Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 7534, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35534513

RESUMEN

We used observational data collected during a mark-recapture study that generated a total of 7503 captures of 6108 unique individuals representing three endangered butterfly species to quantify inter-and intraindividual variation in temperature utilization and examine how activity patterns vary according to season, time of day, and ambient temperature. The Marsh Fritillary, the Apollo, and the Large Blue differed in utilized temperatures and phenology. Their daily activity patterns responded differently to temperature, in part depending on whether they were active in the beginning, middle or end of the season, in part reflecting interindividual variation and intraindividual flexibility, and in part owing to differences in ecology, morphology, and colouration. Activity temperatures varied over the season, and the Apollo and the Large Blue were primarily active at the highest available ambient temperatures (on the warmest days and during the warmest part of the day). The Marsh Fritillary was active early in the season and decreased activity during the highest temperatures. The relationship between individual lifespan and the average temperature was qualitatively different in the three species pointing to species-specific selection. Lifespan increased with an increasing range of utilized temperatures in all species, possibly reflecting that intra-individual flexibility comes with a general survival benefit.


Asunto(s)
Mariposas Diurnas , Animales , Cambio Climático , Humanos , Estaciones del Año , Especificidad de la Especie , Temperatura
2.
Ecol Evol ; 10(6): 3079-3089, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32211178

RESUMEN

Understanding spatiotemporal population trends and their drivers is a key aim in population ecology. We further need to be able to predict how the dynamics and sizes of populations are affected in the long term by changing landscapes and climate. However, predictions of future population trends are sensitive to a range of modeling assumptions. Deadwood-dependent fungi are an excellent system for testing the performance of different predictive models of sessile species as these species have different rarity and spatial population dynamics, the populations are structured at different spatial scales, and they utilize distinct substrates. We tested how the projected large-scale occupancies of species with differing landscape-scale occupancies are affected over the coming century by different modeling assumptions. We compared projections based on occupancy models against colonization-extinction models, conducting the modeling at alternative spatial scales and using fine- or coarse-resolution deadwood data. We also tested effects of key explanatory variables on species occurrence and colonization-extinction dynamics. The hierarchical Bayesian models applied were fitted to an extensive repeated survey of deadwood and fungi at 174 patches. We projected higher occurrence probabilities and more positive trends using the occupancy models compared to the colonization-extinction models, with greater difference for the species with lower occupancy, colonization rate, and colonization:extinction ratio than for the species with higher estimates of these statistics. The magnitude of future increase in occupancy depended strongly on the spatial modeling scale and resource resolution. We encourage using colonization-extinction models over occupancy models, modeling the process at the finest resource-unit resolution that is utilizable by the species, and conducting projections for the same spatial scale and resource resolution at which the model fitting is conducted. Further, the models applied should include key variables driving the metapopulation dynamics, such as the availability of suitable resource units, habitat quality, and spatial connectivity.

3.
Biodivers Data J ; (4): e7644, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27099553

RESUMEN

BACKGROUND: During the last years, more and more online portals were generated and are now available for ecologists to run advanced models with extensive data sets. Some examples are the Biodiversity Virtual e-Laboratory (BioVel) Portal (https://portal.biovel.eu) for ecological niche modelling and the Mobyle SNAP Workbench (https://snap.hpc.ncsu.edu) for evolutionary and population genetics analysis. Such portals have the main goal to facilitate the run of advanced models, through access to large-capacity computers or servers. In this study, we present the Analysis Portal (www.analysisportal.se), which is a part of the Swedish LifeWatch e-infrastructure for biodiversity research that combines a variety of Swedish web services to perform different kinds of dataprocessing. NEW INFORMATION: For the first time, the Swedish Analysis Portal for integrated analysis of species occurrence data is described in detail. It was launched in 2013 and today, over 60 Million Swedish species observation records can be assessed, visualized and analyzed via the portal. Datasets can be assembled using sophisticated filtering tools, and combined with environmental and climatic data from a wide range of providers. Different validation tools, for example the official Swedish taxon concept database Dyntaxa, ensure high data quality. Results can be downloaded in different formats as maps, tables, diagrams and reports.

4.
PLoS One ; 6(1): e16590, 2011 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-21304605

RESUMEN

BACKGROUND: It is anticipated that extreme population events, such as extinctions and outbreaks, will become more frequent as a consequence of climate change. To evaluate the increased probability of such events, it is crucial to understand the mechanisms involved. Variation between individuals in their response to climatic factors is an important consideration, especially if microevolution is expected to change the composition of populations. METHODOLOGY/PRINCIPAL FINDINGS: Here we present data of a willow leaf beetle species, showing high variation among individuals in oviposition rate at a high temperature (20 °C). It is particularly noteworthy that not all individuals responded to changes in temperature; individuals laying few eggs at 20 °C continued to do so when transferred to 12 °C, whereas individuals that laid many eggs at 20 °C reduced their oviposition and laid the same number of eggs as the others when transferred to 12 °C. When transferred back to 20 °C most individuals reverted to their original oviposition rate. Thus, high variation among individuals was only observed at the higher temperature. Using a simple population model and based on regional climate change scenarios we show that the probability of outbreaks increases if there is a realistic increase in the number of warm summers. The probability of outbreaks also increased with increasing heritability of the ability to respond to increased temperature. CONCLUSIONS/SIGNIFICANCE: If climate becomes warmer and there is latent variation among individuals in their temperature response, the probability for outbreaks may increase. However, the likelihood for microevolution to play a role may be low. This conclusion is based on the fact that it has been difficult to show that microevolution affect the probability for extinctions. Our results highlight the urge for cautiousness when predicting the future concerning probabilities for extreme population events.


Asunto(s)
Escarabajos/anatomía & histología , Calor , Oviposición , Animales , Cambio Climático , Tamaño de la Nidada , Dinámica Poblacional , Probabilidad
5.
PLoS One ; 4(5): e5487, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19424439

RESUMEN

BACKGROUND: There is a general belief that insect outbreak risk is higher in plant monocultures than in natural and more diverse habitats, although empirical studies investigating this relationship are lacking. In this study, using density data collected over seven years at 40 study sites, we compare the temporal population variability of the leaf beetle Phratora vulgatissima between willow plantations and natural willow habitats. METHODOLOGY/PRINCIPAL FINDINGS: The study was conducted in 1999-2005. The density of adult P. vulgatissima was estimated in the spring every year by a knock-down sampling technique. We used two measures of population variability, CV and PV, to compare temporal variations in leaf beetle density between plantation and natural habitat. Relationships between density and variability were also analyzed to discern potential underlying processes behind stability in the two systems. The results showed that the leaf beetle P. vulgatissima had a greater temporal population variability and outbreak risk in willow plantations than in natural willow habitats. We hypothesize that the greater population stability observed in the natural habitat was due to two separate processes operating at different levels of beetle density. First, stable low population equilibrium can be achieved by the relatively high density of generalist predators observed in natural stands. Second, stable equilibrium can also be imposed at higher beetle density due to competition, which occurs through depletion of resources (plant foliage) in the natural habitat. In willow plantations, competition is reduced mainly because plants grow close enough for beetle larvae to move to another plant when foliage is consumed. CONCLUSION/SIGNIFICANCE: To our knowledge, this is the first empirical study confirming that insect pest outbreak risk is higher in monocultures. The study suggests that comparative studies of insect population dynamics in different habitats may improve our ability to predict insect pest outbreaks and could facilitate the development of sustainable pest control in managed systems.


Asunto(s)
Escarabajos/fisiología , Control de Insectos , Salix/citología , Salix/parasitología , Animales , Células Cultivadas , Dinámica Poblacional , Análisis de Regresión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA