Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
MethodsX ; 8: 101216, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34434739

RESUMEN

At least three species of Pantoea are responsible for bacterial blight disease and grain discoloration of rice in Sub-Saharan Africa. Thus, measures need to be taken to limit the pathogens' dispersion and robust diagnostic tools are required for rapid and cheap diagnosis in the field as well as for routine seed certification or control. Therefore, several diagnostic tools such as simplex and multiplex PCR schemes and a semi-selective medium have been developed and are being used. However, the use of these tools is time-consuming, expensive and therefore limited to laboratories that can afford the chemicals. We have therefore developed two isothermal loop amplification (LAMP) protocols, one of which detects all Pantoea species in the genus and another one that is specific for P. ananatis.•The novel LAMP assays allow rapid and sensitive detection of these bacteria.•They will help plant protection services in routine field and laboratory tests especially for monitoring the phytosanitary status of rice seeds.

2.
Plant Dis ; 105(9): 2389-2394, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33656368

RESUMEN

The genus Pantoea forms a complex of more than 25 species, among which several cause diseases of various crop plants, including rice. Notably, strains of Pantoea ananatis and P. stewartii have been repeatedly reported to cause bacterial leaf blight of rice, whereas other authors have observed that P. agglomerans can also cause bacterial leaf blight of rice. The contribution of these and perhaps other species of Pantoea to plant diseases and yield losses of crop plants is currently not well documented, partly due to the lack of efficient diagnostic tools. Using 32 whole-genome sequences of the three major plant-pathogenic Pantoea spp., a set of PCR primers that detect each of the three species P. agglomerans, P. ananatis, and P. stewartii was designed. A multiplex PCR scheme which can distinguish these three species and also detects members of other Pantoea spp. was further developed. Upon validation on a set of reference strains, 607 suspected Pantoea strains that were isolated from rice leaves or seed originating from 11 African countries were screened. In total, 41 P. agglomerans strains from 8 countries, 79 P. ananatis strains from 9 countries, 269 P. stewartii strains from 9 countries, and 218 unresolved Pantoea strains from 10 countries were identified. The PCR protocol allowed detection of Pantoea bacteria grown in vitro, in planta, and in rice seed. The detection threshold was estimated as total genomic DNA at 0.5 ng/µl and heated cells at 1 × 104 CFU/ml. This new molecular diagnostic tool will help to accurately diagnose major plant-pathogenic species of Pantoea. Due to its robustness, specificity, sensitivity, and cost efficiency, it will be very useful for plant protection services and for the epidemiological surveillance of these important crop-threatening bacteria.


Asunto(s)
Oryza , Pantoea , Genómica , Reacción en Cadena de la Polimerasa Multiplex , Pantoea/genética , Enfermedades de las Plantas
3.
Phytopathology ; 110(9): 1500-1502, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32338197

RESUMEN

Members of the genus Pantoea have been reported as pathogens for many economically important crops, including rice. Little is known about their host-pathogen interactions at the molecular level and the lack of comprehensive genome data impedes targeted breeding strategies toward resistant rice cultivars. Here, we describe the structural and functional annotation of the draft genome sequences of three rice-pathogenic Pantoea ananatis strains, ARC272, ARC310, and ARC311, which were isolated in Burkina Faso, Togo, and Benin, respectively. The genome sequences of these strains will help in developing molecular diagnostic tools and provide new insight into common traits that may enable P. ananatis to infect rice.


Asunto(s)
Oryza , Pantoea/genética , Grano Comestible , Genoma Bacteriano , Enfermedades de las Plantas
4.
PLoS One ; 15(4): e0232115, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32339192

RESUMEN

Crop diseases are responsible for considerable yield losses worldwide and particularly in sub-Saharan Africa. To implement efficient disease control measures, detection of the pathogens and understanding pathogen spatio-temporal dynamics is crucial and requires the use of molecular detection tools, especially to distinguish different pathogens causing more or less similar symptoms. We report here the design a new molecular diagnostic tool able to simultaneously detect five bacterial taxa causing important diseases on rice in Africa: (1) Pseudomonas fuscovaginae, (2) Xanthomonas oryzae, (3) Burkholderia glumae and Burkholderia gladioli, (4) Sphingomonas and (5) Pantoea species. This new detection tool consists of a multiplex PCR, which is cost effective and easily applicable. Validation of the method is presented through its application on a global collection of bacterial strains. Moreover, sensitivity assessment for the detection of all five bacteria is reported to be at 0.5 ng DNA by µl. As a proof of concept, we applied the new molecular detection method to a set of 256 rice leaves collected from 16 fields in two irrigated areas in western Burkina Faso. Our results show high levels of Sphingomonas spp. (up to 100% of tested samples in one field), with significant variation in the incidence between the two sampled sites. Xanthomonas oryzae incidence levels were mostly congruent with bacterial leaf streak (BLS) and bacterial leaf blight (BLB) symptom observations in the field. Low levels of Pantoea spp. were found while none of the 256 analysed samples was positive for Burkholderia or Pseudomonas fuscovaginae. Finally, many samples (up to 37.5% in one studied field) were positive for more than one bacterium (co-infection). Documenting co-infection levels are important because of their drastic consequences on epidemiology, evolution of pathogen populations and yield losses. The newly designed multiplex PCR for multiple bacterial pathogens of rice is a significant improvement for disease monitoring in the field, thus contributing to efficient disease control and food safety.


Asunto(s)
Burkholderia/genética , Coinfección/diagnóstico , ADN Bacteriano/análisis , Reacción en Cadena de la Polimerasa Multiplex/métodos , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Pseudomonas/genética , Xanthomonas/genética , Burkholderia/aislamiento & purificación , Burkholderia/patogenicidad , Burkina Faso/epidemiología , Coinfección/epidemiología , Coinfección/genética , ADN Bacteriano/genética , Incidencia , Pseudomonas/aislamiento & purificación , Pseudomonas/patogenicidad , Xanthomonas/aislamiento & purificación , Xanthomonas/patogenicidad
5.
Bio Protoc ; 10(17): e3740, 2020 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-33659400

RESUMEN

Bacteria blight diseases of rice due to several genera of pathogenic bacteria are one of the major constraints worldwide for rice production. The disease can be best managed through host plant resistance sources. For most of these bacteria such as Xanthomonas oryzae pv. oryzae, X. oryzae pv. oryzicola, Pseudomonas fuscovaginae, Burkholderia glumae, Burkholderia gladioli and Acidovorax avenae subsp. avenae, specific diagnostic techniques that include molecular and pathogenicity tests have been developed. However, for Pantoea spp., information on pathogenicity assay is very limited and protocols used are not uniform. Most authors use the leaf clipping method. In this paper, we describe the protocol for mechanical inoculation of rice seedlings aged 35 days. The method consists of infiltrating bacterial suspensions at concentrations of 108 CFU/ml, with a needleless syringe into the intercellular and interveinal spaces of rice leaves underside at about 4-5 cm below the leaf tip. This method can be used for a standardized pathogenicity assessment, germplasm resistance evaluation for identifying and characterizing resistance sources.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...