Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Data ; 11(1): 420, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653999

RESUMEN

Wheat (Triticum aestivum) is one of the most important food crops with an urgent need for increase in its production to feed the growing world. Triticum timopheevii (2n = 4x = 28) is an allotetraploid wheat wild relative species containing the At and G genomes that has been exploited in many pre-breeding programmes for wheat improvement. In this study, we report the generation of a chromosome-scale reference genome assembly of T. timopheevii accession PI 94760 based on PacBio HiFi reads and chromosome conformation capture (Hi-C). The assembly comprised a total size of 9.35 Gb, featuring a contig N50 of 42.4 Mb and included the mitochondrial and plastid genome sequences. Genome annotation predicted 166,325 gene models including 70,365 genes with high confidence. DNA methylation analysis showed that the G genome had on average more methylated bases than the At genome. In summary, the T. timopheevii genome assembly provides a valuable resource for genome-informed discovery of agronomically important genes for food security.


Asunto(s)
Cromosomas de las Plantas , Genoma de Planta , Triticum , Triticum/genética , Cromosomas de las Plantas/genética , Metilación de ADN
2.
Plant Biotechnol J ; 21(3): 482-496, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35598169

RESUMEN

Wheat is a globally vital crop, but its limited genetic variation creates a challenge for breeders aiming to maintain or accelerate agricultural improvements over time. Introducing novel genes and alleles from wheat's wild relatives into the wheat breeding pool via introgression lines is an important component of overcoming this low variation but is constrained by poor genomic resolution and limited understanding of the genomic impact of introgression breeding programmes. By sequencing 17 hexaploid wheat/Ambylopyrum muticum introgression lines and the parent lines, we have precisely pinpointed the borders of introgressed segments, most of which occur within genes. We report a genome assembly and annotation of Am. muticum that has facilitated the identification of Am. muticum resistance genes commonly introgressed in lines resistant to stripe rust. Our analysis has identified an abundance of structural disruption and homoeologous pairing across the introgression lines, likely caused by the suppressed Ph1 locus. mRNAseq analysis of six of these introgression lines revealed that novel introgressed genes are rarely expressed and those that directly replace a wheat orthologue have a tendency towards downregulation, with no discernible compensation in the expression of homoeologous copies. This study explores the genomic impact of introgression breeding and provides a schematic that can be followed to characterize introgression lines and identify segments and candidate genes underlying the phenotype. This will facilitate more effective utilization of introgression pre-breeding material in wheat breeding programmes.


Asunto(s)
Poaceae , Transcriptoma , Triticum , Alelos , Fenotipo , Fitomejoramiento , Enfermedades de las Plantas/genética , Triticum/genética , Poaceae/genética
3.
Front Plant Sci ; 13: 927728, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35873983

RESUMEN

Aegilops tauschii, the D-genome donor of hexaploid wheat, provides a source of genetic variation that could be used for tetraploid (durum) wheat improvement. In addition to the genes for wheat quality on the D-genome, which differentiate between bread and durum wheats in terms of end-use properties, genes coding for resistances to biotic and abiotic stresses are also present on the D-genome which would be useful in durum wheat. The introgression of Ae. tauschii into durum wheat, however, requires cytogenetic manipulation to induce homoeologous chromosome pairing to promote recombination. For this purpose, the introgression of Ae. tauschii into durum wheat was performed through a bridge cross of the wild species to the Langdon 5D(5B) disomic substitution line that lacks the Ph1 locus present on chromosome 5B, followed by a cross of the F1 to the durum wheat cultivar Om Rabi 5. Subsequent generations were self-fertilized, and these were screened for D-genome introgressions using (i) D-genome-specific Kompetitive Allele-Specific PCR (KASP) markers and (ii) KASP markers polymorphic between the 5D chromosomes of wheat, present in the Langdon 5D(5B) substitution line, and of Ae. tauschii. Homozygous introgression lines were confirmed using genomic and fluorescence in situ hybridization. The results showed that the use of the Langdon 5D(5B) disomic substitution line did not promote D-genome introgression across all linkage groups with only a limited success in the introgression of Ae. tauschii 5D segments into durum wheat.

4.
Front Plant Sci ; 13: 943211, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35874002

RESUMEN

A diverse panel of wheat wild relative species was screened for resistance to Fusarium head blight (FHB) by spray inoculation. The great majority of species and accessions were susceptible or highly susceptible to FHB. Accessions of Triticum timopheevii (P95-99.1-1), Agropyron desertorum (9439957), and Elymus vaillantianus (531552) were highly resistant to FHB while additional accessions of T. timopheevii were found to be susceptible to FHB. A combination of spray and point inoculation assessments over two consecutive seasons indicated that the resistance in accession P95-99.1-1 was due to enhanced resistance to initial infection of the fungus (type 1 resistance), and not to reduction in spread (type 2 resistance). A panel of wheat-T. timopheevii (accession P95-99.1-1) introgression lines was screened for FHB resistance over two consecutive seasons using spray inoculation. Most introgression lines were similar in susceptibility to FHB as the wheat recipient (Paragon) but substitution of the terminal portion of chromosome 3BS of wheat with a similar-sized portion of 3G of T. timopheevii significantly enhanced FHB resistance in the wheat background.

5.
PLoS One ; 17(4): e0266924, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35427365

RESUMEN

Future genetic progress in wheat grain yield will depend on increasing biomass and this must be achieved without commensurate increases in nitrogen (N) fertilizer inputs to minimize environmental impacts. In recent decades there has been a loss of genetic diversity in wheat through plant breeding. However, new genetic diversity can be created by incorporating genes into bread wheat from wild wheat relatives. Our objectives were to investigate amphidiploids derived from hybrids of bread wheat (Triticum aestivum L.) and related species from the genera Aegilops, Secale, Thinopyrum and Triticum for expression of higher biomass, N-use efficiency (NUE) and leaf photosynthesis rate compared to their bread wheat parents under high and low N conditions. Eighteen amphidiploid lines and their bread wheat parents were examined in high N (HN) and low N (LN) treatments under glasshouse conditions in two years. Averaged across years, grain yield reduced by 38% under LN compared to HN conditions (P = 0.004). Three amphidiploid lines showed positive transgressive segregation compared to their bread wheat parent for biomass per plant under HN conditions. Positive transgressive segregation was also identified for flag-leaf photosynthesis both pre-anthesis and post-anthesis under HN and LN conditions. For N uptake per plant at maturity positive transgressive segregation was identified for one amphidiploid line under LN conditions. Our results indicated that introgressing traits from wild relatives into modern bread wheat germplasm offers scope to raise biomass and N-use effciency in both optimal and low N availability environments.


Asunto(s)
Aegilops , Triticum , Aegilops/genética , Pan , Grano Comestible/genética , Fitomejoramiento , Secale , Triticum/genética , Triticum/metabolismo
6.
Plant Genome ; 15(1): e20193, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35102721

RESUMEN

Many wild-relative species are being used in prebreeding programs to increase the genetic diversity of wheat (Triticum aestivum L.). Genotyping tools such as single nucleotide polymorphism (SNP)-based arrays and molecular markers have been widely used to characterize wheat-wild relative introgression lines. However, due to the polyploid nature of the recipient wheat genome, it is difficult to develop SNP-based Kompetitive allele-specific polymerase chain reaction (KASP) markers that are codominant to track the introgressions from the wild species. Previous attempts to develop KASP markers have involved both exome- and polymerase chain reaction (PCR)-amplicon-based sequencing of the wild species. But chromosome-specific KASP assays have been hindered by homoeologous SNPs within the wheat genome. This study involved whole genome sequencing of the diploid wheat wild relative Amblyopyrum muticum (Boiss.) Eig and development of a de novo SNP discovery pipeline that generated ∼38,000 SNPs in unique wheat genome sequences. New assays were designed to increase the density of Am. muticum polymorphic KASP markers. With a goal of one marker per 60 Mbp, 335 new KASP assays were validated as diagnostic for Am. muticum in a wheat background. Together with assays validated in previous studies, 498 well distributed chromosome-specific markers were used to recharacterize previously genotyped wheat-Am. muticum doubled haploid (DH) introgression lines. The chromosome-specific nature of the KASP markers allowed clarification of which wheat chromosomes were involved with recombination events or substituted with Am. muticum chromosomes and the higher density of markers allowed detection of new small introgressions in these DH lines.


Asunto(s)
Poaceae , Triticum , Alelos , Cromosomas , Marcadores Genéticos , Poaceae/genética , Reacción en Cadena de la Polimerasa , Triticum/genética
7.
Front Plant Sci ; 12: 643636, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054892

RESUMEN

Wheat is one of the most important food and protein sources in the world and although, in recent years wheat breeders have achieved yield gains, they are not sufficient to meet the demands of an ever-growing population. Development of high yielding wheat varieties, resilient to abiotic and biotic stress resulting from climate change, has been limited by wheat's narrow genetic base. In contrast to wheat, the wild relatives of wheat provide a vast reservoir of genetic variation for most, if not all, agronomic traits. Previous studies by the authors have shown the transfer of genetic variation from T. urartu into bread wheat. However, before the introgression lines can be exploited for trait analysis, they are required to have stable transmission of the introgressions to the next generation. In this work, we describe the generation of 86 doubled haploid (DH) wheat-T. urartu introgression lines that carry homozygous introgressions which are stably inherited. The DH lines were characterised using the Axiom® Wheat Relative Genotyping Array and 151 KASP markers to identify 65 unique T. urartu introgressions in a bread wheat background. DH production has helped accelerate the breeding process and facilitated the early release of homozygous wheat-T. urartu introgression lines. Together with the KASP markers, this valuable resource could greatly advance identification of beneficial alleles that can be used in wheat improvement.

8.
New Phytol ; 228(6): 1767-1780, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32910841

RESUMEN

The wild relatives of modern wheat represent an underutilized source of genetic and phenotypic diversity and are of interest in breeding owing to their wide adaptation to diverse environments. Leaf photosynthetic traits underpin the rate of production of biomass and yield and have not been systematically explored in the wheat relatives. This paper identifies and quantifies the phenotypic variation in photosynthetic, stomatal, and morphological traits in up to 88 wheat wild relative accessions across five genera. Both steady-state measurements and dynamic responses to step changes in light intensity are assessed. A 2.3-fold variation for flag leaf light and CO2 -saturated rates of photosynthesis Amax was observed. Many accessions showing higher and more variable Amax , maximum rates of carboxylation, electron transport, and Rubisco activity when compared with modern genotypes. Variation in dynamic traits was also significant; with distinct genus-specific trends in rates of induction of nonphotochemical quenching and rate of stomatal opening. We conclude that utilization of wild relatives for improvement of photosynthesis is supported by the existence of a high degree of natural variation in key traits and should consider not only genus-level properties but variation between individual accessions.


Asunto(s)
Fitomejoramiento , Triticum , Transporte de Electrón , Fotosíntesis , Hojas de la Planta/genética , Triticum/genética
9.
Front Plant Sci ; 11: 606, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32477394

RESUMEN

Aegilops caudata L. [syn. Ae. markgrafii (Greuter) Hammer], is a diploid wild relative of wheat (2n = 2x = 14, CC) and a valuable source for new genetic diversity for wheat improvement. It has a variety of disease resistance factors along with tolerance for various abiotic stresses and can be used for wheat improvement through the generation of genome-wide introgressions resulting in different wheat-Ae. caudata recombinant lines. Here, we report the generation of nine such wheat-Ae. caudata recombinant lines which were characterized using wheat genome-specific KASP (Kompetitive Allele Specific PCR) markers and multi-color genomic in situ hybridization (mcGISH). Of these, six lines have stable homozygous introgressions from Ae. caudata and will be used for future trait analysis. Using cytological techniques and molecular marker analysis of the recombinant lines, 182 KASP markers were physically mapped onto the seven Ae. caudata chromosomes, of which 155 were polymorphic specifically with only one wheat subgenome. Comparative analysis of the physical positions of these markers in the Ae. caudata and wheat genomes confirmed that the former had chromosomal rearrangements with respect to wheat, as previously reported. These wheat-Ae. caudata recombinant lines and KASP markers are useful resources that can be used in breeding programs worldwide for wheat improvement. Additionally, the genome-specific KASP markers could prove to be a valuable tool for the rapid detection and marker-assisted selection of other Aegilops species in a wheat background.

10.
Theor Appl Genet ; 133(7): 2213-2226, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32313991

RESUMEN

KEY MESSAGE: One hundred and thirty four introgressions from Thinopyrum elongatum have been transferred into a wheat background and were characterised using 263 SNP markers. Species within the genus Thinopyrum have been shown to carry genetic variation for a very wide range of traits including biotic and abiotic stresses and quality. Research has shown that one of the species within this genus, Th. elongatum, has a close relationship with the genomes of wheat making it a highly suitable candidate to expand the gene pool of wheat. Homoeologous recombination, in the absence of the Ph1 gene, has been exploited to transfer an estimated 134 introgressions from Th. elongatum into a hexaploid wheat background. The introgressions were detected and characterised using 263 single nucleotide polymorphism markers from a 35 K Axiom® Wheat-Relative Genotyping Array, spread across seven linkage groups and validated using genomic in situ hybridisation. The genetic map had a total length of 187.8 cM and the average chromosome length was 26.8 cM. Comparative analyses of the genetic map of Th. elongatum and the physical map of hexaploid wheat confirmed previous work that indicated good synteny at the macro-level, although Th. elongatum does not contain the 4A/5A/7B translocation found in wheat.


Asunto(s)
Pool de Genes , Genoma de Planta , Ploidias , Polimorfismo de Nucleótido Simple , Triticum/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Ligamiento Genético , Marcadores Genéticos , Genotipo , Fenotipo , Mapeo Físico de Cromosoma , Poaceae/genética , Sintenía
11.
PLoS One ; 15(2): e0229107, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32109944

RESUMEN

A diverse panel of 245 wheat genotypes, derived from crosses between landraces from the Watkins collection representing global diversity in the early 20th century and the modern wheat cultivar Paragon, was grown at two field sites in the UK in 2015-16 and the concentrations of zinc and iron determined in wholegrain using inductively coupled plasma-mass spectrometry (ICP-MS). Zinc concentrations in wholegrain varied from 24-49 mg kg-1 and were correlated with iron concentration (r = 0.64) and grain protein content (r = 0.14). However, the correlation with yield was low (r = -0.16) indicating little yield dilution. A sub-set of 24 wheat lines were selected from 245 wheat genotypes and characterised for Zn and Fe concentrations in wholegrain and white flour over two sites and years. White flours from 24 selected lines contained 8-15 mg kg-1 of zinc, which was positively correlated with the wholegrain Zn concentration (r = 0.79, averaged across sites and years). This demonstrates the potential to exploit the diversity in landraces to increase the concentration of Zn in wholegrain and flour of modern high yielding bread wheat cultivars.


Asunto(s)
Fitomejoramiento , Semillas/química , Triticum/genética , Granos Enteros/química , Zinc/análisis , Harina/análisis , Genotipo , Hierro/análisis , Semillas/genética , Triticum/química , Reino Unido , Granos Enteros/genética
12.
Crop Sci ; 60(4): 1957-1964, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34354296

RESUMEN

Wheat (Triticum aestivum L.) rusts are a worldwide production problem. Plant breeders have used genetic resistance to combat these fungi. However, single-gene resistance is rapidly overcome as a result of frequent occurrence of new virulent fungal strains. Thus, a supply of new resistance sources is continually needed, and new resistance sources are limited within hexaploid wheat genetic stocks. Wild relatives are able to be a resource for new resistance genes but are hindered because of chromosome incapability with domesticated wheats. Twenty-eight double-haploid hexaploid wheat/Amblyopyrum muticum (Boiss.) Eig introgression lines, with introgressions covering the majority of the T genome, were evaluated for resistance to Puccinia triticina Erikss., P. graminis Pers.:Pers. f.sp. tritici Erikss. & E. Henning, and P. striiformis Westend. f.sp. tritici Erikss.. At the seedling level, four lines were resistant to races of P. triticina, six lines were resistant to P. graminis, and 15 lines were resistant to P. striiformis. At the adult stage, 16 lines were resistant to P. triticina. Line 355 had resistance to all three rusts and line 161 had resistance to all tested races of P. triticina. Some of these lines will require further work to reduce the size of the introgressed segment; however, lines 92 and 355 have very small fragments and can be used directly as new resistance donors.

13.
Plant Biotechnol J ; 18(3): 743-755, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31465620

RESUMEN

For future food security, it is important that wheat, one of the most widely consumed crops in the world, can survive the threat of abiotic and biotic stresses. New genetic variation is currently being introduced into wheat through introgressions from its wild relatives. For trait discovery, it is necessary that each introgression is homozygous and hence stable. Breeding programmes rely on efficient genotyping platforms for marker-assisted selection (MAS). Recently, single nucleotide polymorphism (SNP)-based markers have been made available on high-throughput Axiom® SNP genotyping arrays. However, these arrays are inflexible in their design and sample numbers, making their use unsuitable for long-term MAS. SNPs can potentially be converted into Kompetitive allele-specific PCR (KASP™) assays that are comparatively cost-effective and efficient for low-density genotyping of introgression lines. However, due to the polyploid nature of wheat, KASP assays for homoeologous SNPs can have difficulty in distinguishing between heterozygous and homozygous hybrid lines in a backcross population. To identify co-dominant SNPs, that can differentiate between heterozygotes and homozygotes, we PCR-amplified and sequenced genomic DNA from potential single-copy regions of the wheat genome and compared them to orthologous copies from different wild relatives. A panel of 620 chromosome-specific KASP assays have been developed that allow rapid detection of wild relative segments and provide information on their homozygosity and site of introgression in the wheat genome. A set of 90 chromosome-nonspecific assays was also produced that can be used for genotyping introgression lines. These multipurpose KASP assays represent a powerful tool for wheat breeders worldwide.


Asunto(s)
Mapeo Cromosómico , Homocigoto , Fitomejoramiento , Triticum/genética , Cromosomas de las Plantas/genética , Genotipo , Polimorfismo de Nucleótido Simple
14.
Front Plant Sci ; 10: 1110, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31620148

RESUMEN

The wild relatives of wheat provide an important source of genetic variation for wheat improvement. Much of the work in the past aimed at transferring genetic variation from wild relatives into wheat has relied on the exploitation of the ph1b mutant, located on the long arm of chromosome 5B. This mutation allows homologous recombination to occur between chromosomes from related but different genomes, e.g. between the chromosomes of wheat and related chromosomes from a wild relative resulting in the generation of interspecific recombinant chromosomes. However, the ph1b mutant also enables recombination to occur between the homologous genomes of wheat, e.g. A/B, A/D, B/D, resulting in the generation of wheat intergenomic recombinant chromosomes. In this work we report on the presence of wheat intergenomic recombinants in the genomic background of hexaploid wheat/Amblyopyrum muticum introgression lines. The transfer of genomic rearrangements involving the D-genome through pentaploid crosses provides a strategy by which the D-genome of wheat can be introgressed into durum wheat. Hence, a pentaploid crossing strategy was used to transfer D-genome segments, introgressed with either the A- and/or the B-genome, into the tetraploid background of two durum wheat genotypes Karim and Om Rabi 5 in either the presence or absence of different Am. muticum (2n = 2x = 14, TT) introgressions. Introgressions were monitored in backcross generations to the durum wheat parents via multi-color genomic in situ hybridization (mc-GISH). Tetraploid lines carrying homozygous D-genome introgressions, as well as simultaneous homozygous D- and T-genome introgressions, were developed. Introgression lines were characterized via Kompetitive Allele-Specific PCR (KASP) markers and multi-color fluorescence in situ hybridization (FISH). Results showed that new wheat sub-genomic translocations were generated at each generation in progeny that carried any Am. muticum chromosome introgression irrespective of the linkage group that the segment was derived from. The highest frequencies of homologous recombination were observed between the A- and the D-genomes. Results indicated that the genotype Karim had a higher tolerance to genomic rearrangements and T-genome introgressions compared to Om Rabi 5. This indicates the importance of the selection of the parental genotype when attempting to transfer/develop introgressions into durum wheat from pentaploid crosses.

15.
BMC Plant Biol ; 19(1): 183, 2019 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-31060503

RESUMEN

BACKGROUND: Triticum timopheevii (2n = 4x = 28; AtAtGG), is an important source for new genetic variation for wheat improvement with genes for potential disease resistance and salt tolerance. By generating a range of interspecific hybrid lines, T. timopheevii can contribute to wheat's narrow gene-pool and be practically utilised in wheat breeding programmes. Previous studies that have generated such introgression lines between wheat and its wild relatives have been unable to use high-throughput methods to detect the presence of wild relative segments in such lines. RESULTS: A whole genome introgression approach, exploiting homoeologous recombination in the absence of the Ph1 locus, has resulted in the transfer of different chromosome segments from both the At and G genomes of T. timopheevii into wheat. These introgressions have been detected and characterised using single nucleotide polymorphism (SNP) markers present on a high-throughput Axiom® Genotyping Array. The analysis of these interspecific hybrid lines has resulted in the detection of 276 putative unique introgressions from T. timopheevii, thereby allowing the generation of a genetic map of T. timopheevii containing 1582 SNP markers, spread across 14 linkage groups representing each of the seven chromosomes of the At and G genomes of T. timopheevii. The genotyping of the hybrid lines was validated through fluorescence in situ hybridisation (FISH). Comparative analysis of the genetic map of T. timopheevii and the physical map of the hexaploid wheat genome showed that synteny between the two species is highly conserved at the macro-level and confirmed the presence of inter- and intra-genomic translocations within the At and G genomes of T. timopheevii that have been previously only detected through cytological techniques. CONCLUSIONS: In this work, we report a set of SNP markers present on a high-throughput genotyping array, able to detect the presence of T. timopheevii in a hexaploid wheat background making it a potentially valuable tool for marker assisted selection (MAS) in wheat pre-breeding programs. These valuable resources of high-density molecular markers and wheat-T. timopheevii hybrid lines will greatly enhance the work being undertaken for wheat improvement through wild relative introgressions.


Asunto(s)
Genoma de Planta , Hibridación Genética , Poliploidía , Triticum/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Cruzamientos Genéticos , Ecotipo , Ligamiento Genético , Sitios Genéticos , Marcadores Genéticos , Genotipo , Polimorfismo de Nucleótido Simple/genética , Recombinación Genética/genética , Semillas/genética , Especificidad de la Especie
16.
Front Plant Sci ; 10: 34, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30792722

RESUMEN

Wheat is one of the world's most important sources of food. However, due to its evolution its genetic base has narrowed, which is severely limiting the ability of breeders to develop new higher yielding varieties that can adapt to the changing environment. In contrast to wheat, its wild relatives provide a vast reservoir of genetic variability for most, if not all, agronomically important traits. Genetic variation has previously been transferred to wheat from one of its wild relatives, Ambylopyrum muticum (previously known as Aegilops mutica). However, before the genetic variation available in this species can be assessed and exploited in breeding and for research, the transmission of the chromosome segments introgressed into wheat must first be stabilized. In this paper we describe the generation of 66 stably inherited homozygous wheat/Am. muticum introgression lines using a doubled haploid procedure. The characterisation and stability of each of these lines was determined via genomic in situ hybridization and SNP analysis. While most of the doubled haploid lines were found to carry only single introgressions, six lines carried two. Three lines carried only complete Am. muticum chromosomes, 43 carried only small or very small introgressions and the remainder carried either only large introgressions or a large plus a small introgression. The strategy that we are employing for the distribution and exploitation of the genetic variation from Am. muticum and a range of other species is discussed.

17.
Theor Appl Genet ; 132(5): 1555-1570, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30767030

RESUMEN

KEY MESSAGE: Cytogenetic analysis and array-based SNP genotyping of wheat- Th. intermedium introgression lines allowed identification of 634 chromosome-specific SNP markers across all twenty-one chromosomes of Th. intermedium (StJ r J vs , 2 n = 6 x = 42). Thinopyrum intermedium (2n = 6x = 42, StJrJvs) is one of the most promising reservoirs of useful genes including tolerance to abiotic stresses, perenniality and disease resistance not available in the cultivated bread wheat. The transfer of genetic diversity from wild species to wheat offers valuable responses to the effects of climate change. The new array-based single-nucleotide polymorphism (SNP) marker technology provides cheap and easy-to-use molecular markers for marker-assisted selection (MAS) in wheat breeding programmes. Here, we focus on the generation of a new chromosome-specific SNP marker set that can be used to characterize and identify the Th. intermedium chromosomes or chromosome segments transferred into wheat. A progressive investigation of marker development was conducted using 187 various newly developed wheat-Th. intermedium introgression lines and the Axiom® Wheat-Relative Genotyping array. We employed molecular cytogenetic techniques to clarify the genome constitution of the Th. intermedium parental lines and validated 634 chromosome-specific SNPs. Our data confirmed the allohexaploid nature of Th. intermedium and demonstrated that the St genome-specific GISH signal and markers are present at the centromeric regions of chromosomes 1Jvs, 2Jvs, 3Jvs and 7Jvs. The SNP markers presented here will be introduced into current wheat improvement programmes, offering a significant speed-up in wheat breeding and making it possible to deal with the transfer of the full genetic potential of Th. intermedium into wheat.


Asunto(s)
Resistencia a la Enfermedad/genética , Exoma , Polimorfismo de Nucleótido Simple , Triticum/genética , Cruzamiento , Cromosomas de las Plantas , Marcadores Genéticos , Técnicas de Genotipaje , Sintenía
18.
Plant Genome ; 12(3): 1-7, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-33016586

RESUMEN

CORE IDEAS: We identified 1247 polymorphic single nucleotide polymorphisms between Triticum monococcum and wheat. We identified 191 markers validated across all seven chromosomes of T. monococcum. Detected a T. monococcum introgression in leaf-rust-resistant lines. Cultivated einkorn wheat (Triticum monococcum L. subsp. monococcum, 2n = 2x = 14, Am Am ) and its wild relative T. monococcum subsp. aegilopoides are important sources of economically useful genes that can be exploited for wheat (Triticum aestivum L.) breeding. Einkorn has excellent resistance to fungal diseases and gene transfer is relatively simple via standard breeding methods. To fulfill the growing demand by modern prebreeding programs for a cost-effective high-throughput procedure for accurately detecting introgressed chromosomes or chromosome segments from T. monococcum into wheat, we used the Axiom Wheat-Relative Genotyping Array and developed a set of Am genome-specific exome-based single nucleotide polymorphism (SNP) markers suitable for rapid identification of T. monococcum chromatin in a wheat background. We identified 1247 polymorphic SNPs between T. monococcum and wheat. We identified 191 markers across all seven chromosomes of T. monococcum that are also present on an existing Triticum urartu Thum. ex Gandil. genetic map and potentially ordered them on the basis of the high macrocollinearity and conservation of marker order between T. monococcum and T. urartu. The marker set has been tested on leaf-rust-resistant BC3 F4 progenies of wheat-T. monococcum hybrids. Two markers (AX-94492165, AX-95073542) placed on the distal end of the chromosome arm 7AL detected a T. monococcum introgression into wheat. The SNP marker set thus proved highly effective in the identification of T. monococcum chromatin in a wheat background, offering a reliable method for screening and selecting wheat-T. monococcum introgression lines, a procedure that could significantly speed up prebreeding programs.


Asunto(s)
Basidiomycota , Triticum/genética , Cruzamiento , Genoma de Planta , Polimorfismo de Nucleótido Simple
19.
Front Plant Sci ; 9: 1565, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30420865

RESUMEN

Tritcum urartu (2n = 2x = 14, AuAu), the A genome donor of wheat, is an important source for new genetic variation for wheat improvement due to its high photosynthetic rate and disease resistance. By facilitating the generation of genome-wide introgressions leading to a variety of different wheat-T. urartu translocation lines, T. urartu can be practically utilized in wheat improvement. Previous studies that have generated such introgression lines have been unable to successfully use cytological methods to detect the presence of T. urartu in these lines. Many have, thus, used a variety of molecular markers with limited success due to the low-density coverage of these markers and time-consuming nature of the techniques rendering them unsuitable for large-scale breeding programs. In this study, we report the generation of a resource of single nucleotide polymorphic (SNP) markers, present on a high-throughput SNP genotyping array, that can detect the presence of T. urartu in a hexaploid wheat background making it a potentially valuable tool in wheat pre-breeding programs. A whole genome introgression approach has resulted in the transfer of different chromosome segments from T. urartu into wheat which have then been detected and characterized using these SNP markers. The molecular analysis of these wheat-T. urartu recombinant lines has resulted in the generation of a genetic map of T. urartu containing 368 SNP markers, spread across all seven chromosomes of T. urartu. Comparative analysis of the genetic map of T. urartu and the physical map of the hexaploid wheat genome showed that synteny between the two species is highly conserved at the macro-level and confirmed the presence of the 4/5 translocation in T. urartu also present in the A genome of wheat. A panel of 17 wheat-T. urartu recombinant lines, which consisted of introgressed segments that covered the whole genome of T. urartu, were also selected for self-fertilization to provide a germplasm resource for future trait analysis. This valuable resource of high-density molecular markers specifically designed for detecting wild relative chromosomes and a panel of stable interspecific introgression lines will greatly enhance the efficiency of wheat improvement through wild relative introgressions.

20.
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...