Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
3.
Mol Cancer Ther ; 21(6): 948-959, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35405741

RESUMEN

T cells play a critical role in the control of cancer. The development of immune checkpoint blockers (ICB) aimed at enhancing antitumor T-cell responses has revolutionized cancer treatment. However, durable clinical benefit is observed in only a subset of patients, prompting research efforts to focus on strategies that target multiple inhibitory signals within the tumor microenvironment (TME) to limit tumor evasion and improve patient outcomes. Adenosine has emerged as a potent immune suppressant within the TME, and CD73 is the major enzyme responsible for its extracellular production. CD73 can be co-opted within the TME to impair T-cell-mediated antitumor immunity and promote tumor growth. To target this pathway and block the formation of adenosine, we designed a novel, selective, and potent class of small-molecule inhibitors of CD73, including AB680 (quemliclustat), which is currently being tested in patients with cancer. AB680 effectively restored T-cell proliferation, cytokine secretion, and cytotoxicity that were dampened by the formation of immunosuppressive adenosine by CD73. Furthermore, in an allogeneic mixed lymphocyte reaction where CD73-derived adenosine had a dominant suppressive effect in the presence of PD-1 blockade, AB680 restored T-cell activation and function. Finally, in a preclinical mouse model of melanoma, AB680 inhibited CD73 in the TME and increased the antitumor activity of PD-1 blockade. Collectively, these data provide a rationale for the inhibition of CD73 with AB680 in combination with ICB, such as anti-PD-1, to improve cancer patient outcomes.


Asunto(s)
Melanoma , Receptor de Muerte Celular Programada 1 , Adenosina/metabolismo , Adenosina/farmacología , Adenosina/uso terapéutico , Animales , Humanos , Inhibidores de Puntos de Control Inmunológico , Melanoma/tratamiento farmacológico , Ratones , Receptor de Muerte Celular Programada 1/metabolismo , Microambiente Tumoral
4.
Sleep ; 41(9)2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29860347

RESUMEN

Narcolepsy type 1 (Na-1) and 2 (Na-2) are characterized by an inability to sustain wakefulness and are likely caused by degeneration of orexin neurons. Near complete orexin neurodegeneration depletes orexin-A from the cerebrospinal fluid and produces Na-1. The pathophysiology of Na-2 is less understood but has been hypothesized to be due to less extensive loss of orexin neurotransmission. The orexin-tTA; TetO diphtheria toxin A mouse allows conditional control over the extent and timing of orexin neurodegeneration. To evaluate partial ablation of the orexin field as a model of Na-2, orexin-A positive cell counts and sleep/wake phenotypes (determined by piezoelectric monitoring) were correlated within individual mice after different protocols of diet-controlled neurodegeneration. Partial ablations that began during the first 8 days of study were 14% larger than partial ablations induced during the last 8 days of study, 6 weeks later and prior to sacrifice of all mice, suggesting orexin-A positive cell death continued despite the resumption of conditions intended to keep orexin neurons intact. Sleep/wake of mice with 71.0% orexin-A positive cell loss, initiated at the beginning of study, resembled that of orexin-intact controls more than mice with near complete neurodegeneration. Conversely, mice with 56.6% orexin-A positive cell loss, created at the end of study, had sleep/wake phenotypes that were similar to those of mice with near complete orexin-A positive cell loss. Collectively, these results suggest that compensatory wake-promotion develops in mice that have some critical portion of their orexinergic system remaining after partial ablation.


Asunto(s)
Modelos Animales de Enfermedad , Narcolepsia/genética , Enfermedades Neurodegenerativas/genética , Orexinas/genética , Fenotipo , Animales , Femenino , Masculino , Ratones , Ratones Transgénicos , Narcolepsia/metabolismo , Narcolepsia/fisiopatología , Enfermedades Neurodegenerativas/metabolismo , Neuronas/fisiología , Neuropéptidos/deficiencia , Neuropéptidos/genética , Orexinas/deficiencia , Sueño/fisiología , Vigilia/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...