Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Phys Lipids ; 262: 105397, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38740276

RESUMEN

Amantadine, a small amphilphic organic compound that consists of an adamantane backbone and an amino group, was first recognized as an antiviral in 1963 and received approval for prophylaxis against the type A influenza virus in 1976. Since then, it has also been used to treat Parkinson's disease-related dyskinesia and is being considered as a treatment for corona viruses. Since amantadine usually targets membrane-bound proteins, its interactions with the membrane are also thought to be important. Biological membranes are now widely understood to be laterally heterogeneous and certain proteins are known to preferentially co-localize within specific lipid domains. Does amantadine, therefore, preferentially localize in certain lipid composition domains? To address this question, we studied amantadine's interactions with phase separating membranes composed of cholesterol, DSPC (1,2-distearoyl-sn-glycero-3-phosphocholine), POPC (1-palmitoyl-2-oleoyl-glycero-3-phosphocholine), and DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine), as well as single-phase DPhPC (1,2-diphytanoyl-sn-glycero-3-phos-phocholine) membranes. From Langmuir trough and differential scanning calorimetry (DSC) measurements, we determined, respectively, that amantadine preferentially binds to disordered lipids, such as POPC, and lowers the phase transition temperature of POPC/DSPC/cholesterol mixtures, implying that amantadine increases membrane disorder. Further, using droplet interface bilayers (DIBs), we observed that amantadine disrupts DPhPC membranes, consistent with its disordering properties. Finally, we carried out molecular dynamics (MD) simulations on POPC/DSPC/cholesterol membranes with varying amounts of amantadine. Consistent with experiment, MD simulations showed that amantadine prefers to associate with disordered POPC-rich domains, domain boundaries, and lipid glycerol backbones. Since different proteins co-localize with different lipid domains, our results have possible implications as to which classes of proteins may be better targets for amantadine.

2.
Biophys J ; 122(6): 931-949, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36698312

RESUMEN

For the past 50 years, evidence for the existence of functional lipid domains has been steadily accumulating. Although the notion of functional lipid domains, also known as "lipid rafts," is now widely accepted, this was not always the case. This ambiguity surrounding lipid domains could be partly attributed to the fact that they are highly dynamic, nanoscopic structures. Since most commonly used techniques are sensitive to microscale structural features, it is therefore, not surprising that it took some time to reach a consensus regarding their existence. In this review article, we will discuss studies that have used techniques that are inherently sensitive to nanoscopic structural features (i.e., neutron scatting, nuclear magnetic resonance, and Förster resonance energy transfer). We will also mention techniques that may be of use in the future (i.e., cryoelectron microscopy, droplet interface bilayers, inelastic x-ray scattering, and neutron reflectometry), which can further our understanding of the different and unique physicochemical properties of nanoscopic lipid domains.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Membrana Dobles de Lípidos , Membrana Dobles de Lípidos/química , Microscopía por Crioelectrón
3.
Proc Natl Acad Sci U S A ; 119(50): e2212195119, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36469762

RESUMEN

Biological supramolecular assemblies, such as phospholipid bilayer membranes, have been used to demonstrate signal processing via short-term synaptic plasticity (STP) in the form of paired pulse facilitation and depression, emulating the brain's efficiency and flexible cognitive capabilities. However, STP memory in lipid bilayers is volatile and cannot be stored or accessed over relevant periods of time, a key requirement for learning. Using droplet interface bilayers (DIBs) composed of lipids, water and hexadecane, and an electrical stimulation training protocol featuring repetitive sinusoidal voltage cycling, we show that DIBs displaying memcapacitive properties can also exhibit persistent synaptic plasticity in the form of long-term potentiation (LTP) associated with capacitive energy storage in the phospholipid bilayer. The time scales for the physical changes associated with the LTP range between minutes and hours, and are substantially longer than previous STP studies, where stored energy dissipated after only a few seconds. STP behavior is the result of reversible changes in bilayer area and thickness. On the other hand, LTP is the result of additional molecular and structural changes to the zwitterionic lipid headgroups and the dielectric properties of the lipid bilayer that result from the buildup of an increasingly asymmetric charge distribution at the bilayer interfaces.


Asunto(s)
Potenciación a Largo Plazo , Fosfolípidos , Potenciación a Largo Plazo/fisiología , Fosfolípidos/química , Membrana Dobles de Lípidos/química , Plasticidad Neuronal/fisiología , Agua/química
4.
Phys Chem Chem Phys ; 23(34): 19083, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34612445

RESUMEN

Correction for 'Flexible lipid nanomaterials studied by NMR spectroscopy' by K. J. Mallikarjunaiah et al., Phys. Chem. Chem. Phys., 2019, 21, 18422-18457, DOI: .

5.
Front Chem ; 9: 642851, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33987167

RESUMEN

Cell membranes and their associated structures are dynamical supramolecular structures where different physiological processes take place. Detailed knowledge of their static and dynamic structures is therefore needed, to better understand membrane biology. The structure-function relationship is a basic tenet in biology and has been pursued using a range of different experimental approaches. In this review, we will discuss one approach, namely the use of neutron scattering techniques as applied, primarily, to model membrane systems composed of lipid bilayers. An advantage of neutron scattering, compared to other scattering techniques, is the differential sensitivity of neutrons to isotopes of hydrogen and, as a result, the relative ease of altering sample contrast by substituting protium for deuterium. This property makes neutrons an ideal probe for the study of hydrogen-rich materials, such as biomembranes. In this review article, we describe isotopic labeling studies of model and viable membranes, and discuss novel applications of neutron contrast variation in order to gain unique insights into the structure, dynamics, and molecular interactions of biological membranes. We specifically focus on how small-angle neutron scattering data is modeled using different contrast data and molecular dynamics simulations. We also briefly discuss neutron reflectometry and present a few recent advances that have taken place in neutron spin echo spectroscopy studies and the unique membrane mechanical data that can be derived from them, primarily due to new models used to fit the data.

6.
Symmetry (Basel) ; 13(8)2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35498375

RESUMEN

It is well known that the lipid distribution in the bilayer leaflets of mammalian plasma membranes (PMs) is not symmetric. Despite this, model membrane studies have largely relied on chemically symmetric model membranes for the study of lipid-lipid and lipid-protein interactions. This is primarily due to the difficulty in preparing stable, asymmetric model membranes that are amenable to biophysical studies. However, in the last 20 years, efforts have been made in producing more biologically faithful model membranes. Here, we review several recently developed experimental and computational techniques for the robust generation of asymmetric model membranes and highlight a new and particularly promising technique to study membrane asymmetry.

7.
Chem Phys Lipids ; 232: 104979, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32980352

RESUMEN

Short-wavelength collective molecular motions, also known as phonons, have recently attracted much interest in revealing dynamic properties of biological membranes through the use of neutron and X-ray scattering, infrared and Raman spectroscopies, and molecular dynamics simulations. Experimentally detecting unique vibrational patterns such as, shear phonon excitations, viscoelastic crossovers, transverse acoustic phonon gaps, and continuous and truncated optical phonon modes in cellular membranes, to name a few, has proven non-trivial. Here, we review recent advances in liquid thermodynamics that have resulted in the development of the phonon theory of liquids. The theory has important predictions regarding the shear vibrational spectra of fluids, namely the emergence of viscoelastic crossovers and transverse acoustic phonon gaps. Furthermore, we show that these vibrational patterns are common in soft (non-crystalline) materials, including, but not limited to liquids, colloids, liquid crystals (mesogens), block copolymers, and biological membranes. The existence of viscoelastic crossovers and acoustic phonon gaps define the self-diffusion properties of cellular membranes and provide a molecular picture of the transient nature of lipid rafts (Bolmatov et al., 2020). Importantly, the timescales (picoseconds) for the formation and dissolution of transient lipid rafts match the lifetime of the formation and breakdown of interfacial water hydrogen bonds. Apart from acoustic propagating phonon modes, biological membranes can also support more energetic non-propagating optical phonon excitations, also known as standing waves or breathing modes. Importantly, optical phonons can be truncated due to the existence of finite size nanodomains made up of strongly correlated lipid-cholesterol molecular pairs. These strongly coupled molecular pairs can serve as nucleation centers for the formation of stable rafts at larger length scales, due to correlations of spontaneous fluctuations (Onsager's regression hypothesis). Finally and importantly, molecular level viscoelastic crossovers, acoustic phonon gaps, and continuous and truncated optical phonon modes may offer insights as to how lipid-lipid and lipid-protein interactions enable biological function.


Asunto(s)
Microdominios de Membrana/metabolismo , Acústica , Cinética , Microdominios de Membrana/química
8.
Chem Phys Lipids ; 232: 104976, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32946808

RESUMEN

As early as the development of the fluid mosaic model for cellular membranes, researchers began observing the telltale signs of lateral heterogeneity. Over the decades this has led to the development of the lipid raft hypothesis and the ensuing controversy that has unfolded, as a result. Here, we review the physical concepts behind domain formation in lipid membranes, both of their structural and dynamic origins. This, then leads into a discussion of coarse-grained, phenomenological approaches that describe the wide range of phases associated with lipid lateral heterogeneity. We use these physical concepts to describe the interaction between raft-lipid species, such as long-chain saturated lipids, sphingomyelin, and cholesterol, and non-raft forming lipids, such as those with short acyl chains or unsaturated fatty acids. While debate has persisted on the biological relevance of lipid domains, recent research, described here, continues to identify biological roles for rafts and new experimental approaches have revealed the existence of lipid domains in living systems. Given the recent progress on both the biological and structural aspects of raft formation, the research area of membrane lateral heterogeneity will not only expand, but will continue to produce exciting results.


Asunto(s)
Microdominios de Membrana/química , Lípidos de la Membrana/química
9.
Chem Phys Lipids ; 231: 104910, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32492380

RESUMEN

Among the structurally diverse collection of lipids that comprise the membrane lipidome, polyunsaturated phospholipids are particularly vulnerable to oxidation. The role of α-tocopherol (vitamin E) is to protect this influential class of membrane phospholipid from oxidative damage. Whether lipid-lipid interactions play a role in supporting this function is an unanswered question. Here, we compare the molecular organization of polyunsaturated 1-[2H31]palmitoyl-2-docosahexaenoylphosphatidylethanolamine (PDPE-d31) and, as a control, monounsaturated 1-[2H31]palmitoyl-2-oleoylphosphatidylethanolamine (POPE-d31) mixed with sphingomyelin (SM) and α-tocopherol (α-toc) (2:2:1 mol) by solid-state 2H NMR spectroscopy. In both cases the effect of α-toc appears similar. Spectral moments reveal that the main chain melting transition of POPE-d31 and PDPE-d31 is broadened beyond detection. A spectral component attributed to the formation of inverted hexagonal HII phase in coexistence with lamellar Lα phase by POPE-d31 (20 %) and PDPE-d31 (18 %) is resolved following the addition of α-toc. Order parameters in the remaining Lα phase are increased slightly more for POPE-d31 (7%) than PDPE-d31 (4%). Preferential interaction with polyunsaturated phospholipid is not apparent in these results. The propensity for α-toc to form phase structure with negative curvature that is more tightly packed at the membrane surface, nevertheless, may restrict the contact of free radicals with lipid chains on phosphatidylethanolamine molecules that accumulate polyunsaturated fatty acids.


Asunto(s)
Membrana Dobles de Lípidos/química , Fosfatidiletanolaminas/química , Esfingomielinas/química , Vitamina E/química , Deuterio , Espectroscopía de Resonancia Magnética , Estructura Molecular
10.
J Phys Chem B ; 124(25): 5186-5200, 2020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-32468822

RESUMEN

We have determined the fluid bilayer structure of palmitoyl sphingomyelin (PSM) and stearoyl sphingomyelin (SSM) by simultaneously analyzing small-angle neutron and X-ray scattering data. Using a newly developed scattering density profile (SDP) model for sphingomyelin lipids, we report structural parameters including the area per lipid, total bilayer thickness, and hydrocarbon thickness, in addition to lipid volumes determined by densitometry. Unconstrained all-atom simulations of PSM bilayers at 55 °C using the C36 CHARMM force field produced a lipid area of 56 Å2, a value that is 10% lower than the one determined experimentally by SDP analysis (61.9 Å2). Furthermore, scattering form factors calculated from the unconstrained simulations were in poor agreement with experimental form factors, even though segmental order parameter (SCD) profiles calculated from the simulations were in relatively good agreement with SCD profiles obtained from NMR experiments. Conversely, constrained area simulations at 61.9 Å2 resulted in good agreement between the simulation and experimental scattering form factors, but not with SCD profiles from NMR. We discuss possible reasons for the discrepancies between these two types of data that are frequently used as validation metrics for molecular dynamics force fields.


Asunto(s)
Membrana Dobles de Lípidos , Esfingomielinas , Simulación de Dinámica Molecular , Estructura Molecular , Neutrones , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Rayos X
11.
Langmuir ; 36(18): 4908-4916, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32295345

RESUMEN

Vitamin E (α-tocopherol) and a range of other biological compounds have long been known to promote the HII (inverted hexagonal) phase in lipids. Now, it has been well established that purely hydrophobic lipids such as dodecane promote the HII phase by relieving extensive packing stress. They do so by residing deep within the hydrocarbon core. However, we argue from X-ray diffraction data obtained with 1-palmitoyl-2-oleoylphosphatidylcholine (POPE) and 1,2-dioleoylphosphatidylcholine (DOPE) that α-tocopherol promotes the HII phase by a different mechanism. The OH group on the chromanol moiety of α-tocopherol anchors it near the aqueous interface. This restriction combined with the relatively short length of α-tocopherol (as compared to DOPE and POPE) means that α-tocopherol promotes the HII phase by relieving compressive packing stress. This observation offers new insight into the nature of packing stress and lipid biophysics. With the deeper understanding of packing stress offered by our results, we also explore the role that molecular structure plays in the primary function of vitamin E, which is to prevent the oxidation of polyunsaturated membrane lipids.

12.
Phys Chem Chem Phys ; 21(34): 18422-18457, 2019 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-31410425

RESUMEN

Our review addresses how material properties emerge from atomistic-level interactions in the case of lipid membrane nanostructures. We summarize advances in solid-state nuclear magnetic resonance (NMR) spectroscopy in conjunction with alternative small-angle X-ray and neutron scattering methods for investigating lipid flexibility and dynamics. Solid-state 2H NMR is advantageous in that it provides atomistically resolved information about the order parameters and mobility of phospholipids within liquid-crystalline membranes. Bilayer deformation in response to external perturbations occurs over a range of length scales and allows one to disentangle how the bulk material properties emerge from atomistic forces. Examples include structural parameters such as the area per lipid and volumetric thickness together with the moduli for elastic deformation. Membranes under osmotic stress allow one to further distinguish collective undulations and quasielastic contributions from short-range noncollective effects. Our approach reveals how membrane elasticity involves length scales ranging from the bilayer dimensions on down to the size of the flexible lipid segments. Collective lipid interactions of the order of the bilayer thickness and less occur in the liquid-crystalline state. Emergence of lipid material properties is significant for models of lipid-protein forces acting on the mesoscopic length scale that play key roles in biomembrane functions.


Asunto(s)
Membrana Dobles de Lípidos/química , Espectroscopía de Resonancia Magnética/métodos , Nanoestructuras/química , Fosfolípidos/química , Membrana Celular/química , Elasticidad , Cristales Líquidos/química , Proteínas de la Membrana/química , Modelos Químicos , Neutrones , Presión Osmótica , Dispersión de Radiación , Termodinámica , Rayos X
13.
Biochim Biophys Acta Biomembr ; 1860(10): 1985-1993, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29730243

RESUMEN

Docosahexaenoic acid (DHA, 22:6) is an n-3 polyunsaturated fatty acid (n-3 PUFA) that influences immunological, metabolic, and neurological responses through complex mechanisms. One structural mechanism by which DHA exerts its biological effects is through its ability to modify the physical organization of plasma membrane signaling assemblies known as sphingomyelin/cholesterol (SM/chol)-enriched lipid rafts. Here we studied how DHA acyl chains esterified in the sn-2 position of phosphatidylcholine (PC) regulate the formation of raft and non-raft domains in mixtures with SM and chol on differing size scales. Coarse grained molecular dynamics simulations showed that 1-palmitoyl-2-docosahexaenoylphosphatylcholine (PDPC) enhances segregation into domains more than the monounsaturated control, 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC). Solid state 2H NMR and neutron scattering experiments provided direct experimental evidence that substituting PDPC for POPC increases the size of raft-like domains on the nanoscale. Confocal imaging of giant unilamellar vesicles with a non-raft fluorescent probe revealed that POPC had no influence on phase separation in the presence of SM/chol whereas PDPC drove strong domain segregation. Finally, monolayer compression studies suggest that PDPC increases lipid-lipid immiscibility in the presence of SM/chol compared to POPC. Collectively, the data across model systems provide compelling support for the emerging model that DHA acyl chains of PC lipids tune the size of lipid rafts, which has potential implications for signaling networks that rely on the compartmentalization of proteins within and outside of rafts.


Asunto(s)
Ácidos Docosahexaenoicos/fisiología , Microdominios de Membrana/química , Rastreo Diferencial de Calorimetría/métodos , Colesterol/química , Ácidos Docosahexaenoicos/química , Membrana Dobles de Lípidos/química , Espectroscopía de Resonancia Magnética , Microdominios de Membrana/fisiología , Simulación de Dinámica Molecular , Fosfatidilcolinas/química , Fosfatidilcolinas/fisiología , Fosfatidiletanolaminas/química , Esfingomielinas/química
14.
Biophys J ; 114(2): 380-391, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29401435

RESUMEN

Docosahexaenoic acid is an omega-3 polyunsaturated fatty acid that relieves the symptoms of a wide variety of chronic inflammatory disorders. The structural mechanism is not yet completely understood. Our focus here is on the plasma membrane as a site of action. We examined the molecular organization of [2H31]-N-palmitoylsphingomyelin (PSM-d31) mixed with 1-palmitoyl-2-docosahexaenoylphosphatylcholine (PDPC) or 1-palmitoyl-2-oleoylphosphatidylcholine (POPC), as a monounsaturated control, and cholesterol (chol) (1:1:1 mol) in a model membrane by solid-state 2H NMR. The spectra were analyzed in terms of segregation into ordered SM-rich/chol-rich (raftlike) and disordered PC-rich/chol-poor (nonraft) domains that are nanoscale in size. An increase in the size of domains is revealed when POPC was replaced by PDPC. Spectra that are single-component, attributed to fast exchange between domains (<45 nm), for PSM-d31 mixed with POPC and chol become two-component, attributed to slow exchange between domains (r > 30 nm), for PSM-d31 mixed with PDPC and chol. The resolution of separate signals from PSM-d31, and correspondingly from [3α-2H1]cholesterol (chol-d1) and 1-[2H31]palmitoyl-2-docosahexaenoylphosphatidylcholine (PDPC-d31), in raftlike and nonraft domains enabled us to determine the composition of the domains in the PDPC-containing membrane. Most of the lipid (28% SM, 29% chol, and 23% PDPC with respect to total lipid at 30°C) was found in the raftlike domain. Despite substantial infiltration of PDPC into raftlike domains, there appears to be minimal effect on the order of SM, implying the existence of internal structure that limits contact between SM and PDPC. Our results suggest a significant refinement to the model by which DHA regulates the architecture of ordered, sphingolipid-chol-enriched domains (rafts) in membranes.


Asunto(s)
Ácidos Docosahexaenoicos/farmacología , Microdominios de Membrana/química , Microdominios de Membrana/efectos de los fármacos , Espectroscopía de Resonancia Magnética , Lípidos de la Membrana/análisis
15.
Biochim Biophys Acta Biomembr ; 1860(5): 1125-1134, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29305832

RESUMEN

Eicosapentaenoic (EPA, 20:5), docosahexaenoic (DHA, 22:6) and docosapentaenoic (DPA, 22:5) acids are omega-3 polyunsaturated fatty acids (n-3 PUFA) obtained from dietary consumption of fish oils that potentially alleviate the symptoms of a range of chronic diseases. We focus here on the plasma membrane as a site of action and investigate how they affect molecular organization when taken up into a phospholipid. All atom MD simulations were performed to compare 1-stearoyl-2-eicosapentaenoylphosphatylcholine (EPA-PC, 18:0-20:5PC), 1-stearoyl-2-docosahexaenoylphosphatylcholine (DHA-PC, 18:0-22:6PC), 1-stearoyl-2-docosapentaenoylphosphatylcholine (DPA-PC, 18:0-22:5PC) and, as a monounsaturated control, 1-stearoyl-2-oleoylphosphatidylcholine (OA-PC, 18:0-18:1PC) bilayers. They were run in the absence and presence of 20mol% cholesterol. Multiple double bonds confer high disorder on all three n-3 PUFA. The different number of double bonds and chain length for each n-3 PUFA moderates the reduction in membrane order exerted (compared to OA-PC, S¯CD=0.152). EPA-PC (S¯CD=0.131) is most disordered, while DPA-PC (S¯CD=0.140) is least disordered. DHA-PC (S¯CD=0.139) is, within uncertainty, the same as DPA-PC. Following the addition of cholesterol, order in EPA-PC (S¯CD=0.169), DHA-PC (S¯CD=0.178) and DPA-PC (S¯CD=0.182) is increased less than in OA-PC (S¯CD=0.214). The high disorder of n-3 PUFA is responsible, preventing the n-3 PUFA-containing phospholipids from packing as close to the rigid sterol as the monounsaturated control. Our findings establish that EPA, DHA and DPA are not equivalent in their interactions within membranes, which possibly contributes to differences in clinical efficacy.


Asunto(s)
Membrana Celular/metabolismo , Ácidos Docosahexaenoicos/farmacocinética , Ácido Eicosapentaenoico/farmacocinética , Ácidos Grasos Omega-3/química , Ácidos Grasos Omega-3/farmacocinética , Ácidos Grasos Insaturados/farmacocinética , Membrana Celular/química , Colesterol/metabolismo , Ácidos Docosahexaenoicos/química , Ácido Eicosapentaenoico/química , Ácidos Grasos Omega-3/clasificación , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Insaturados/química , Fluidez de la Membrana , Modelos Moleculares , Conformación Molecular , Simulación de Dinámica Molecular
16.
Soft Matter ; 12(47): 9417-9428, 2016 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-27801465

RESUMEN

Cholesterol is an essential biomolecule of animal cell membranes, and an important precursor for the biosynthesis of certain hormones and vitamins. It is also thought to play a key role in cell signaling processes associated with functional plasma membrane microdomains (domains enriched in cholesterol), commonly referred to as rafts. In all of these diverse biological phenomena, the transverse location of cholesterol in the membrane is almost certainly an important structural feature. Using a combination of neutron scattering and solid-state 2H NMR, we have determined the location and orientation of cholesterol in phosphatidylcholine (PC) model membranes having fatty acids of different lengths and degrees of unsaturation. The data establish that cholesterol reorients rapidly about the bilayer normal in all the membranes studied, but is tilted and forced to span the bilayer midplane in the very thin bilayers. The possibility that cholesterol lies flat in the middle of bilayers, including those made from PC lipids containing polyunsaturated fatty acids (PUFAs), is ruled out. These results support the notion that hydrophobic thickness is the primary determinant of cholesterol's location in membranes.


Asunto(s)
Membrana Celular/química , Colesterol/química , Membrana Dobles de Lípidos/química , Microdominios de Membrana/química , Fosfatidilcolinas/química , Simulación de Dinámica Molecular , Saccharomyces cerevisiae
17.
J Nutr ; 146(7): 1283-9, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27306897

RESUMEN

BACKGROUND: Plasma membrane organization is a mechanistic target of n-3 (ω-3) polyunsaturated fatty acids. Previous studies show that eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) differentially disrupt plasma membrane molecular order to enhance the frequency and function of B lymphocytes. However, it is not known whether EPA and DHA affect the plasma membrane organization of B lymphomas differently to influence their function. OBJECTIVE: We tested whether EPA and DHA had different effects on membrane order in B lymphomas and liposomes and studied their effects on B-lymphoma growth. METHODS: B lymphomas were treated with 25 µmol EPA, DHA, or serum albumin control/L for 24 h. Membrane order was measured with fluorescence polarization, and cellular fatty acids (FAs) were analyzed with GC. Growth was quantified with a viability assay. (2)H nuclear magnetic resonance (NMR) studies were conducted on deuterated phospholipid bilayers. RESULTS: Treating Raji, Ramos, and RPMI lymphomas for 24 h with 25 µmol EPA or DHA/L lowered plasma membrane order by 10-40% relative to the control. There were no differences between EPA and DHA on membrane order for the 3 cell lines. FA analyses revealed complex changes in response to EPA or DHA treatment and a large fraction of EPA was converted to docosapentaenoic acid (DPA; 22:5n-3). NMR studies, which were used to understand why EPA and DHA had similiar membrane effects, showed that phospholipids containing DPA, similar to DHA, were more ordered than those containing EPA. Finally, treating B lymphomas with 25 µmol EPA or DHA/L did not increase the frequency of B lymphomas compared with controls. CONCLUSIONS: The results establish that 25 µmol EPA and DHA/L equally disrupt membrane order and do not promote B lymphoma growth. The data open a new area of investigation, which is how EPA's conversion to DPA substantially moderates its influence on membrane properties.


Asunto(s)
Membrana Celular/fisiología , Ácido Eicosapentaenoico/metabolismo , Ácidos Grasos Insaturados/metabolismo , Linfoma de Células B/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Línea Celular Tumoral , Humanos
18.
Biophys J ; 109(8): 1608-18, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26488652

RESUMEN

The presumptive function for alpha-tocopherol (αtoc) in membranes is to protect polyunsaturated lipids against oxidation. Although the chemistry of the process is well established, the role played by molecular structure that we address here with atomistic molecular-dynamics simulations remains controversial. The simulations were run in the constant particle NPT ensemble on hydrated lipid bilayers composed of SDPC (1-stearoyl-2-docosahexaenoylphosphatidylcholine, 18:0-22:6PC) and SOPC (1-stearoyl-2-oleoylphosphatidylcholine, 18:0-18:1PC) in the presence of 20 mol % αtoc at 37°C. SDPC with SA (stearic acid) for the sn-1 chain and DHA (docosahexaenoic acid) for the sn-2 chain is representative of polyunsaturated phospholipids, while SOPC with OA (oleic acid) substituted for the sn-2 chain serves as a monounsaturated control. Solid-state (2)H nuclear magnetic resonance and neutron diffraction experiments provide validation. The simulations demonstrate that high disorder enhances the probability that DHA chains at the sn-2 position in SDPC rise up to the bilayer surface, whereby they encounter the chromanol group on αtoc molecules. This behavior is reflected in the van der Waals energy of interaction between αtoc and acyl chains, and illustrated by density maps of distribution for acyl chains around αtoc molecules that were constructed. An ability to more easily penetrate deep into the bilayer is another attribute conferred upon the chromanol group in αtoc by the high disorder possessed by DHA. By examining the trajectory of single molecules, we found that αtoc flip-flops across the SDPC bilayer on a submicrosecond timescale that is an order-of-magnitude greater than in SOPC. Our results reveal mechanisms by which the sacrificial hydroxyl group on the chromanol group can trap lipid peroxyl radicals within the interior and near the surface of a polyunsaturated membrane. At the same time, water-soluble reducing agents that regenerate αtoc can access the chromanol group when it locates at the surface.


Asunto(s)
Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Oxidación-Reducción , Fosfolípidos/química , alfa-Tocoferol/química , Peroxidación de Lípido , Espectroscopía de Resonancia Magnética , Difracción de Neutrones
19.
Biochim Biophys Acta ; 1848(1 Pt B): 211-9, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24820775

RESUMEN

Marine long chain n-3 polyunsaturated fatty acids (PUFA), eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), are bioactive molecules with clinical applications for the treatment of several diseases. In order to effectively translate these molecules into clinical trials, it is essential to establish the underlying mechanisms for n-3 PUFA. This review focuses on efforts to understand how EPA and DHA, upon incorporation into plasma membrane phospholipids, remodel the molecular organization of cholesterol-enriched lipid microdomains. We first give an overview of results from studies on cells. Paradoxical data generated from mouse studies indicate that EPA and DHA incorporate into lipid microdomains, yet in spite of their high disorder increase molecular order within the domain. We then spotlight the utility of solid state (2)H NMR spectroscopy of model bilayers as a tool for elucidating underlying mechanisms by which n-3 PUFA-containing phospholipids can regulate molecular organization of lipid microdomains. Evidence is presented demonstrating that n-3 PUFA exert differential structural effects when incorporated into phosphatidylethanolamines (PE) compared to phosphatidylcholines (PC), which explains some of the conflicting results observed in vivo. Recent studies that reveal differences between the interactions of EPA and DHA with lipid microdomains, potentially reflecting a differential in bioactivity, are finally described. Overall, we highlight the notion that NMR experiments on model membranes suggest a complex model by which n-3 PUFA reorganize lipid microdomains in vivo.


Asunto(s)
Membrana Celular/química , Ácidos Grasos Insaturados/química , Espectroscopía de Resonancia Magnética/métodos , Animales , Colesterol/química , Microdominios de Membrana/química , Ratones , Fosfolípidos/química , Esfingomielinas/química
20.
Biochim Biophys Acta ; 1848(1 Pt B): 246-59, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24946141

RESUMEN

This article reviews the application of solid-state ²H nuclear magnetic resonance (NMR) spectroscopy for investigating the deformation of lipid bilayers at the atomistic level. For liquid-crystalline membranes, the average structure is manifested by the segmental order parameters (SCD) of the lipids. Solid-state ²H NMR yields observables directly related to the stress field of the lipid bilayer. The extent to which lipid bilayers are deformed by osmotic pressure is integral to how lipid-protein interactions affect membrane functions. Calculations of the average area per lipid and related structural properties are pertinent to bilayer remodeling and molecular dynamics (MD) simulations of membranes. To establish structural quantities, such as area per lipid and volumetric bilayer thickness, a mean-torque analysis of ²H NMR order parameters is applied. Osmotic stress is introduced by adding polymer solutions or by gravimetric dehydration, which are thermodynamically equivalent. Solid-state NMR studies of lipids under osmotic stress probe membrane interactions involving collective bilayer undulations, order-director fluctuations, and lipid molecular protrusions. Removal of water yields a reduction of the mean area per lipid, with a corresponding increase in volumetric bilayer thickness, by up to 20% in the liquid-crystalline state. Hydrophobic mismatch can shift protein states involving mechanosensation, transport, and molecular recognition by G-protein-coupled receptors. Measurements of the order parameters versus osmotic pressure yield the elastic area compressibility modulus and the corresponding bilayer thickness at an atomistic level. Solid-state ²H NMR thus reveals how membrane deformation can affect protein conformational changes within the stress field of the lipid bilayer.


Asunto(s)
Deuterio , Membrana Dobles de Lípidos/química , Espectroscopía de Resonancia Magnética/métodos , Elasticidad , Simulación de Dinámica Molecular , Presión Osmótica , Conformación Proteica , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...