Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gen Comp Endocrinol ; 269: 81-87, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30145237

RESUMEN

Social environment has well-established effects on an animal's social behavior and associated neuroendocrine responses. The presence of estrogen receptor alpha (ERα) in limbic system brain regions is related to the expression of a variety of social, reproductive and aggressive behaviors. We hypothesized that alterations to the social environment, specifically social isolation, would cause changes in ERα throughout the limbic system. The number of ERα immunoreactive (ERα-ir) cells within specific limbic system brain regions was quantified in male and female California mice (Peromyscus californicus), isolated or same sex pair-housed for 4 or 24 days. Peromyscus californicus is a highly social rodent species (monogamous and bi-parental) and therefore, may be particularly sensitive to manipulations of its social environment. Isolated males had a significantly greater number of ERα-ir cells in the ventromedial nucleus of the hypothalamus (VMH) and similar patterns within the bed nucleus of the stria terminalis (BST) and medial preoptic area (MPOA). Males housed for 24 days had a significantly greater number of ERα-ir cells in the BST, VMH, MPOA when compared with males housed for 4 days. Females housed for 24 days had significantly greater ERα-ir in the dentate gyrus of the hippocampus (DG) when compared with females housed for 4 days. No differences were found in the medial amygdala (MeA). These data demonstrate that social environment has region and sex specific effects on ERα-ir cells in this species. These results add to the comparative evidence regarding ERα, demonstrating a consistent role for ERα in species specific responsiveness to changes in the social environment.


Asunto(s)
Receptor alfa de Estrógeno/metabolismo , Peromyscus/metabolismo , Medio Social , Animales , Conducta Animal , Femenino , Masculino , Área Preóptica/metabolismo , Conducta Social
2.
Neuroscience ; 373: 137-144, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29352998

RESUMEN

Recent reports demonstrate that DNA damage is induced, and rapidly repaired, in circuits activated by experience. Moreover, stress hormones are known to slow DNA repair, suggesting that prolonged stress may result in persistent DNA damage. Prolonged stress is known to negatively impact physical and mental health; however, DNA damage as a factor in stress pathology has only begun to be explored. Histone H2A-X phosphorylated at serine 139 (γH2AX) is a marker of DNA double-strand breaks (DSB), a type of damage that may lead to cell death if unrepaired. We hypothesized that a 14-day period of variable stress exposure sufficient to alter anxiety-like behavior in male C57BL/6J mice would produce an increase in γH2AX levels in the bed nucleus of the stria terminalis (BNST), a region implicated in anxiety and stress regulation. We observed that 14 days of variable stress, but not a single stress exposure, was associated with increased levels of γH2AX 24 h after termination of the stress paradigm. Further investigation found that phosphorylation levels of a pair of kinases associated with the DNA damage response, glycogen synthase kinase 3 ß (GSK3ß) and p38 mitogen-activated protein kinase (MAPK) were also elevated following variable stress. Our results suggest that unrepaired DNA DSBs and/or repetitive attempted repair may represent an important component of the allostatic load that stress places on the brain.


Asunto(s)
Histonas/metabolismo , Núcleos Septales/metabolismo , Estrés Psicológico/metabolismo , Animales , Ansiedad/metabolismo , Ansiedad/patología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Masculino , Ratones Endogámicos C57BL , Reflejo de Sobresalto , Núcleos Septales/patología , Estrés Psicológico/patología , Factores de Tiempo , Aumento de Peso , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
3.
Curr Psychiatry Rep ; 19(11): 78, 2017 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-28905316

RESUMEN

PURPOSE OF REVIEW: Estrogen's role in cognitive aging remains unclear. Despite evidence implicating stress in pathological aging, the interaction of stress with estrogen on cognition in older women has received little attention, and few animal models exist with which to examine this interaction. RECENT FINDINGS: We present evidence that aging socially subordinate female macaques that experience chronic psychosocial stress constitute a suitable model to investigate this. First, we review studies showing that estrogen modulates cognition in animal models, as well as studies demonstrating that estrogen's action on certain types of cognition is impaired by stress. Next, we discuss data showing that middle-aged socially subordinate female macaques exhibit distinct stress-induced phenotypes, and review our investigations indicating that estrogen modulates behavior and physiology differently in subordinate female monkeys. We conclude that socially housed female macaques represent a translational animal model for investigating the interplay of chronic stress and estrogen on cognitive aging in women.


Asunto(s)
Envejecimiento Cognitivo/fisiología , Modelos Animales de Enfermedad , Estrógenos/fisiología , Macaca/fisiología , Macaca/psicología , Estrés Psicológico/fisiopatología , Animales , Femenino , Vivienda para Animales , Humanos , Conducta Social , Investigación Biomédica Traslacional
4.
Stress ; 20(5): 465-475, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28610473

RESUMEN

Stressor exposure is associated with the onset and severity of many psychopathologies that are more common in women than men. Moreover, the maladaptive expression and function of stress-related hormones have been implicated in these disorders. Evidence suggests that PACAP has a critical role in the stress circuits mediating stress-responding, and PACAP may interact with sex hormones to contribute to sex differences in stress-related disease. In this review, we describe the role of the PACAP/PAC1 system in stress biology, focusing on the role of stress-induced alterations in PACAP expression and signaling in the development of stress-induced behavioral change. Additionally, we present more recent data suggesting potential interactions between stress, PACAP, and circulating estradiol in pathological states, including PTSD. These studies suggest that the level of stress and circulating gonadal hormones may differentially regulate the PACAPergic system in males and females to influence anxiety-like behavior and may be one mechanism underlying the discrepancies in human psychiatric disorders.


Asunto(s)
Ansiedad/metabolismo , Estradiol/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Núcleos Septales/metabolismo , Trastornos por Estrés Postraumático/metabolismo , Estrés Psicológico/metabolismo , Animales , Femenino , Hormonas Esteroides Gonadales/metabolismo , Humanos , Masculino , Ratones , Caracteres Sexuales , Factores Sexuales
5.
Neuropsychopharmacology ; 42(8): 1679-1687, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28106040

RESUMEN

Chronic or repeated exposure to stressful stimuli can result in several maladaptive consequences, including increased anxiety-like behaviors and altered peptide expression in anxiety-related brain structures. Among these structures, the bed nucleus of the stria terminalis (BNST) has been implicated in emotional behaviors as well as regulation of hypothalamic-pituitary-adrenal (HPA) axis activity. In male rodents, chronic variate stress (CVS) has been shown to increase BNST pituitary adenylate cyclase activating polypeptide (PACAP) and its cognate PAC1 receptor transcript, and BNST PACAP signaling may mediate the maladaptive changes associated with chronic stress. Here, we examined whether CVS would sensitize the behavioral and/or endocrine response to a subthreshold BNST PACAP infusion. Male and cycling female rats were exposed to a 7 day CVS paradigm previously shown to upregulate BNST PAC1 receptor transcripts; control rats were not stressed. Twenty-four hours following the last stressor, rats were bilaterally infused into the BNST with a normally subthreshold dose of PACAP. We found an increase in startle amplitude and plasma corticosterone levels 30 min following intra-BNST PACAP infusion in male rats that had been previously exposed to CVS. CVS did not enhance the startle response in cycling females. Equimolar infusion of the VPAC1/2 receptor ligand vasoactive intestinal polypeptide (VIP) had no effect on plasma corticosterone levels even in previously stressed male rats. These results suggest that repeated exposure to stressors may differentially alter the neural circuits underlying the responses to intra-BNST PACAP, and may result in different anxiety-like responses in males and females.


Asunto(s)
Ansiedad/fisiopatología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/fisiología , Núcleos Septales/fisiología , Estrés Psicológico/fisiopatología , Animales , Corticosterona/sangre , Femenino , Masculino , Microinyecciones , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/administración & dosificación , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Ratas , Reflejo de Sobresalto/efectos de los fármacos , Núcleos Septales/efectos de los fármacos , Caracteres Sexuales , Péptido Intestinal Vasoactivo/administración & dosificación , Péptido Intestinal Vasoactivo/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...