Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ticks Tick Borne Dis ; 13(3): 101935, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35325688

RESUMEN

Understanding factors that shape tick population genetic structure is important as they may be exploited in crafting strategies for vector control. Amblyomma tholloni, or "elephant tick" is a three-host tick whose adults preferentially parasitize African elephants. The aim of this study was to determine the influence of fragmentation of the host populations on the genetic structure of this tick species from different ecosystems in Kenya, using the second internal transcribed spacer (ITS-2) and mitochondrial cytochrome oxidase 1 (CO1) loci. Population genetic analysis of ticks collected from four elephant populations using ITS-2 and CO1 loci revealed high gene diversity. Gene diversity at the ITS-2 locus was 0.91 and the nucleotide diversity was, 0.01. ITS-2 gene diversity was highest in Laikipia-Samburu ecosystem (0.947) and lowest in Tsavo (0.80). The CO1 locus also had high gene diversity, 0.790, and low nucleotide diversity, 0.006, and like ITS-2, gene diversity was higher in Laikipia-Samburu ecosystem (1.00) and lower in Tsavo (0.286). There was a modest statistically significant genetic differentiation among the four tick populations based on ITS-2 (FST = 0.104, P < 0.001; ΦST = 0.105, P < 0.001), and a 10% of molecular variance attributed to genetic variation between populations. There was also statistically significant differentiation among tick populations using haplotype frequencies for CO1 locus (FST = 0.167, P < 0.001) accounting for 17% of genetic variance among populations, but not modelled genetic distances (ΦST = 0.029, P = 0.095) suggesting very recent genetic differentiation. In addition, populations of A. tholloni in Kenya had a significantly negative Tajima D and Fu & Li's F* and D* at the CO1 locus suggesting recent positive selection. The extensive acaricide use in livestock, which host the larval stage, could be driving purifying selection and genetic hitchhiking of the CO1 locus. However, tests sensitive to demography such as Fu's FS, Ramos-Onsins & Rozas's R2 and raggedness index r were statistically significant at the ITS-2 locus suggesting ancient demographic expansion. Elephant population fragmentation appears to shape the genetic structure of A. tholloni, while agro-ecological factors could influence the genetic diversity of ticks.


Asunto(s)
Elefantes , Garrapatas , Amblyomma , Animales , Ecosistema , Elefantes/genética , Genética de Población , Kenia , Repeticiones de Microsatélite , Garrapatas/genética
2.
Vector Borne Zoonotic Dis ; 21(10): 809-816, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34559011

RESUMEN

Crimean Congo Hemorrhagic Fever (CCHF) is an emerging tick-borne zoonotic viral disease with the potential of causing public health emergencies. However, less is known about the role of wildlife and livestock in spreading the virus. Therefore, we aimed to assess how the interactions between African buffalo (Syncerus caffer) and cattle may influence the seroprevalence of CCHF across livestock-wildlife management systems in Kenya. The study included archived sera samples from buffalo and cattle from wildlife only habitats (Lake Nakuru National Park and Solio conservancy), open wildlife-livestock integrated habitats (Maasai Mara ecosystem and Meru National Park), and closed wildlife-livestock habitats (Ol Pejeta Conservancy) in Kenya. We analyzed 191 buffalo and 139 cattle sera using IDvet multispecies, double-antigen IgG enzyme-linked immunosorbent assay (ELISA). The seroprevalence toward Crimean Congo hemorrhagic fever virus (CCHFV) was significantly higher for buffalo compared to cattle (75.3% and 28.1%, respectively, p < 0.001). We obtained the highest seroprevalence among buffalo of 92.1% in closed wildlife only systems compared to 28.8% and 46.1% prevalence in closed-integrated and open-integrated systems, respectively. The regression coefficients were all negative for cattle compared to buffalo in both closed-integrated and open-integrated compared to wildlife only system. Our results show that CCHFV circulates among the diverse animal community in Kenya in spatially disconnected foci. The habitat overlap between cattle and buffalo makes cattle a "bridge species" or superspreader host for CCHFV and increases transmission risks to humans. The effect of animal management system on prevalence is depended on tick control on the cattle and not the animal per se. We conclude that buffalo, a host with a longer life span than livestock, is a reservoir and may serve as a sentinel population for longitudinal surveillance of CCHFV.


Asunto(s)
Enfermedades de los Bovinos , Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Animales , Animales Salvajes , Anticuerpos Antivirales , Bovinos , Enfermedades de los Bovinos/epidemiología , Ecosistema , Fiebre Hemorrágica de Crimea/epidemiología , Fiebre Hemorrágica de Crimea/veterinaria , Kenia/epidemiología , Ganado , Estudios Seroepidemiológicos
3.
Parasit Vectors ; 13(1): 145, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32188499

RESUMEN

BACKGROUND: The dynamics of helminth infection in African elephant populations are poorly known. We examined the effects of age, sex, social structure and the normalized difference vegetation index (NDVI) as primary drivers of infection patterns within and between elephant populations. METHODS: Coprological methods were used to identify helminths and determine infection patterns in distinct elephant populations in Maasai Mara National Reserve, Tsavo East National Park, Amboseli National Park and Laikipia-Samburu Ecosystem. Gaussian finite mixture cluster analyses of egg dimensions were used to classify helminth eggs according to genera. Generalized linear models (GLM) and Chi-square analyses were used to test for variation in helminth infection patterns and to identify drivers in elephant populations. RESULTS: Helminth prevalence varied significantly between the studied populations. Nematode prevalence (96.3%) was over twice as high as that of trematodes (39.1%) in elephants. Trematode prevalence but not nematode prevalence varied between populations. Although we found no associations between helminth infection and elephant social groups (male vs family groups), the median helminth egg output (eggs per gram, epg) did vary between social groups: family groups had significantly higher median epg than solitary males or males in bachelor groups. Young males in mixed sex family groups had lower epg than females when controlling for population and age; these differences, however, were not statistically significant. The average NDVI over a three-month period varied between study locations. Cluster analyses based on egg measurements revealed the presence of Protofasciola sp., Brumptia sp., Murshidia sp., Quilonia sp. and Mammomonogamus sp. GLM analyses showed that the mean epg was positively influenced by a three-month cumulative mean NDVI and by social group; female social groups had higher epg than male groups. GLM analyses also revealed that epg varied between elephant populations: Samburu-Laikipia elephants had a higher and Tsavo elephants a lower epg than Amboseli elephants. CONCLUSIONS: Elephants had infection patterns characterized by within- and between-population variation in prevalence and worm burden. Sociality and NDVI were the major drivers of epg but not of helminth prevalence. Gastrointestinal parasites can have a negative impact on the health of wild elephants, especially during resource scarcity. Thus, our results will be important when deciding intervention strategies.


Asunto(s)
Elefantes/parasitología , Heces/parasitología , Helmintiasis Animal/epidemiología , Helmintos/aislamiento & purificación , Parasitosis Intestinales/veterinaria , Animales , Ecosistema , Femenino , Helmintos/clasificación , Parasitosis Intestinales/epidemiología , Kenia/epidemiología , Masculino , Recuento de Huevos de Parásitos , Plantas , Prevalencia
4.
PLoS One ; 14(12): e0226083, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31805127

RESUMEN

Although historical records indicate the presence of Ehrlichia and Babesia in African elephants, not much is known about their prevalence and diversity in elephants and their ticks, Amblyomma thollonii and Rhipicephalus humeralis. We amplified and sequenced the hypervariable V4 region of the 18S rRNA gene of Babesia and Theileria and the heat shock protein gene (groEL) of Ehrlichia/Anaplasma in DNA extracted from elephant blood (n = 104) and from elephant ticks (n = 52). Our results showed that the African elephants were infected with a novel Babesia spp. while A. thollonii was infected with Theileria bicornis and Theileria cf. velifera. This is the first record of T. bicornis; a protozoan that is linked to fatal infection in rhinoceros in a tick. Elephants and their ticks were all infected with a species of Ehrlichia like that identified in Japanese deer. The prevalence of Babesia spp., Theileria spp. and Ehrlichia spp. in ticks was higher than that of their elephant hosts. About 13.5% of elephants were positive for Theileria or Babesia while 51% of A. thollonii ticks and 27% of R. humeralis ticks were positive for Theileria or Babesia. Moreover, 5.8% of elephants were positive for Ehrlichia or Anaplasma compared to 19.5% in A. thollonii and 18% in R. humeralis. There was no association between the positive result in ticks and that of their elephant hosts for either Babesia spp., Theileria spp. or Ehrlichia spp. Our study reveals that the African elephants are naturally infected with Babesia spp and Ehrlichia spp and opens up an opportunity for further studies to determine the role of elephant as reservoirs of tick-borne pathogens, and to investigate their potential in spreading these pathogens as they range extensively. The presence of T. bicornis in A. thollonii also suggests a need for experiments to confirm its vector competence.


Asunto(s)
Anaplasma/aislamiento & purificación , Babesia/aislamiento & purificación , Ehrlichia/aislamiento & purificación , Elefantes/parasitología , Theileria/aislamiento & purificación , Garrapatas/microbiología , Garrapatas/parasitología , Anaplasma/genética , Anaplasma/fisiología , Animales , Babesia/genética , Babesia/fisiología , Ehrlichia/genética , Ehrlichia/fisiología , ARN Ribosómico 18S/genética , Theileria/genética , Theileria/fisiología
5.
Onderstepoort J Vet Res ; 86(1): e1-e12, 2019 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-31368325

RESUMEN

Several types of odours are involved in the location of host animals by tsetse (Diptera: Glossinidae), a vector of animal African trypanosomiasis. Host animals' ageing urine has been shown to be the source of a phenolic blend attractive to the tsetse. Nevertheless, limited research has been performed on the microbial communities' role in the production of phenols. This study aimed at profiling bacterial communities mediating the production of tsetse attractive phenols in mammalian urine. Urine samples were collected from African buffalo (Syncerus caffer), cattle (Bos taurus) and eland (Taurotragus oryx) at Kongoni Game Valley Ranch and Kenyatta University in Kenya. Urine samples, of each animal species, were pooled and left open to age in ambient conditions. Bacteriological and phenols analyses were then carried out, at 4 days ageing intervals, for 24 days. Phenols analysis revealed nine volatile phenols: 4-cresol, ortho-cresol, 3-cresol, phenol, 3-ethylphenol, 3-propylphenol, 2-methyloxyphenol, 4-ethylphenol and 4-propylphenol. Eight out of 19 bacterial isolates from the ageing urine revealed the potential to mediate production of phenols. 16S rRNA gene characterisation of the isolates closely resembled Enterococcus faecalis KUB3006, Psychrobacter alimentarius PAMC 27887, Streptococcus agalactiae 2603V, Morganella morganii sub.sp. morganii KT, Micrococcus luteus NCTC2665, Planococcus massiliensis strain ES2, Ochrobactrum pituitosum AA2 and Enterococcus faecalis OGIRF. This study established that some of the phenols emitted from mammalian urine, which influence the tsetse's host-seeking behaviour, are well characterised by certain bacteria. These results may allow the development of biotechnological models in vector control that combines the use of these bacteria in the controlled release of semiochemicals.


Asunto(s)
Antílopes/orina , Bacterias/metabolismo , Búfalos/orina , Bovinos/orina , Odorantes/análisis , Fenoles/orina , Animales , Bacterias/clasificación , Quimiotaxis , Kenia , Microbiota , ARN Bacteriano/análisis , ARN Ribosómico 16S/análisis , Moscas Tse-Tse/fisiología
6.
Infect Genet Evol ; 58: 269-278, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29337258

RESUMEN

Asymptomatic tick-borne infections are a common feature in wild herbivores. In human-dominated habitats, snare injuries to wild herbivores are common and are likely to co-occur with enzootic infections. The influence of injury on pattern, course and outcome of enzootic infection in wild herbivores is unknown. We identified Theileria species infecting zebra and assessed the relationship between host injury-status and parasitaemia, parasite diversity and selection regimes. We also determined host leucocyte differential as this can reveal mechanisms by which injuries influence infections. Theileria infecting zebra was identified using PCR and sequencing of the V4 region of the 18 s rRNA gene and confirmed with phylogenetic analyses. The influence of injury status on parasite infection patterns, genetic diversity and selection were assessed using population genetic tools. Parasitaemia estimated from prevalence and leucocyte differential were determined from microscopic examination of Giemsa stained thin blood smears. Phylogenetic and sequence analyses revealed that the zebra population studied was infected with three Theileria equi haplotypes. Parasitaemia was lower among injured compared to non-injured animals and lower during dry than wet season. Mean (±SD) genetic diversity was 0.386 (±0.128) in injured and 0.513 (±0.144) in non-injured zebra (P = .549). Neutrality tests indicated that T. equi is under strong purifying selection in injured females (Li & Fu's D* = -2.037) and demographic expansion in all zebra during the wet season (Tajima D = -1.904). Injured zebras had a higher median per cent of neutrophils (64% vs 37%) a lower median per cent of basophils (0% vs 1%) and eosinophils (2% vs 4.5%) than non-injured animals, suggesting a heightened immune response and a shift from a Th2 to Th1 T-Cell response favoring the elimination of intracellular parasites in injured animals. This study demonstrates the utility of population genetics in revealing factors influencing parasite diversity and infection patterns.


Asunto(s)
Equidae/parasitología , Variación Genética , Theileria/genética , Theileriosis/complicaciones , Theileriosis/parasitología , Heridas y Lesiones/complicaciones , Animales , Biomarcadores , Diferenciación Celular , Equidae/inmunología , Femenino , Geografía , Haplotipos , Inmunoglobulina E/inmunología , Kenia , Recuento de Leucocitos , Masculino , Filogenia , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Theileria/inmunología , Theileriosis/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...