a Val374 to Asp substitution in the second HP1 binding motif, localizes to heterochromatin without affecting HP1 stability. These data suggest that the second HP1 binding motif in the SUV420H2 HTM is critical for locking HP1 on H3K9me3-enriched heterochromatin. HTM V374D, tagged with a fluorescent protein, can serve as a live-cell probe to visualize HP1-bound heterochromatin.


Asunto(s)
Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona , Heterocromatina , N-Metiltransferasa de Histona-Lisina , Unión Proteica , Heterocromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Homólogo de la Proteína Chromobox 5/metabolismo , Humanos , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Secuencias de Aminoácidos , Células HeLa , Sitios de Unión
10.
BMC Pulm Med ; 24(1): 90, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368315

RESUMEN

BACKGROUND: The data on bosentan were lacking for the treatment of exercise-induced elevation of pulmonary artery pressure (eePAP) or less severe PH in COPD. This study was conducted to investigate long-term efficacy and safety of bosentan for the treatment of eePAP or less severe PH in COPD. METHODS: COPD patients diagnosed at this hospital as having COPD (WHO functional class II, III or IV) with eePAP or less severe PH whose respiratory symptoms were stable but remained and gradually progressed even after COPD therapy were randomly assigned in a 1:1 ratio to receive either bosentan or no PH treatment for two years and assessed at baseline and every 6 months for respiratory failure, activities of daily living (ADL), lung and heart functions by right heart catheterization (RHC), and other parameters. RESULTS: A total of 29 patients who underwent RHC for detail examination were enrolled in the current study between August 2010 and October 2018.No death occurred in drug-treated group (n = 14) for 2 years; 5 patients died in untreated group (n = 15). Significant differences were noted between the 2 group in hospital-free survival (686.00 ± 55.87 days vs. 499.94 ± 53.27 days; hazard ratio [HR], 0.18; P = 0.026) and overall survival (727 days vs. 516.36 ± 55.38 days; HR, 0.095; P = 0.030) in all causes of death analysis, but not in overall survival in analysis of respiratory-related death. Bosentan was not associated with increased adverse events including requiring O2 inhalation. CONCLUSIONS: This study suggested that the prognosis for COPD patients with eePAP or less severe PH presenting with respiratory symptoms was very poor and that bosentan tended to improve their prognosis and suppress ADL deterioration without worsening respiratory failure. TRIAL REGISTRATION: This study was registered with UMIN-CTR Clinical Trial as UMIN000004749 . First trial registration at 18/12/2010.


Asunto(s)
Hipertensión Pulmonar , Enfermedad Pulmonar Obstructiva Crónica , Insuficiencia Respiratoria , Humanos , Bosentán/uso terapéutico , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/complicaciones , Arteria Pulmonar , Actividades Cotidianas , Estudios Prospectivos , Antagonistas de los Receptores de Endotelina/uso terapéutico , Sulfonamidas , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Insuficiencia Respiratoria/complicaciones , Progresión de la Enfermedad , Antihipertensivos/uso terapéutico , Resultado del Tratamiento
11.
bioRxiv ; 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38352431

RESUMEN

Regulation of RNA polymerase II (Pol II) transcription is closely associated with cell proliferation. However, it remains unclear how the Pol II transcription program is altered in cancer to favour cell growth. Here, we find that gene expression of NELFCD , a known negative elongation factor, is up-regulated in colorectal tumours. To dissect the direct role of NELF-C on Pol II transcription in such cancer, we employed an auxin-dependent protein degradation system for NELF-C in combination with nascent transcript sequencing technologies. Strikingly, we demonstrated that the acute loss of NELF-C protein globally perturbs Pol II transcription termination and also increases transcription elongation rate, independently of promoter-proximal Pol II pausing. This results in Pol II transcription into DNA replication initiation zones, and may link to failure of the cell cycle transition into S phase. We anticipate that NELF will be a potential therapeutic target to restrict colorectal cancers by promoting transcription-replication conflict. HIGHLIGHTS: Expression of NELFCD transcript is up-regulated in colorectal tumors NELF-C protein is mandatory for the transition between G1-S phases during cell cycleNELF-C loss impairs transcription termination independently of Pol II promoter-proximal pausingNELF-C loss leads Pol II to invade DNA replication initiation zones.

12.
PLoS Pathog ; 20(2): e1011954, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38300891

RESUMEN

Epstein-Barr virus (EBV) is a ubiquitous human lymphotropic herpesvirus that is causally associated with several malignancies. In addition to latent factors, lytic replication contributes to cancer development. In this study, we examined whether the lytic gene BNRF1, which is conserved among gamma-herpesviruses, has an important role in lymphomagenesis. We found that lymphoblastoid cell lines (LCLs) established by BNRF1-knockout EBV exhibited remarkably lower pathogenicity in a mice xenograft model than LCLs produced by wild-type EBV (LCLs-WT). RNA-seq analyses revealed that BNRF1 elicited the expression of interferon-inducible protein 27 (IFI27), which promotes cell proliferation. IFI27 knockdown in LCLs-WT resulted in excessive production of reactive oxygen species, leading to cell death and significantly decreased their pathogenicity in vivo. We also confirmed that IFI27 was upregulated during primary infection in B-cells. Our findings revealed that BNRF1 promoted robust proliferation of the B-cells that were transformed by EBV latent infection via IFI27 upregulation both in vitro and in vivo.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpesviridae , Humanos , Animales , Ratones , Herpesvirus Humano 4 , Interferones/metabolismo , Regulación hacia Arriba , Herpesviridae/metabolismo , Latencia del Virus , Proteínas de la Membrana/metabolismo
14.
Sci Rep ; 14(1): 1723, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38242985

RESUMEN

Predicting the transition of kidney function in chronic kidney disease is difficult as specific symptoms are lacking and often overlooked, and progress occurs due to complicating factors. In this study, we applied time-series cluster analysis and a light gradient boosting machine to predict the trajectories of kidney function in non-dialysis dependent chronic kidney disease patients with baseline estimated glomerular filtration rate (GFR) ≥ 45 mL/min/1.73 m2. Based on 5-year changes in estimated GFR, participants were stratified into groups with similar trajectories by cluster analysis. Next, we applied the light gradient boosting machine algorithm and Shapley addictive explanation to develop a prediction model for clusters and identify important parameters for prediction. Data from 780 participants were available for analysis. Participants were classified into five classes (Class 1: n = 78, mean [± standard deviation] estimated GFR 100 ± 19.3 mL/min/1.73 m2; Class 2: n = 176, 76.0 ± 9.3 mL/min/1.73 m2; Class 3: n = 191, 59.8 ± 5.9 mL/min/1.73 m2; Class 4: n = 261, 52.7 ± 4.6 mL/min/1.73 m2; and Class 5: n = 74, 53.5 ± 12.0 mL/min/1.73 m2). Declines in estimated GFR were 8.9% in Class 1, 12.2% in Class 2, 4.9% in Class 3, 12.0% in Class 4, and 45.1% in Class 5 during the 5-year period. The accuracy of prediction was 0.675, and the top three most important Shapley addictive explanation values were 1.61 for baseline estimated GFR, 0.12 for hemoglobin, and 0.11 for body mass index. The estimated GFR transition of patients with preserved chronic kidney disease mostly depended on baseline estimated GFR, and the borderline for estimated GFR trajectory was nearly 50 mL/min/1.73 m2.


Asunto(s)
Insuficiencia Renal Crónica , Humanos , Tasa de Filtración Glomerular , Análisis por Conglomerados , Factores de Tiempo , Algoritmos
15.
Dev Growth Differ ; 66(2): 161-171, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38193362

RESUMEN

Skeletal tissues including cartilage and bones are characteristic features of vertebrates that are crucial for supporting body morphology and locomotion. Studies mainly in mice have shown that osteoblasts and chondroblasts are supplied from several progenitors like the sclerotome cells in the embryonic stage, osteo-chondroprogenitors in growing long bones, and skeletal stem cells of bone marrow in the postnatal period. However, the exact origins of progenitor cells, their lineage relationships, and their potential to differentiate into osteoblasts and chondroblasts from embryos to adult tissues are not well understood. In this study, we conducted clonal cell tracking in zebrafish and showed that sox9a+ cells are already committed to either chondrogenic or osteogenic fates during embryonic stages and that respective progenies are independently maintained as mesenchymal progenitor pools. Once committed, they never change their lineage identities throughout animal life, even through regeneration. In addition, we further revealed that only osteogenic mesenchymal cells replenish the osteoblast progenitor cells (OPCs), a population of reserved tissue stem cells found to be involved in the de novo production of osteoblasts during regeneration and homeostasis in zebrafish. Thus, our clonal cell tracking study in zebrafish firstly revealed that the mesenchymal progenitor cells that are fated to develop into either chondroblasts or osteoblasts serve as respective tissue stem cells to maintain skeletal tissue homeostasis. Such mesenchymal progenitors dedicated to producing either chondroblasts or osteoblasts would be important targets for skeletal tissue regeneration.


Asunto(s)
Osteogénesis , Pez Cebra , Animales , Ratones , Diferenciación Celular , Huesos , Osteoblastos
16.
Curr Opin Cell Biol ; 86: 102319, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38219526

Asunto(s)
Núcleo Celular
17.
Pharmacol Biochem Behav ; 234: 173676, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37992974

RESUMEN

BACKGROUND: Although findings from both animal and clinical research indicate that the blood-brain barrier (BBB) contributes to the pathogenesis of various psychiatric disorders (including depression), the underlying mechanisms are unknown. We investigated the levels of the tight-junction proteins claudin-5 and aquaporin-4 (AQP-4) in astrocytes of learned helplessness (LH) rats (an animal model of depression) and non-LH rats (a model of resilience). METHODS: We administered inescapable mild electric shock to rats and then identified the LH and non-LH rats by a post-shock test. The expressions of claudin-5 and AQP-4 in several brain regions of the LH and non-LH rats were then evaluated by a western blot analysis. RESULTS: The levels of both claudin-5 and AQP-4 in the CA-1 and CA-3 hippocampal areas of the LH group were significantly lower than those of the control group, whereas those of the non-LH rats were not significantly different from those of the control and LH rats. CONCLUSIONS: These results suggest that LH rats but not non-LH rats experienced down-regulations of claudin-5 and AQP-4 in the CA-1 and CA-3. It is possible that a region-specific modulation of claudin-5 and AQP-4 is involved in the mechanisms of vulnerability but not resilience in depression.


Asunto(s)
Acuaporina 4 , Claudina-5 , Depresión , Animales , Humanos , Ratas , Acuaporinas/metabolismo , Claudina-5/metabolismo , Depresión/genética , Depresión/metabolismo , Desamparo Adquirido , Hipocampo/metabolismo , Acuaporina 4/metabolismo
18.
Nat Methods ; 21(1): 72-82, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38049699

RESUMEN

Gene expression programs result from the collective activity of numerous regulatory factors. Studying their cooperative mode of action is imperative to understand gene regulation, but simultaneously measuring these factors within one sample has been challenging. Here we introduce Multiplexing Antibodies by barcode Identification (MAbID), a method for combinatorial genomic profiling of histone modifications and chromatin-binding proteins. MAbID employs antibody-DNA conjugates to integrate barcodes at the genomic location of the epitope, enabling combined incubation of multiple antibodies to reveal the distributions of many epigenetic markers simultaneously. We used MAbID to profile major chromatin types and multiplexed measurements without loss of individual data quality. Moreover, we obtained joint measurements of six epitopes in single cells of mouse bone marrow and during mouse in vitro differentiation, capturing associated changes in multifactorial chromatin states. Thus, MAbID holds the potential to gain unique insights into the interplay between gene regulatory mechanisms, especially for low-input samples and in single cells.


Asunto(s)
Cromatina , Histonas , Ratones , Animales , Cromatina/genética , Histonas/metabolismo , Inmunoprecipitación de Cromatina/métodos , Código de Histonas , Procesamiento Proteico-Postraduccional , Epigénesis Genética
20.
Lab Chip ; 24(3): 408-421, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38131210

RESUMEN

Microphysiological systems (MPS) offer an alternative method for culturing cells on microfluidic platforms to model organ functions in pharmaceutical and medical sciences. Although MPS hardware has been proposed to maintain physiological organ function through perfusion culture, no existing MPS can automatically assess cell morphology and conditions online to observe cellular dynamics in detail. Thus, with this study, we aimed to establish a practical strategy for automating cell observation and improving cell evaluation functions with low temporal resolution and throughput in MPS experiments. We developed a versatile standalone cell culture microfluidic device (SCCMD) that integrates microfluidic chips and their peripherals. This device is compliant with the ANSI/SLAS standards and has been seamlessly integrated into an existing automatic cell imaging system. This integration enables automatic cell observation with high temporal resolution in MPS experiments. Perfusion culture of human kidney proximal tubule epithelial cells using the SCCMD improves cell function. By combining the proximal tubule MPS with an existing cell imaging system, nephrotoxicity studies were successfully performed to automate morphological and material permeability evaluation. We believe that the concept of building the ANSI/SLAS-compliant-sized MPS device proposed herein and integrating it into an existing automatic cell imaging system for the online measurement of detailed cell dynamics information and improvement of throughput by automating observation operations is a novel potential research direction for MPS research.


Asunto(s)
Técnicas de Cultivo de Célula , Sistemas Microfisiológicos , Humanos , Dispositivos Laboratorio en un Chip , Microfluídica/métodos , Células Epiteliales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...