Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
MethodsX ; 9: 101898, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36411803

RESUMEN

The patterned dielectric back contact (PDBC) structure can be used to form a point-contact architecture that features a dielectric spacer with spatially distributed, reduced-area metal point contacts between the semiconductor back not recognized contact layer and the metal back contact. In this structure, the dielectric-metal region provides higher reflectance and is electrically insulating. Reduced-area metal point contacts provide electrical conduction for the back contact but typically have lower reflectance. The fabrication methods discussed in this article were developed for thermophotovoltaic cells, but they apply to any III-V optoelectronic device requiring the use of a conductive and highly reflective back contact. Patterned dielectric back contacts may be used for enhanced sub-bandgap reflectance, for enhanced photon recycling near the bandgap energy, or both depending on the optoelectronic application. The following fabrication methods are discussed in the article•PDBC fabrication procedures for spin-on dielectrics and commonly evaporated dielectrics to form the spacer layer.•Methods to selectively etch a parasitically absorbing back contact layer using metal point contacts as an etch mask.•Methods incorporating a dielectric etch through different process techniques such as reactive ion and wet etching.

2.
J Vis Exp ; (141)2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30507906

RESUMEN

To improve the efficiency of Si-based solar cells beyond their Shockley-Queisser limit, the optimal path is to integrate them with III-V-based solar cells. In this work, we present high performance GaP/Si heterojunction solar cells with a high Si minority-carrier lifetime and high crystal quality of epitaxial GaP layers. It is shown that by applying phosphorus (P)-diffusion layers into the Si substrate and a SiNx layer, the Si minority-carrier lifetime can be well-maintained during the GaP growth in the molecular beam epitaxy (MBE). By controlling the growth conditions, the high crystal quality of GaP was grown on the P-rich Si surface. The film quality is characterized by atomic force microscopy and high-resolution x-ray diffraction. In addition, MoOx was implemented as a hole-selective contact that led to a significant increase in the short-circuit current density. The achieved high device performance of the GaP/Si heterojunction solar cells establishes a path for further enhancement of the performance of Si-based photovoltaic devices.


Asunto(s)
Fosfinas/síntesis química , Siliconas/síntesis química , Energía Solar , Difusión , Galio/normas , Microscopía de Fuerza Atómica/métodos , Fosfinas/normas , Fósforo/química , Fósforo/normas , Siliconas/normas , Energía Solar/normas , Luz Solar , Difracción de Rayos X/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...