Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
1.
Viruses ; 16(3)2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38543756

RESUMEN

CD8+ T cells are critical to the adaptive immune response against viral pathogens. However, overwhelming antigen exposure can result in their exhaustion, characterised by reduced effector function, failure to clear virus, and the upregulation of inhibitory receptors, including programmed cell death 1 (PD-1). However, exhausted T cell responses can be "re-invigorated" by inhibiting PD-1 or the primary ligand of PD-1: PD-L1. Further, the absence of the type I interferon receptor IFNAR1 also results in T cell exhaustion and virus persistence in lymphocytic choriomeningitis virus Armstrong (LCMV-Arm)-infected mice. In this study, utilizing single- and double-knockout mice, we aimed to determine whether ablation of PD-1 could restore T cell functionality in the absence of IFNAR1 signalling in LCMV-Arm-infected mice. Surprisingly, this did not re-invigorate the T cell response and instead, it converted chronic LCMV-Arm infection into a lethal disease characterized by severe lung inflammation with an infiltration of neutrophils and T cells. Depletion of CD8+ T cells, but not neutrophils, rescued mice from lethal disease, demonstrating that IFNAR1 is required to prevent T cell exhaustion and virus persistence in LCMV-Arm infection, and in the absence of IFNAR1, PD-L1 is required for survival. This reveals an important interplay between IFNAR1 and PD-L1 with implications for therapeutics targeting these pathways.


Asunto(s)
Interferón Tipo I , Coriomeningitis Linfocítica , Ratones , Animales , Virus de la Coriomeningitis Linfocítica , Linfocitos T CD8-positivos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/metabolismo , Ratones Noqueados , Interferón Tipo I/metabolismo , Ratones Endogámicos C57BL
2.
Plast Reconstr Surg ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38548707

RESUMEN

BACKGROUND: Nerve xenografts harvested from transgenic α1,3-galactosyltransferase knockout (GalT-KO) pigs lack the epitope responsible for hyperacute rejection in pig-to-primate transplants. It is unknown whether these cold preserved nerve grafts support axonal regeneration in another species during and after immunosuppression. In this study, we compare outcomes between autografts and cold preserved xenografts in a rat sciatic model of nerve gap repair. METHODS: Fifty male Lewis rats had a 1 cm sciatic nerve defect repaired using either: autograft and suture (n=10); 1-week or 4-week cold preserved xenograft and suture (n=10 per group); 1-week or 4-week cold preserved xenograft and photochemical tissue bonding using a human amnion wrap (PTB/HAM) (n=10 per group). Rats with xenografts were given tacrolimus until 4 months post-operatively. At 4 and 7 months, rats were euthanized and nerve sections harvested. Monthly sciatic functional index (SFI) scores were calculated. RESULTS: All groups showed increases in SFI scores by 4 and 7 months. The autograft suture group had the highest axon density at 4 and 7 months. The largest decrease in axon density from 4 to 7 months was in the 1-week cold preserved PTB/HAM group. The only significant difference between group SFI scores occurred at 5 months, when both 1-week cold preserved groups had significantly lower scores than the 4-week cold preserved suture group. CONCLUSIONS: Our results in the rat sciatic model suggest that GalT-KO nerve xenografts may be viable alternatives to autografts and demonstrate the need for further studies of long-gap repair and comparison with acellular nerve allografts. CLINICAL RELEVANCE: This proof-of-concept study in the rat sciatic model demonstrates that cold preserved GalT-KO porcine xenografts support axonal regeneration, as well as axonal viability following immunosuppression withdrawal. These results further suggest a role for both cold preservation and photochemical tissue bonding in modulating the immunological response at the nerve repair site.

3.
Curr Protoc ; 4(3): e985, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38439574

RESUMEN

Microglia are the innate myeloid cells of the central nervous system (CNS) parenchyma, functionally implicated in almost every defined neuroinflammatory and neurodegenerative disorder. Current understanding of disease pathogenesis for many neuropathologies is limited and/or lacks reliable diagnostic markers, vaccines, and treatments. With the increasing aging of society and rise in neurogenerative diseases, improving our understanding of their pathogenesis is essential. Analysis of microglia from murine disease models provides an investigative tool to unravel disease processes. In many neuropathologies, bone-marrow-derived monocytes are recruited to the CNS, adopting a phenotype similar to that of microglia. This significantly confounds the accurate identification of cell-type-specific functions and downstream therapeutic targeting. The increased capacity to analyze more phenotypic markers using spectral-cytometry-based technologies allows improved separation of microglia from monocyte-derived cells. Full-spectrum profiling enables enhanced marker resolution, time-efficient analysis of >40 fluorescence parameters, and extraction of cellular autofluorescence parameters. Coupling this system with additional cytometric technologies, including cell sorting and high-parameter imaging, can improve the understanding of microglial phenotypes in disease. To this end, we provide detailed, step-by-step protocols for the analysis of murine brain tissue by high-parameter ex vivo cytometric analysis using the Aurora spectral cytometer (Cytek), including best practices for unmixing and autofluorescence extraction, cell sorting for single-cell RNA analysis, and imaging mass cytometry. Together, this provides a toolkit for researchers to comprehensively investigate microglial disease processes at protein, RNA, and spatial levels for the identification of therapeutic targets in neuropathology. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Processing the mouse brain into a single-cell suspension for microglia isolation Basic Protocol 2: Staining single-cell mouse brain suspensions for microglial phenotyping by spectral cytometry Basic Protocol 3: Flow cytometric sorting of mouse microglia for ex vivo analysis Basic Protocol 4: Processing the mouse brain for imaging mass cytometry for spatial microglia analysis.


Asunto(s)
Sistema Nervioso Central , Microglía , Animales , Ratones , Neuropatología , Envejecimiento , ARN
4.
Diving Hyperb Med ; 54(1): 47-56, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38507909

RESUMEN

Introduction: There are inconsistencies in outcome reporting for patients with necrotising soft tissue infections (NSTI). The aim of this study was to evaluate reported outcome measures in NSTI literature that could inform a core outcome set (COS) such as could be used in a study of hyperbaric oxygen in this indication. Methods: A systematic review of all NSTI literature identified from Cochrane, Ovid MEDLINE and Scopus databases as well as grey literature sources OpenGrey and the New York Academy of Medicine databases which met inclusion criteria and were published between 2010 and 2020 was performed. Studies were included if they reported on > 5 cases and presented clinical endpoints, patient related outcomes, or resource utilisation in NSTI patients. Studies did not have to include intervention. Two independent researchers then extracted reported outcome measures. Similar outcomes were grouped and classified into domains to produce a structured inventory. An attempt was made to identify trends in outcome measures over time and by study design. Results: Three hundred and seventy-five studies were identified and included a total of 311 outcome measures. Forty eight percent (150/311) of outcome measures were reported by two or more studies. The four most frequently reported outcome measures were mortality without time specified, length of hospital stay, amputation performed, and number of debridements, reported in 298 (79.5%), 260 (69.3%), 156 (41.6%) and 151 (40.3%) studies respectively. Mortality outcomes were reported in 23 different ways. Randomised controlled trials (RCTs) were more likely to report 28-day mortality or 90-day mortality. The second most frequent amputation related outcome was level of amputation, reported in 7.5% (28/375) of studies. The most commonly reported patient-centred outcome was the SF-36 which was reported in 1.6% (6/375) of all studies and in 2/10 RCTs. Conclusions: There was wide variance in outcome measures in NSTI studies, further highlighting the need for a COS.


Asunto(s)
Infecciones de los Tejidos Blandos , Humanos , Infecciones de los Tejidos Blandos/terapia , Evaluación de Resultado en la Atención de Salud , Oxígeno , Medición de Resultados Informados por el Paciente
5.
Gut ; 73(5): 751-769, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38331563

RESUMEN

OBJECTIVE: Chronic obstructive pulmonary disease (COPD) is a major cause of global illness and death, most commonly caused by cigarette smoke. The mechanisms of pathogenesis remain poorly understood, limiting the development of effective therapies. The gastrointestinal microbiome has been implicated in chronic lung diseases via the gut-lung axis, but its role is unclear. DESIGN: Using an in vivo mouse model of cigarette smoke (CS)-induced COPD and faecal microbial transfer (FMT), we characterised the faecal microbiota using metagenomics, proteomics and metabolomics. Findings were correlated with airway and systemic inflammation, lung and gut histopathology and lung function. Complex carbohydrates were assessed in mice using a high resistant starch diet, and in 16 patients with COPD using a randomised, double-blind, placebo-controlled pilot study of inulin supplementation. RESULTS: FMT alleviated hallmark features of COPD (inflammation, alveolar destruction, impaired lung function), gastrointestinal pathology and systemic immune changes. Protective effects were additive to smoking cessation, and transfer of CS-associated microbiota after antibiotic-induced microbiome depletion was sufficient to increase lung inflammation while suppressing colonic immunity in the absence of CS exposure. Disease features correlated with the relative abundance of Muribaculaceae, Desulfovibrionaceae and Lachnospiraceae family members. Proteomics and metabolomics identified downregulation of glucose and starch metabolism in CS-associated microbiota, and supplementation of mice or human patients with complex carbohydrates improved disease outcomes. CONCLUSION: The gut microbiome contributes to COPD pathogenesis and can be targeted therapeutically.


Asunto(s)
Neumonía , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Ratones , Animales , Enfermedad Pulmonar Obstructiva Crónica/etiología , Pulmón/metabolismo , Pulmón/patología , Neumonía/etiología , Inflamación/metabolismo , Carbohidratos/farmacología
6.
Immunol Cell Biol ; 102(4): 280-291, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38421112

RESUMEN

Natural killer (NK) cells are cytotoxic lymphocytes important for viral defense. West Nile virus (WNV) infection of the central nervous system (CNS) causes marked recruitment of bone marrow (BM)-derived monocytes, T cells and NK cells, resulting in severe neuroinflammation and brain damage. Despite substantial numbers of NK cells in the CNS, their function and phenotype remain largely unexplored. Here, we demonstrate that NK cells mature from the BM to the brain, upregulate inhibitory receptors and show reduced cytokine production and degranulation, likely due to the increased expression of the inhibitory NK cell molecule, MHC-I. Intriguingly, this correlated with a reduction in metabolism associated with cytotoxicity in brain-infiltrating NK cells. Importantly, the degranulation and killing capability were restored in NK cells isolated from WNV-infected tissue, suggesting that WNV-induced NK cell inhibition occurs in the CNS. Overall, this work identifies a potential link between MHC-I inhibition of NK cells and metabolic reduction of their cytotoxicity during infection.


Asunto(s)
Fiebre del Nilo Occidental , Virus del Nilo Occidental , Humanos , Virus del Nilo Occidental/genética , Fiebre del Nilo Occidental/genética , Encéfalo , Células Asesinas Naturales , Linfocitos T
7.
J Reconstr Microsurg ; 40(3): 232-238, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37696294

RESUMEN

BACKGROUND: Photochemical tissue bonding (PTB) is a technique for peripheral nerve repair in which a collagenous membrane is bonded around approximated nerve ends. Studies using PTB with cryopreserved human amnion have shown promising results in a rat sciatic nerve transection model including a more rapid and complete return of function, larger axon size, and thicker myelination than suture repair. Commercial collagen membranes, such as dehydrated amnion allograft, are readily available, offer ease of storage, and have no risk of disease transmission or tissue rejection. However, the biomechanical properties of these membranes using PTB are currently unknown in comparison to PTB of cryopreserved human amnion and suture neurorrhaphy. METHODS: Rat sciatic nerves (n = 10 per group) were transected and repaired using either suture neurorrhaphy or PTB with one of the following membranes: cryopreserved human amnion, monolayer human amnion allograft (crosslinked and noncrosslinked), trilayer human amnion/chorion allograft (crosslinked and noncrosslinked), or swine submucosa. Repaired nerves were subjected to mechanical testing. RESULTS: During ultimate stress testing, the repair groups that withstood the greatest strain increases were suture neurorrhaphy (69 ± 14%), PTB with crosslinked trilayer amnion (52 ± 10%), and PTB with cryopreserved human amnion (46 ± 20%), although the differences between these groups were not statistically significant. Neurorrhaphy repairs had a maximum load (0.98 ± 0.30 N) significantly greater than all other repair groups except for noncrosslinked trilayer amnion (0.51 ± 0.27 N). During fatigue testing, all samples repaired with suture, or PTBs with either crosslinked or noncrosslinked trilayer amnion were able to withstand strain increases of at least 50%. CONCLUSION: PTB repairs with commercial noncrosslinked amnion allograft membranes can withstand physiological strain and have comparable performance to repairs with human amnion, which has demonstrated efficacy in vivo. These results indicate the need for further testing of these membranes using in vivo animal model repairs.


Asunto(s)
Amnios , Nervio Ciático , Humanos , Ratas , Animales , Porcinos , Amnios/cirugía , Amnios/trasplante , Nervio Ciático/cirugía , Nervio Ciático/fisiología , Axones/fisiología , Trasplante Homólogo , Aloinjertos , Técnicas de Sutura
8.
Nat Commun ; 14(1): 6605, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37884534

RESUMEN

Arthritogenic alphaviruses are positive-strand RNA viruses that cause debilitating musculoskeletal diseases affecting millions worldwide. A recent discovery identified the four-and-a-half-LIM domain protein 1 splice variant A (FHL1A) as a crucial host factor interacting with the hypervariable domain (HVD) of chikungunya virus (CHIKV) nonstructural protein 3 (nsP3). Here, we show that acute and chronic chikungunya disease in humans correlates with elevated levels of FHL1. We generated FHL1-/- mice, which when infected with CHIKV or o'nyong-nyong virus (ONNV) displayed reduced arthritis and myositis, fewer immune infiltrates, and reduced proinflammatory cytokine/chemokine outputs, compared to infected wild-type (WT) mice. Interestingly, disease signs were comparable in FHL1-/- and WT mice infected with arthritogenic alphaviruses Ross River virus (RRV) or Mayaro virus (MAYV). This aligns with pull-down assay data, which showed the ability of CHIKV and ONNV nsP3 to interact with FHL1, while RRV and MAYV nsP3s did not. We engineered a CHIKV mutant unable to bind FHL1 (CHIKV-ΔFHL1), which was avirulent in vivo. Following inoculation with CHIKV-ΔFHL1, mice were protected from disease upon challenge with CHIKV and ONNV, and viraemia was significantly reduced in RRV- and MAYV-challenged mice. Targeting FHL1-binding as an approach to vaccine design could lead to breakthroughs in mitigating alphaviral disease.


Asunto(s)
Artritis , Fiebre Chikungunya , Virus Chikungunya , Vacunas , Animales , Humanos , Ratones , Artritis/genética , Fiebre Chikungunya/prevención & control , Péptidos y Proteínas de Señalización Intracelular , Proteínas con Dominio LIM/genética , Proteínas Musculares/genética , Virus O'nyong-nyong
9.
Front Immunol ; 14: 1203561, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37545511

RESUMEN

Bone marrow (BM)-derived monocytes induce inflammation and tissue damage in a range of pathologies. In particular, in a mouse model of West Nile virus (WNV) encephalitis (WNE), nitric oxide-producing, Ly6Chi inflammatory monocytes from the BM are recruited to the central nervous system (CNS) and contribute to lethal immune pathology. Reducing the migration of these cells into the CNS using monoclonal antibody blockade, immune-modifying particles or CSF-1R inhibitors reduces neuroinflammation, improving survival and/or clinical outcomes. Macrophages can also be targeted more broadly by administration of clodronate-encapsulated liposomes, which induce apoptosis in phagocytes. In this study, clodronate reduced the inflammatory infiltrate by 70% in WNE, however, surprisingly, this had no effect on disease outcome. More detailed analysis demonstrated a compensatory increase in neutrophils and enhanced activation status of microglia in the brain. In addition, we observed increased numbers of Ly6Chi BM monocytes with an increased proliferative capacity and expression of SCA-1 and CD16/32, potentially indicating output of immature cells from the BM. Once in the brain, these cells were more phagocytic and had a reduced expression of antigen-presenting molecules. Lastly, we show that clodronate also reduces non-myeloid cells in the spleen and BM, as well as ablating red blood cells and their proliferation. These factors likely impeded the therapeutic potential of clodronate in WNE. Thus, while clodronate provides an excellent system to deplete macrophages in the body, it has larger and broader effects on the phagocytic and non-phagocytic system, which must be considered in the interpretation of data.


Asunto(s)
Encefalitis Viral , Fiebre del Nilo Occidental , Ratones , Animales , Monocitos , Ácido Clodrónico/farmacología , Sistema Nervioso Central/patología , Macrófagos , Encefalitis Viral/patología
10.
Eur J Immunol ; 53(11): e2350521, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37595951

RESUMEN

Regulatory T cells (Treg) maintain immune homeostasis due to their anti-inflammatory functions. They can be generated either centrally in the thymus or in peripheral organs. Metabolites such as short-chain fatty acids produced by intestinal microbiota can induce peripheral Treg differentiation, by activating G-protein-coupled-receptors like GPR109A. In this study, we identified a novel role for GPR109A in thymic Treg development. We found that Gpr109a-/- mice had increased Treg under basal conditions in multiple organs compared with WT mice. GPR109A was not expressed on T cells but on medullary thymic epithelial cells (mTECs), as revealed by single-cell RNA sequencing in both mice and humans and confirmed by flow cytometry in mice. mTECs isolated from Gpr109a-/- mice had higher expression of autoimmune regulator (AIRE), the key regulator of Treg development, while the subset of mTECs that did not express Gpr109a in the WT displayed increased Aire expression and also enhanced signaling related to mTEC functionality. Increased thymic Treg in Gpr109a-/- mice was associated with protection from experimental autoimmune encephalomyelitis, with ameliorated clinical signs and reduced inflammation. This work identifies a novel role for GPR109A and possibly the gut microbiota, on thymic Treg development via its regulation of mTECs.


Asunto(s)
Células Epiteliales , Linfocitos T Reguladores , Animales , Humanos , Ratones , Diferenciación Celular , Citometría de Flujo , Ratones Endogámicos C57BL , Transducción de Señal , Timo
11.
Acta Neurochir (Wien) ; 165(8): 2293-2298, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37284839

RESUMEN

PURPOSE: Photosealing of many biological tissues can be achieved using a biocompatible material in combination with a dye that is activated by visible light to chemically bond over the tissue defect via protein cross-linking reactions. The aim of this study was to test the efficacy of photosealing using a commercially available biomembrane (AmnioExcel Plus) to securely close dural defects in comparison to another sutureless method (fibrin glue) in terms of repair strength. METHODS: Two-millimeter diameter holes were created in dura harvested from New Zealand white rabbits and repaired ex vivo using one of two methods: (1) in n = 10 samples, photosealing was used to bond a 6-mm-diameter AmnioExcel Plus patch over the dural defect, and (2) in n = 10 samples, fibrin glue was used to attach the same patch over the dural defect. Repaired dura samples were then subjected to burst pressure testing. Histological analysis was also performed of photosealed dura. RESULTS: The mean burst pressures of rabbit dura repaired with photosealing and fibrin glue were 302 ± 149 mmHg and 26 ± 24 mmHg, respectively. The increased repair strength using photosealing was statistically significant and considerably higher than the normal intracranial pressure of ~ 20 mmHg. Histology demonstrated a tight union at the interface between the dura surface and patch with no disruption of the dura structure. CONCLUSION: The results of this study suggest that photosealing performs better than fibrin glue for the fixation of a patch for ex vivo repair of small dural defects. Photosealing is worthy of testing in pre-clinical models for the repair of dural defects.


Asunto(s)
Materiales Biocompatibles , Adhesivo de Tejido de Fibrina , Animales , Conejos , Materiales Biocompatibles/uso terapéutico , Duramadre/cirugía , Duramadre/patología
12.
Eur J Immunol ; 53(7): e2250163, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37137164

RESUMEN

The gut microbiota has co-evolved with its host, and commensal bacteria can influence both the host's immune development and function. Recently, a role has emerged for bacterial extracellular vesicles (BEVs) as potent immune modulators. BEVs are nanosized membrane vesicles produced by all bacteria, possessing the membrane characteristics of the originating bacterium and carrying an internal cargo that may include nucleic acid, proteins, lipids, and metabolites. Thus, BEVs possess multiple avenues for regulating immune processes, and have been implicated in allergic, autoimmune, and metabolic diseases. BEVs are biodistributed locally in the gut, and also systemically, and thus have the potential to affect both the local and systemic immune responses. The production of gut microbiota-derived BEVs is regulated by host factors such as diet and antibiotic usage. Specifically, all aspects of nutrition, including macronutrients (protein, carbohydrates, and fat), micronutrients (vitamins and minerals), and food additives (the antimicrobial sodium benzoate), can regulate BEV production. This review summarizes current knowledge of the powerful links between nutrition, antibiotics, gut microbiota-derived BEV, and their effects on immunity and disease development. It highlights the potential of targeting or utilizing gut microbiota-derived BEV as a therapeutic intervention.


Asunto(s)
Vesículas Extracelulares , Microbioma Gastrointestinal , Microbiota , Dieta , Microbioma Gastrointestinal/fisiología , Bacterias , Antibacterianos , Vesículas Extracelulares/metabolismo
13.
Soc Sci Med ; 326: 115919, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37141678

RESUMEN

Sound has been researched as either an environmental pollutant (noise) with detrimental health effects or an environmental resource with beneficial outcomes for well-being. We define sonic injustice as unjust inequalities in both noise exposure and access to high-quality, beneficial sound environments. We performed a comparative analysis of 34 peer-reviewed studies on sonic injustice. These studies were from Europe, North America, Accra and Hong Kong. We found suggestive evidence of a social inequality in noise exposure, particularly for low income and racial/ethnic groups. In contrast, children were often associated with an underexposure to noise. We did not find any studies on inequalities in access to beneficial sound environments, except for one study on quiet areas. As well, this review identifies trends in European and North American studies; discusses causal mechanisms for sonic inequalities; and presents avenues for future investigations into sonic injustice.


Asunto(s)
Contaminantes Ambientales , Pobreza , Niño , Humanos , Factores Socioeconómicos , Europa (Continente) , Ruido
14.
mBio ; 14(2): e0058823, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37036079

RESUMEN

Arthritogenic alphaviruses such as Ross River virus (RRV) and Chikungunya virus (CHIKV) are responsible for large-scale epidemics that cause debilitating acute and chronic musculoskeletal diseases. MXRA8 was recently discovered as an entry receptor for multiple alphaviruses including CHIKV, RRV, Mayaro virus (MAYV), and O'nyong-nyong virus (ONNV). However, the role of MXRA8 in the development of alphavirus-induced musculoskeletal inflammation has not yet been fully studied. Here, we attempt to fully characterize the contribution of MXRA8 to RRV disease in an established mouse model. MXRA8 knockout (MXRA8-/-) mice generated on a C57BL/6J background, showed abrogated disease signs and reduced viral replication, which correlated with lower viral load, diminished proinflammatory cytokines, and limited cell infiltrates in inflamed tissues. Immunomodulation genes were upregulated to higher levels in RRV-infected wild-type (WT) mice than in MXRA8-/- mice. Intriguingly, Cdkn1a and Ifi44 genes in blood and CD127/IL7RA, CD45, BatF3, IFNGR, Ly6G/Ly6C, CD40, CD127, F4/80, and MHC-II genes in quadriceps were found to be upregulated in RRV-infected MXRA8-/- mice compared to WT mice. Our results showed an essential role of MXRA8 in the immune response of mice infected with RRV and, more importantly, demonstrated novel changes in immunomodulation genes, which shed light on the immunopathogenesis of alphavirus-induced disease. IMPORTANCE Previous studies have shown the importance of the cell surface protein MXRA8 as an entry receptor for several different prominent alphaviruses such as CHIKV, RRV, MAYV, and ONNV. In particular, the role of MXRA8 in the tissue tropism, viral pathogenesis, and immune response of a CHIKV mouse model have already been briefly characterized. However, the role of MXRA8 warrants further characterization in RRV disease background, since there are noticeable differences in the disease profile between CHIKV and RRV. For example, patients infected with CHIKV are usually affected by sudden onset of severe arthritis and fever, whereas RRV-infected patients generally only have minor joint pain and mild fever. Here, we characterized the role of MXRA8 in RRV disease and assessed several key mechanisms of MXRA8 that may contribute to the disease progression.


Asunto(s)
Infecciones por Alphavirus , Artritis , Virus Chikungunya , Animales , Ratones , Virus del Río Ross/genética , Ratones Endogámicos C57BL , Virus Chikungunya/genética , Inmunoglobulinas , Proteínas de la Membrana/metabolismo
15.
Acta Neuropathol Commun ; 11(1): 60, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-37016414

RESUMEN

As the resident parenchymal myeloid population in the central nervous system (CNS), microglia are strategically positioned to respond to neurotropic virus invasion and have been implicated in promoting both disease resolution and progression in the acute and post-infectious phase of virus encephalitis. In a mouse model of West Nile virus encephalitis (WNE), infection of the CNS results in recruitment of large numbers of peripheral immune cells into the brain, the majority being nitric oxide (NO)-producing Ly6Chi inflammatory monocyte-derived cells (MCs). In this model, these cells enhance immunopathology and mortality. However, the contribution of microglia to this response is currently undefined. Here we used a combination of experimental tools, including single-cell RNA sequencing (scRNA-seq), microglia and MC depletion reagents, high-dimensional spectral cytometry and computational algorithms to dissect the differential contribution of microglia and MCs to the anti-viral immune response in severe neuroinflammation seen in WNE. Intriguingly, analysis of scRNA-seq data revealed 6 unique microglia and 3 unique MC clusters that were predominantly timepoint-specific, demonstrating substantial transcriptional adaptation with disease progression over the course of WNE. While microglia and MC adopted unique gene expression profiles, gene ontology enrichment analysis, coupled with microglia and MC depletion studies, demonstrated a role for both of these cells in the trafficking of peripheral immune cells into the CNS, T cell responses and viral clearance. Over the course of infection, microglia transitioned from a homeostatic to an anti-viral and then into an immune cell-recruiting phenotype. Conversely, MC adopted antigen-presenting, immune cell-recruiting and NO-producing phenotypes, which all had anti-viral function. Overall, this study defines for the first time the single-cell transcriptomic responses of microglia and MCs over the course of WNE, demonstrating both protective and pathological roles of these cells that could potentially be targeted for differential therapeutic intervention to dampen immune-mediated pathology, while maintaining viral clearance functions.


Asunto(s)
Microglía , Fiebre del Nilo Occidental , Animales , Ratones , Microglía/patología , Monocitos , Transcriptoma , Fiebre del Nilo Occidental/patología , Encéfalo/patología
16.
PLoS One ; 18(3): e0283783, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36996147

RESUMEN

AIMS: Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) methods to quantify total lurbinectedin, its plasma protein binding to derive the unbound fraction and its main metabolites 1',3'-dihydroxy-lurbinectedin (M4) and N-desmethyl-lurbinectedin (M6) in human plasma, were developed and validated. MATERIALS & METHODS: For lurbinectedin, sample extraction was performed using supported liquid extraction. For metabolites, liquid-liquid extraction with stable isotope-labeled analogue internal standards was used. Plasma protein binding was evaluated using rapid equilibrium dialysis. In vitro investigations at different plasma protein concentrations were carried out to estimate dissociation rate constants to albumin and alpha-1-acid glycoprotein (AAG). RESULTS: Calibration curves displayed good linearity over 0.1 to 50 ng/mL for lurbinectedin and 0.5 to 20 ng/mL for the metabolites. Methods were validated in accordance with established guidance. The inter-day precision and accuracy ranged from 5.1% to 10.7%, and from -5% to 6% (lurbinectedin in plasma); from 3.1% to 6.6%, and from 4% to 6% (lurbinectedin in plasma:PBS); from 4.5% to 12.9%, and from 4% to 9% (M4); and from 7.5% to 10.5%, and from 6% to 12% (M6). All methods displayed good linearity (r2 >0.99). Recovery was evaluated for lurbinectedin in plasma:PBS (66.4% to 86.6%), M4 (7.82% to 13.4%) and M6 (22.2% to 34.3%). The method for lurbinectedin in plasma has been applied in most clinical studies, while the plasma:PBS and metabolites methods were used to evaluate the impact of special conditions on lurbinectedin PK. Lurbinectedin plasma protein binding was 99.6% and highly affected by AAG concentration. CONCLUSIONS: These UPLC-MS/MS methods enable the rapid and sensitive quantification of lurbinectedin and its main metabolites in clinical samples.


Asunto(s)
Carbolinas , Espectrometría de Masas en Tándem , Humanos , Cromatografía Liquida , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Reproducibilidad de los Resultados
17.
Glia ; 71(4): 904-925, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36527260

RESUMEN

Microglia and bone marrow-derived monocytes are key elements of central nervous system (CNS) inflammation, both capable of enhancing and dampening immune-mediated pathology. However, the study-specific focus on individual cell types, disease models or experimental approaches has limited our ability to infer common and disease-specific responses. This meta-analysis integrates bulk and single-cell transcriptomic datasets of microglia and monocytes from disease models of autoimmunity, neurodegeneration, sterile injury, and infection to build a comprehensive resource connecting myeloid responses across CNS disease. We demonstrate that the bulk microglial and monocyte program is highly contingent on the disease environment, challenging the notion of a universal microglial disease signature. Integration of six single-cell RNA-sequencing datasets revealed that these disease-specific signatures are likely driven by differing proportions of unique myeloid subpopulations that were individually expanded in different disease settings. These subsets were functionally-defined as neurodegeneration-associated, inflammatory, interferon-responsive, phagocytic, antigen-presenting, and lipopolysaccharide-responsive cellular states, revealing a core set of myeloid responses at the single-cell level that are conserved across CNS pathology. Showcasing the predictive and practical value of this resource, we performed differential expression analysis on microglia and monocytes across disease and identified Cd81 as a new neuroinflammatory-stable gene that accurately identified microglia and distinguished them from monocyte-derived cells across all experimental models at both the bulk and single-cell level. Together, this resource dissects the influence of disease environment on shared immune response programmes to build a unified perspective of myeloid behavior across CNS pathology.


Asunto(s)
Enfermedades del Sistema Nervioso , Transcriptoma , Animales , Ratones , Sistema Nervioso Central/metabolismo , Ratones Endogámicos C57BL , Microglía/metabolismo , Monocitos/metabolismo , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/patología
18.
Int J Toxicol ; 42(2): 146-155, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36427267

RESUMEN

Next-generation urinary protein biomarkers have been qualified to enable monitoring for drug-induced kidney injury in toxicology studies conducted in rats. However, there is limited literature on the utility of these biomarkers in dogs. To add to the existing body of knowledge on the utility of the next-generation drug-induced kidney injury (DIKI) biomarkers, we evaluated the value of these biomarkers for the early detection of DIKI in Beagle dogs using a differentiated nephrotoxicant, Amphotericin B (AmpB). In dogs with AmpB-induced kidney injury, we monitored the response of urinary albumin, total protein, clusterin, kidney injury molecule 1, neutrophil gelatinase-associated lipocalin and N-acetyl-beta-D-glucosaminidase. We also measured blood urea nitrogen, serum creatinine and cystatin C. The results showed that urinary clusterin (up to ∼ 112x) was much more sensitive to AmpB-induced kidney injury relative to other biomarkers. Moreover, other than urinary clusterin and to a much lesser extent urinary albumin and total protein, none of the other biomarkers analyzed in this study were more sensitive than blood urea nitrogen and serum creatinine. The AmpB related tubular alterations were characterized by minimal to mild, multifocal necrosis, degeneration, regeneration, dilatation and mineralization. The mild nature of these histopathologic findings further attested to the sensitivity of urinary clusterin to AmpB-induced kidney injury in dogs. These results will help drug developers make informed decisions when selecting urinary biomarkers for monitoring DIKI in dogs for toxicology studies.


Asunto(s)
Lesión Renal Aguda , Enfermedades Renales , Perros , Animales , Ratas , Anfotericina B/toxicidad , Clusterina/orina , Creatinina , Riñón/patología , Biomarcadores , Enfermedades Renales/inducido químicamente , Albúminas/toxicidad , Lesión Renal Aguda/inducido químicamente
19.
Behav Brain Res ; 438: 114178, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36341913

RESUMEN

Psychostimulants such as methylphenidate (MPD) and amphetamine (AMP) are often prescribed to young children and adolescents to treat behavioral disorders, or used to improve their intellectual performance in our competitive society. This is concerning as the temporal effects of how MPD exposure at a young age influences the response to MPD and AMP administration later in adulthood remains unclear. The objective of this study was to test whether MPD has the characteristics of substances that elicit behavioral symptoms of dependence and whether those effects are influenced by the initial age of MPD exposure. Three control and nine experimental groups of male rats were used. They were exposed to repetitive (chronic) 0.6, 2.5, or 10.0 mg/kg MPD in adolescence only, adulthood only, or adolescence and adulthood respectively. Then all groups were subsequently re-challenged with a single AMP dose in adulthood to test whether cross-sensitization between MPD and AMP was expressed, potentially as a result of prior MPD consumption. Exposure to 2.5 mg/kg and 10.0 mg/kg MPD in adolescence and adulthood or in adulthood alone led to cross-sensitization with AMP while exposure to 0.6 mg/kg MPD in adolescence and adulthood or in adulthood alone did not lead to cross-sensitization with AMP. Thus, these results indicate that MPD cross-sensitization with AMP is dose dependent.


Asunto(s)
Estimulantes del Sistema Nervioso Central , Metilfenidato , Animales , Masculino , Ratas , Anfetamina/farmacología , Conducta Animal , Estimulantes del Sistema Nervioso Central/farmacología , Relación Dosis-Respuesta a Droga , Metilfenidato/farmacología , Actividad Motora/fisiología , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...