Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 122(7): 076404, 2019 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-30848608

RESUMEN

We revisit the enduring problem of the 2×2×2 charge density wave (CDW) order in TiSe_{2}, utilizing photon energy-dependent angle-resolved photoemission spectroscopy to probe the full three-dimensional high- and low-temperature electronic structure. Our measurements demonstrate how a mismatch of dimensionality between the 3D conduction bands and the quasi-2D valence bands in this system leads to a hybridization that is strongly k_{z} dependent. While such a momentum-selective coupling can provide the energy gain required to form the CDW, we show how additional "passenger" states remain, which couple only weakly to the CDW and thus dominate the low-energy physics in the ordered phase of TiSe_{2}.

2.
Rev Sci Instrum ; 83(11): 113103, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23206047

RESUMEN

We describe a tunable low-energy photon source consisting of a laser-driven xenon plasma lamp coupled to a Czerny-Turner monochromator. The combined tunability, brightness, and narrow spectral bandwidth make this light source useful in laboratory-based high-resolution photoemission spectroscopy experiments. The source supplies photons with energies up to ~7 eV, delivering under typical conditions >10(12) ph/s within a 10 meV spectral bandwidth, which is comparable to helium plasma lamps and many synchrotron beamlines. We first describe the lamp and monochromator system and then characterize its output, with attention to those parameters which are of interest for photoemission experiments. Finally, we present angle-resolved photoemission spectroscopy data using the light source and compare its performance to a conventional helium plasma lamp.

3.
Nat Commun ; 1: 128, 2010 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-21119641

RESUMEN

The surface of a topological insulator plays host to an odd number of linearly-dispersing Dirac fermions, protected against back-scattering by time-reversal symmetry. Such characteristics make these materials attractive not only for studying a range of fundamental phenomena in both condensed matter and particle physics, but also for applications ranging from spintronics to quantum computation. Here, we show that the single Dirac cone comprising the topological state of the prototypical topological insulator Bi(2)Se(3) can co-exist with a two-dimensional electron gas (2DEG), a cornerstone of conventional electronics. Creation of the 2DEG is tied to a surface band-bending effect, which should be general for narrow-gap topological insulators. This leads to the unique situation where a topological and a non-topological, easily tunable and potentially superconducting, metallic state are confined to the same region of space.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA