Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(9)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38732768

RESUMEN

Prior studies into fatigue crack growth (FCG) in fibre-reinforced polymer composites have shown that the two methodologies of Simple-Scaling and the Hartman-Schijve crack growth equation, which is based on relating the FCG rate to the Schwalbe crack driving force, Δκ, were able to account for differences observed in the measured delamination growth curves. The present paper reveals that these two approaches are also able to account for differences seen in plots of the rate of crack growth, da/dt, versus the range of the imposed stress intensity factor, ΔK, associated with fatigue tests on different grades of high-density polyethylene (HDPE) polymers, before and after electron-beam irradiation, and for tests conducted at different R ratios. Also, these studies are successfully extended to consider FCG in an acrylonitrile butadiene styrene (ABS) polymer that is processed using both conventional injection moulding and additive-manufactured (AM) 3D printing.

2.
Polymers (Basel) ; 16(3)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38337324

RESUMEN

The growth of cracks between plies, i.e., delamination, in continuous fibre polymer matrix composites under cyclic-fatigue loading in operational aircraft structures has always been a very important factor, which has the potential to significantly decrease the service life of such structures. Whilst current designs are based on a 'no growth' design philosophy, delamination growth can nevertheless arise in operational aircraft and compromise structural integrity. To this end, the present paper outlines experimental and data reduction procedures for continuous fibre polymer matrix composites, based on a linear elastic fracture mechanics approach, which are capable of (a) determining and computing the fatigue crack growth (FCG) rate, da/dN, curve; (b) providing two different methods for determining the mandated worst-case FCG rate curve; and (c) calculating the fatigue threshold limit, below which no significant FCG occurs. Two data reduction procedures are proposed, which are based upon the Hartman-Schijve approach and a novel simple-scaling approach. These two different methodologies provide similar worst-case curves, and both provide an upper bound for all the experimental data. The calculated FCG threshold values as determined from both methodologies are also in very good agreement.

3.
Philos Trans A Math Phys Eng Sci ; 379(2203): 20200436, 2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34148424

RESUMEN

The present paper describes detailed analyses of experimental data for the cyclic-fatigue behaviour of epoxy nanocomposite polymers. It has been shown that the data may be interpreted using the Hartman-Schijve relationship to yield a unique, 'master', linear relationship for each epoxy nanocomposite polymer. By fitting the experimental data to the Hartman-Schijve relationship, two key materials parameters may be deduced: (i) the term A, which may be thought of as the fatigue equivalent to the quasi-static value of the fracture energy, Gc, and (ii) the fatigue threshold value, [Formula: see text], below which no significant fatigue crack growth (FCG) occurs. It has then been established that the values of these parameters, together with the slope, n, and intercept, D, of the Hartman-Schijve master relationship, may be used (i) to compute the experimental results measured for the fatigue behaviour of the epoxy nanocomposite polymers, (ii) to understand the observed fracture and fatigue behaviour of these materials with respect to the structure of the epoxy nanocomposite polymers, and (iii) to deduce the 'upper-bound', i.e. 'worst-case', FCG rate curve which may be used by industry as a material development, material selection, design and service-life prediction tool when these epoxy nanocomposite polymers are used in engineering applications such as structural adhesives and/or as matrices in fibre-reinforced composites. This article is part of a discussion meeting issue 'A cracking approach to inventing new tough materials: fracture stranger than friction'.

4.
Materials (Basel) ; 13(6)2020 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-32210207

RESUMEN

Abstract: This paper firstly reveals that when assessing if a bonded joint meets the certification requirements inherent in MIL-STD-1530D and the US Joint Services Standard JSSG2006 it is necessary to ensure that: (a) There is no yielding at all in the adhesive layer at 115% of design limit load (DLL), and (b) that the joint must be able to withstand design ultimate load (DUL). Secondly, it is revealed that fatigue crack growth in both nano-reinforced epoxies, and structural adhesives can be captured using the Hartman-Schijve crack growth equation, and that the scatter in crack growth in adhesives can be modelled by allowing for variability in the fatigue threshold. Thirdly, a methodology was established for estimating a valid upper-bound curve, for cohesive failure in the adhesive, which encompasses all the experimental data and provides a conservative fatigue crack growth curve. Finally, it is shown that this upper-bound curve can be used to (a) compare and characterise structural adhesives, (b) determine/assess a "no growth" design (if required), (c) assess if a disbond in an in-service aircraft will grow and (d) to design and life in-service adhesively-bonded joints in accordance with the slow-growth approach contained in the United States Air Force (USAF) certification standard MIL-STD-1530D.

5.
ACS Appl Mater Interfaces ; 9(16): 14207-14215, 2017 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-28398032

RESUMEN

Highly flexible and deformable electrically conductive materials are vital for the emerging field of wearable electronics. To address the challenge of flexible materials with a relatively high electrical conductivity and a high elastic limit, we report a new and facile method to prepare porous polydimethylsiloxane/carbon nanofiber composites (denoted by p-PDMS/CNF). This method involves using sugar particles coated with carbon nanofibers (CNFs) as the templates. The resulting three-dimensional porous nanocomposites, with the CNFs embedded in the PDMS pore walls, exhibit a greatly increased failure strain (up to ∼94%) compared to that of the solid, neat PDMS (∼48%). The piezoresistive response observed under cyclic tension indicates that the unique microstructure provides the new nanocomposites with excellent durability. The electrical conductivity and the gauge factor of this new nanocomposite can be tuned by changing the content of the CNFs. The electrical conductivity increases, while the gauge factor decreases, upon increasing the content of CNFs. The gauge factor of the newly developed sensors can be adjusted from approximately 1.0 to 6.5, and the nanocomposites show stable piezoresistive performance with fast response time and good linearity in ln(R/R0) versus ln(L/L0) up to ∼70% strain. The tunable sensitivity and conductivity endow these highly stretchable nanocomposites with considerable potential for use as flexible strain sensors for monitoring the movement of human joints (where a relatively high gauge factor is needed) and also as flexible conductors for wearable electronics (where a relatively low gauge factor is required).

6.
J Mater Sci ; 52(12): 7323-7344, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-32226133

RESUMEN

A well-dispersed phase of exfoliated graphene oxide (GO) nanosheets was initially prepared in water. This was concentrated by centrifugation and was mixed with a liquid epoxy resin. The remaining water was removed by evaporation, leaving a GO dispersion in epoxy resin. A stoichiometric amount of an anhydride curing agent was added to this epoxy-resin mixture containing the GO nanosheets, which was then cured at 90 °C for 1 h followed by 160 °C for 2 h. A second thermal treatment step of 200 °C for 30 min was then undertaken to reduce further the GO in situ in the epoxy nanocomposite. An examination of the morphology of such nanocomposites containing reduced graphene oxide (rGO) revealed that a very good dispersion of rGO was achieved throughout the epoxy polymer. Various thermal and mechanical properties of the epoxy nanocomposites were measured, and the most noteworthy finding was a remarkable increase in the thermal conductivity when relatively very low contents of rGO were present. For example, a value of 0.25 W/mK was measured at 30 °C for the nanocomposite with merely 0.06 weight percentage (wt%) of rGO present, which represents an increase of ~40% compared with that of the unmodified epoxy polymer. This value represents one of the largest increases in the thermal conductivity per wt% of added rGO yet reported. These observations have been attributed to the excellent dispersion of rGO achieved in these nanocomposites made via this facile production method. The present results show that it is now possible to tune the properties of an epoxy polymer with a simple and viable method of GO addition.

7.
ACS Appl Mater Interfaces ; 8(37): 24853-61, 2016 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-27572689

RESUMEN

Strain sensors with high elastic limit and high sensitivity are required to meet the rising demand for wearable electronics. Here, we present the fabrication of highly sensitive strain sensors based on nanocomposites consisting of graphene aerogel (GA) and polydimethylsiloxane (PDMS), with the primary focus being to tune the sensitivity of the sensors by tailoring the cellular microstructure through controlling the manufacturing processes. The resultant nanocomposite sensors exhibit a high sensitivity with a gauge factor of up to approximately 61.3. Of significant importance is that the sensitivity of the strain sensors can be readily altered by changing the concentration of the precursor (i.e., an aqueous dispersion of graphene oxide) and the freezing temperature used to process the GA. The results reveal that these two parameters control the cell size and cell-wall thickness of the resultant GA, which may be correlated to the observed variations in the sensitivities of the strain sensors. The higher is the concentration of graphene oxide, then the lower is the sensitivity of the resultant nanocomposite strain sensor. Upon increasing the freezing temperature from -196 to -20 °C, the sensitivity increases and reaches a maximum value of 61.3 at -50 °C and then decreases with a further increase in freezing temperature to -20 °C. Furthermore, the strain sensors offer excellent durability and stability, with their piezoresistivities remaining virtually unchanged even after 10 000 cycles of high-strain loading-unloading. These novel findings pave the way to custom design strain sensors with a desirable piezoresistive behavior.

8.
Appl Nanosci ; 6(7): 1015-1022, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-32355586

RESUMEN

Graphene has excellent mechanical, thermal, optical and electrical properties and this has made it a prime target for use as a filler material in the development of multifunctional polymeric composites. However, several challenges need to be overcome to take full advantage of the aforementioned properties of graphene. These include achieving good dispersion and interfacial properties between the graphene filler and the polymeric matrix. In the present work, we report the thermal and mechanical properties of reduced graphene oxide/epoxy composites prepared via a facile, scalable and commercially viable method. Electron micrographs of the composites demonstrate that the reduced graphene oxide (rGO) is well dispersed throughout the composite. Although no improvements in glass transition temperature, tensile strength and thermal stability in air of the composites were observed, good improvements in thermal conductivity (about 36 %), tensile and storage moduli (more than 13 %) were recorded with the addition of 2 wt% of rGO.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...