Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; : e0085624, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980016

RESUMEN

Escherichia coli is excreted in high numbers from the intestinal tract of humans, other mammals, and birds. Traditionally, it had been thought that E. coli could grow only within human or animal hosts and would perish in the environment. Therefore, the presence of E. coli in water has become universally accepted as a key water quality indicator of fecal pollution. However, recent research challenges the assumption that the presence of E. coli in water is always an indicator of fecal contamination, with some types of E. coli having evolved to survive and grow in aquatic environments. These strains can form blooms in water storages, resulting in high E. coli counts even without fecal contamination. Although these bloom-forming strains lack virulence genes and pose little threat to public health, their presence in treated water triggers the same response as fecal-derived E. coli. Yet, little is known about the effectiveness of treatment processes in removing or inactivating them. This study evaluated the effectiveness of current treatment processes to remove bloom-forming strains, in comparison to fecal-derived strains, with conventional coagulation-flocculation-sedimentation and filtration investigated. Second, the effectiveness of current disinfection processes-chlorination, chloramination, and ultraviolet (UV) light to disinfect bloom-forming strains in comparison to fecal-derived strains-was assessed. These experiments showed that the responses of bloom isolates were not significantly different from those of fecal E. coli strains. Therefore, commonly used water treatment and disinfection processes are effective to remove bloom-forming E. coli strains from water.IMPORTANCEThe presence of Escherichia coli in water has long been used globally as a key indicator of fecal pollution and for quantifying water safety. Traditionally, it was believed that E. coli could only thrive within hosts and would perish outside, making its presence in water indicative of fecal contamination. However, recent research has unveiled strains of E. coli capable of surviving and proliferating in aquatic environments, forming blooms even in the absence of fecal contamination. While these bloom-forming strains lack the genes to be pathogenic, their detection in source or drinking water triggers the same response as fecal-derived E. coli. Yet, little is known about the efficacy of treatment processes in removing them. This study evaluated the effectiveness of conventional treatment and disinfection processes in removing bloom-forming strains compared to fecal-derived strains. Results indicate that these commonly used processes are equally effective against both types of E. coli, reassuring that bloom-forming E. coli strains can be eliminated from water.

2.
Lett Appl Microbiol ; 76(12)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38066699

RESUMEN

Effective extraction and detection of viral nucleic acids from sewage are fundamental components of a successful SARS-CoV-2 sewage surveillance programme. As there is no standard method employed in sewage surveillance, understanding the performance of different extraction kits in the recovery of SARS-CoV-2 and the impact that PCR inhibitors have on quantification is essential to minimize data discrepancies caused by sample extraction. Three commercial nucleic acid extraction kits: the RNeasy PowerSoil Total RNA Kit (PS), the RNeasy PowerMicrobiome Kit (PMB), and the MagMAX™ Microbiome Ultra Nucleic Acid Isolation Kit (MM), with minor modifications, were evaluated. Their efficacy in recovering viral ribonucleic acid and removal of PCR inhibitors was assessed using two South Australian wastewater matrices-one from a major metropolitan site and one from a regional centre. Both had SARS-CoV-2 present due to active COVID-19 cases in these communities. Overall, the MM kit had a higher recovery of SARS-CoV-2 from the samples tested, followed by PMB and PS. The PMB kit performance was strongly influenced by the sample matrix when compared to the MM kit. It is recommended to assess the performance of extraction kits using different local wastewater matrices to ensure the accuracy and reliability of monitoring results to avoid false reporting.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Reproducibilidad de los Resultados , Aguas Residuales , ARN Viral/genética , Australia
3.
J Appl Microbiol ; 134(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37977849

RESUMEN

AIM: To demonstrate the capability of wastewater-based surveillance (WBS) as a tool for detecting potential cases of Japanese Encephalitis Virus (JEV) infection in the community. METHODS AND RESULTS: In this study, we explore the potential of WBS to detect cases of JEV infection by leveraging from an established SARS-CoV-2 wastewater surveillance program. We describe the use of two reverse transcriptase quantitative polymerase chain reaction (RTqPCR) assays targeting JEV to screen archived samples from two wastewater treatment plants (WWTPs). JEV was detected in wastewater samples collected during a timeframe coinciding with a cluster of acute human encephalitis cases, alongside concurrent evidence of JEV detection in mosquito surveillance and the sentinel chicken programs within South Australia's Riverland and Murraylands regions. CONCLUSIONS: Current surveillance measures for JEV encounter multiple constraints, which may miss the early stages of JEV circulation or fail to capture the full extent of transmission. The detection of JEV in wastewater during a disease outbreak highlights the potential WBS has as a complementary layer to existing monitoring efforts forming part of the One Health approach required for optimal disease response and control.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Animales , Humanos , Virus de la Encefalitis Japonesa (Especie)/genética , Aguas Residuales , Monitoreo Epidemiológico Basado en Aguas Residuales , Encefalitis Japonesa/diagnóstico , Encefalitis Japonesa/epidemiología , Brotes de Enfermedades
4.
Water Res ; 67: 310-20, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25306487

RESUMEN

Protozoan pathogens present a significant human health concern, and prevention of contamination into potable networks remains a key focus for drinking water providers. Here, we monitored the change in Cryptosporidium concentration in source water during high flow events in a multi-use catchment. Furthermore, we investigated the diversity of Cryptosporidium species/genotypes present in the source water, and delivered an oocyst infectivity fraction. There was a positive and significant correlation between Cryptosporidium concentration and flow (ρ = 0.756) and turbidity (ρ = 0.631) for all rainfall-runoff events, despite variable source water pathogen concentrations. Cell culture assays measured oocyst infectivity and suggested an overall source water infectious fraction of 3.1%. No infectious Cryptosporidium parvum or Cryptosporidium hominis were detected, although molecular testing detected C. parvum in 7% of the samples analysed using PCR-based molecular techniques. Twelve Cryptosporidium species/genotypes were identified using molecular techniques, and were reflective of the host animals typically found in remnant vegetation and agricultural areas. The inclusion of molecular approaches to identify Cryptosporidium species and genotypes highlighted the diversity of pathogens in water, which originated from various sources across the catchment. We suggest this mixing of runoff water from a range of landuses containing diverse Cryptosporidium hosts is a key explanation for the often-cited difficulty forming strong pathogen-indicator relationships.


Asunto(s)
Cryptosporidium/fisiología , Monitoreo del Ambiente/estadística & datos numéricos , Agua Dulce/parasitología , Movimientos del Agua , Calidad del Agua/normas , Abastecimiento de Agua , Anoctaminas , Canales de Cloruro , Cryptosporidium/genética , Monitoreo del Ambiente/métodos , Genotipo , Nefelometría y Turbidimetría , Oocistos/microbiología , Reacción en Cadena de la Polimerasa , Densidad de Población , Lluvia , Australia del Sur
5.
PLoS One ; 5(7): e11773, 2010 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-20668710

RESUMEN

Stratospheric ozone depletion, climate warming and acidification of aquatic ecosystems have resulted in elevated levels of solar radiation reaching many aquatic environments with an increased deleterious impact on a wide range of living organisms. While detrimental effects on living organisms are thought to occur primarily through DNA damage, solar UV can also damage cellular proteins, lipids and signalling pathways. Cryptosporidium, a member of the eukaryotic phylum Apicomplexa, contain numerous vesicular secretory organelles and their discharge via regulated exocytosis is essential for the successful establishment of infection. Using flow cytometric techniques we demonstrate that solar UV rapidly induces sporozoite exocytosis resulting in a significant reduction in the ability of sporozoites to attach and invade host cells. We found that solar UV induced sporozoite membrane depolarization, resulting in reduced cellular ATP and increased cytosolic calcium. These changes were accompanied by a reduction in the internal granularity of sporozoites, indicative of apical organelle discharge, which was confirmed by analysis of sporozoites with an exocytosis-sensitive dye. The precise timing of apical organelle discharge in the presence of a compatible host cell is critical for sporozoite attachment and invasion. Our results demonstrate for the first time how solar UV radiation can interfere with exocytosis, a fundamental cellular process in all eukaryotic cells. We contend that not only may the forecast increases in solar radiation in both aquatic and terrestrial environments significantly affect members of the Apicomplexa, solar UV-induced membrane depolarizations resulting in cytosolic calcium perturbation may affect a wider range of eukaryotic organisms through antagonistic effects on a myriad of calcium dependant cellular functions.


Asunto(s)
Cryptosporidium parvum/citología , Cryptosporidium parvum/efectos de la radiación , Exocitosis/efectos de la radiación , Luz Solar , Rayos Ultravioleta , Animales , Citometría de Flujo , Esporozoítos/citología , Esporozoítos/efectos de los fármacos
6.
Appl Environ Microbiol ; 71(7): 3848-57, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16000797

RESUMEN

Cryptosporidium is a significant cause of water-borne enteric disease throughout the world and represents a challenge to the water industry and a threat to public health. In this study we report the use of a cell culture-TaqMan PCR assay to measure oocyst inactivation rates in reagent-grade and environmental waters over a range of temperatures. While oocysts incubated at 4 degrees C and 15 degrees C remained infective over the 12-week holding period, we observed a 4 log(10) reduction in infectivity for both 20 and 25 degrees C incubation treatments at 12 and 8 weeks, respectively, for all water types examined, a faster rate of inactivation for oocysts than previously reported. This temperature-dependent inactivation was further investigated using a simple and rapid ATP assay described herein. Time course experiments performed in reagent-grade water at incubation temperatures of 4, 15, 20, 25, 30, and 37 degrees C identified a close relationship between oocyst infectivity and oocyst ATP content, demonstrating that temperature inactivation at higher temperatures is a function of increased oocyst metabolic activity. While water quality did not affect oocyst inactivation, biological antagonism appears to be a key factor affecting oocyst removal from environmental waters. Both the cell culture-TaqMan PCR assay and the ATP assay provide a sensitive and quantitative method for the determination of environmental oocyst inactivation, providing an alternative to the more costly and time-consuming mouse infection assay. The findings presented here relating temperature to oocyst inactivation provide valuable information for determining the relative risks associated with Cryptosporidium oocysts in water.


Asunto(s)
Cryptosporidium parvum/crecimiento & desarrollo , Agua Dulce/parasitología , Oocistos/metabolismo , Oocistos/patogenicidad , Temperatura , Adenosina Trifosfato/metabolismo , Animales , Células Cultivadas , Cryptosporidium parvum/metabolismo , Cryptosporidium parvum/patogenicidad , Ratones , Oocistos/crecimiento & desarrollo , Reacción en Cadena de la Polimerasa , Polimerasa Taq/metabolismo
7.
Plant Physiol ; 134(1): 224-36, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14701917

RESUMEN

Sequence data from cDNA and genomic clones, coupled with analyses of expressed sequence tag databases, indicate that the CesA (cellulose synthase) gene family from barley (Hordeum vulgare) has at least eight members, which are distributed across the genome. Quantitative polymerase chain reaction has been used to determine the relative abundance of mRNA transcripts for individual HvCesA genes in vegetative and floral tissues, at different stages of development. To ensure accurate expression profiling, geometric averaging of multiple internal control gene transcripts has been applied for the normalization of transcript abundance. Total HvCesA mRNA levels are highest in coleoptiles, roots, and stems and much lower in floral tissues, early developing grain, and in the elongation zone of leaves. In most tissues, HvCesA1, HvCesA2, and HvCesA6 predominate, and their relative abundance is very similar; these genes appear to be coordinately transcribed. A second group, comprising HvCesA4, HvCesA7, and HvCesA8, also appears to be coordinately transcribed, most obviously in maturing stem and root tissues. The HvCesA3 expression pattern does not fall into either of these two groups, and HvCesA5 transcript levels are extremely low in all tissues. Thus, the HvCesA genes fall into two general groups of three genes with respect to mRNA abundance, and the co-expression of the groups identifies their products as candidates for the rosettes that are involved in cellulose biosynthesis at the plasma membrane. Phylogenetic analysis allows the two groups of genes to be linked with orthologous Arabidopsis CesA genes that have been implicated in primary and secondary wall synthesis.


Asunto(s)
Genes de Plantas , Glucosiltransferasas/genética , Hordeum/enzimología , Hordeum/genética , Familia de Multigenes , Secuencia de Bases , Mapeo Cromosómico , ADN Complementario/genética , ADN de Plantas/genética , Etiquetas de Secuencia Expresada , Expresión Génica , Filogenia , Estructuras de las Plantas/metabolismo , Plantas/enzimología , Plantas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA