Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 6361, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37821466

RESUMEN

The concept of lateral optical force (LOF) is of general interest in optical manipulation as it releases the constraint of intensity gradient in tightly focused light, yet such a force is normally limited to exotic materials and/or complex light fields. Here, we report a general and controllable LOF in a nonchiral elongated nanoparticle illuminated by an obliquely incident plane wave. Through computational analysis, we reveal that the sign and magnitude of LOF can be tuned by multiple parameters of the particle (aspect ratio, material) and light (incident angle, direction of linear polarization, wavelength). The underlying physics is attributed to the multipolar interplay in the particle, leading to a reduction in symmetry. Direct experimental evidence of switchable LOF is captured by polarization-angle-controlled manipulation of single Ag nanowires using holographic optical tweezers. This work provides a minimalist paradigm to achieve interface-free LOF for optomechanical applications, such as optical sorting and light-driven micro/nanomotors.

2.
Nat Commun ; 14(1): 2638, 2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37149678

RESUMEN

The momentum carried by structured light fields exhibits a rich array of surprising features. In this work, we generate transverse orbital angular momentum (TOAM) in the interference field of two parallel and counter-propagating linearly-polarised focused beams, synthesising an array of identical handedness vortices carrying intrinsic TOAM. We explore this structured light field using an optomechanical sensor, consisting of an optically levitated silicon nanorod, whose rotation is a probe of the optical angular momentum, which generates an exceptionally large torque. This simple creation and direct observation of TOAM will have applications in studies of fundamental physics, the optical manipulation of matter and quantum optomechanics.

3.
Opt Lett ; 48(2): 255-258, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36638431

RESUMEN

Photonics is currently undergoing an era of miniaturization thanks in part to two-dimensional (2D) optical metasurfaces. Their ability to sculpt and redirect optical momentum can give rise to an optical force, which acts orthogonally to the direction of light propagation. Powered by a single unfocused light beam, these lateral optical forces (LOFs) can be used to drive advanced metavehicles and are controlled via the incident beam's polarization. However, the full control of a metavehicle on a 2D plane (i.e. forward, backward, left, and right) with a sign-switchable LOF remains a challenge. Here we present a phase-gradient metasurface route for achieving such full control while also increasing efficiency. The proposed metasurface is able to deflect a normally incident plane wave in a traverse direction by modulating the plane wave's polarization, and results in a sign-switchable recoil LOF. When applied to a metavehicle, this LOF enables a level of motion control that was previously unobtainable.

4.
Nano Lett ; 20(10): 7094-7099, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32830983

RESUMEN

Optically induced magnetic resonances in nonmagnetic media have unlocked magnetic light-matter interactions and led to new technologies in many research fields. Previous proposals for the levitation of nanoscale particles without structured illumination have worked on the basis of epsilon-near-zero surfaces or anisotropic materials, but these materials carry with them significant fabrication difficulties. We report the optical levitation of a magnetic dipole over a wide range of realistic materials, including bulk metals, thereby relieving these difficulties. The repulsion is independent of surface losses, and we propose an experiment to detect this force which consists of a core-shell nanoparticle, exhibiting a magnetic resonance, in close proximity to a gold substrate under plane wave illumination. We anticipate the use of this phenomenon in new nanomechanical devices.

5.
Opt Lett ; 43(14): 3393-3396, 2018 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-30004514

RESUMEN

Study of photonic spin-orbital interactions, which involves control of the propagation and spatial distributions of light via its polarization, is not only important at the fundamental level but also has significant implications for functional photonic applications that require active tuning of directional light propagation. Many of the experimental demonstrations have been attributed to the spin-momentum locking characteristic of evanescent waves. In this Letter, we show another property of evanescent waves: the polarization-dependent direction of the imaginary part of the Poynting vector, i.e., reactive power. Based on this property, we propose a simple and robust way to tune the directional far-field scattering from nanoparticles near a surface under evanescent wave illumination by controlling its polarization and direction of the incident light.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...