Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 560: 179-185, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34000467

RESUMEN

The gastrointestinal tract of the human body is characterized by a highly unique oxygenation profile, where the oxygen concentration decreases toward the lower tract, not found in other organs. The epithelial cells lining the mucosa where Helicobacter pylori resides exist in a relatively low oxygen environment with a partial pressure of oxygen (pO2) below 58 mm Hg. However, the contribution of hypoxia to H. pylori-induced host immune responses remains elusive. In this study, we investigated the inflammasome activation induced by H. pylori under hypoxic, compared with normoxic, conditions. Our results indicated that the activation of caspase-1 and the subsequent secretion of IL-1ß were significantly enhanced in infected macrophages under 1% oxygen, compared with those under a normal 20% oxygen concentration. The proliferation of H. pylori under aerobic conditions was 3-fold higher than under microaerophilic conditions, and the bacterial growth was more dependent on CO2 than on oxygen. Also, we observed that hypoxia-induced cytokine production as well as HIF-1α accumulation were both decreased when murine macrophages were treated with an HIF-1α inhibitor, KC7F2. Furthermore, hypoxia enhanced the phagocytosis of H. pylori in an HIF-1α-dependent manner. IL-1ß production was also affected by the HIF-1α inhibitor in a mouse infection model, suggesting the important role of HIF-1α in the host defense system during infection with H. pylori. Our findings provide new insights into the intersection of low oxygen, H. pylori, and inflammation and disclosed how H. pylori under low oxygen tension can aggravate IL-1ß secretion.


Asunto(s)
Infecciones por Helicobacter/inmunología , Helicobacter pylori/fisiología , Inflamasomas/metabolismo , Animales , Hipoxia de la Célula , Células Cultivadas , Citocinas/metabolismo , Infecciones por Helicobacter/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Inflamación/inmunología , Macrófagos/fisiología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/fisiología , Fagocitosis
2.
Nat Commun ; 12(1): 2085, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33837194

RESUMEN

Long-term infection of the stomach with Helicobacter pylori can cause gastric cancer. However, the mechanisms by which the bacteria adapt to the stomach environment are poorly understood. Here, we show that a small non-coding RNA of H. pylori (HPnc4160, also known as IsoB or NikS) regulates the pathogen's adaptation to the host environment as well as bacterial oncoprotein production. In a rodent model of H. pylori infection, the genomes of bacteria isolated from the stomach possess an increased number of T-repeats upstream of the HPnc4160-coding region, and this leads to reduced HPnc4160 expression. We use RNA-seq and iTRAQ analyses to identify eight targets of HPnc4160, including genes encoding outer membrane proteins and oncoprotein CagA. Mutant strains with HPnc4160 deficiency display increased colonization ability of the mouse stomach, in comparison with the wild-type strain. Furthermore, HPnc4160 expression is lower in clinical isolates from gastric cancer patients than in isolates derived from non-cancer patients, while the expression of HPnc4160's targets is higher in the isolates from gastric cancer patients. Therefore, the small RNA HPnc4160 regulates H. pylori adaptation to the host environment and, potentially, gastric carcinogenesis.


Asunto(s)
Adaptación Fisiológica/genética , Infecciones por Helicobacter/patología , Helicobacter pylori/fisiología , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido/metabolismo , Neoplasias Gástricas/microbiología , Animales , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Carcinogénesis , Modelos Animales de Enfermedad , Mucosa Gástrica/microbiología , Mucosa Gástrica/patología , Regulación Bacteriana de la Expresión Génica/fisiología , Genoma Bacteriano/genética , Gerbillinae , Infecciones por Helicobacter/microbiología , Helicobacter pylori/aislamiento & purificación , Helicobacter pylori/patogenicidad , Interacciones Microbiota-Huesped , Humanos , Masculino , Mutación , ARN Bacteriano/genética , ARN Pequeño no Traducido/genética , RNA-Seq , Neoplasias Gástricas/patología
3.
Microbiol Resour Announc ; 9(18)2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32354967

RESUMEN

Helicobacter pylori ATCC 43504 is a type strain isolated from a gastric cancer patient in Australia and is commonly used for pathogenicity studies. In this study, we report the complete genome sequence of a strain that can infect gerbils. The data provide a basis for future H. pylori research.

4.
Immunity ; 52(4): 635-649.e4, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32240600

RESUMEN

The intestinal microbiota shapes and directs immune development locally and systemically, but little is known about whether commensal microbes in the stomach can impact their immunological microenvironment. Here, we report that group 2 innate lymphoid cells (ILC2s) were the predominant ILC subset in the stomach and show that their homeostasis and effector functions were regulated by local commensal communities. Microbes elicited interleukin-7 (IL-7) and IL-33 production in the stomach, which in turn triggered the propagation and activation of ILC2. Stomach ILC2s were also rapidly induced following infection with Helicobacter pylori. ILC2-derived IL-5 resulted in the production of IgA, which coated stomach bacteria in both specific pathogen-free (SPF) and H. pylori-infected mice. Our study thus identifies ILC2-dependent IgA response that is regulated by the commensal microbiota, which is implicated in stomach protection by eliminating IgA-coated bacteria including pathogenic H. pylori.


Asunto(s)
Microbioma Gastrointestinal/inmunología , Infecciones por Helicobacter/inmunología , Helicobacter pylori/patogenicidad , Inmunoglobulina A/biosíntesis , Interleucina-5/inmunología , Estómago/inmunología , Subgrupos de Linfocitos T/inmunología , Animales , Linaje de la Célula/genética , Linaje de la Célula/inmunología , Femenino , Regulación de la Expresión Génica , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/patología , Helicobacter pylori/crecimiento & desarrollo , Helicobacter pylori/inmunología , Inmunidad Humoral , Inmunidad Innata , Interleucina-33/genética , Interleucina-33/inmunología , Interleucina-5/genética , Interleucina-7/genética , Interleucina-7/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Cultivo Primario de Células , Transducción de Señal , Estómago/microbiología , Simbiosis/inmunología , Subgrupos de Linfocitos T/clasificación
5.
Biochem Biophys Res Commun ; 525(3): 806-811, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32164943

RESUMEN

Helicobacter pylori, a pathogenic bacterium that colonizes in the human stomach, harbors DNA repair genes to counter the gastric environment during chronic infection. In addition, H. pylori adapts to the host environment by undergoing antigenic phase variation caused by genomic mutations. The emergence of mutations in nucleotide sequences is one of the major factors underlying drug resistance and genetic diversity in bacteria. However, it is not clear how DNA repair genes contribute to driving the genetic change of H. pylori during chronic infection. To elucidate the physiological roles of DNA repair genes, we generated DNA repair-deficient strains of H. pylori (ΔuvrA, ΔuvrB, ΔruvA, Δnth, ΔmutY, ΔmutS, and Δung). We performed susceptibility testing to rifampicin in vitro and found that ΔmutY exhibited the highest mutation frequency among the mutants. The number of bacteria colonizing the stomach was significantly lower with ΔmutY strain compared with wild-type strains in a Mongolian gerbil model of H. pylori infection. Furthermore, we performed a genomic sequence analysis of the strains isolated from the Mongolian gerbil stomachs eight weeks after infection. We found that the isolated ΔmutY strains exhibited a high frequency of spontaneous G:C to T:A mutations. However, the frequency of phase variations in the ΔmutY strain was almost similar to the wild-type strain. These results suggest that MutY may play a role in modes of gastric environmental adaptation distinct from phase variation.


Asunto(s)
Adaptación Fisiológica , ADN Glicosilasas/genética , Helicobacter pylori/genética , Mutación/genética , Estómago/microbiología , Animales , Proteínas Bacterianas/genética , Reparación del ADN/genética , Modelos Animales de Enfermedad , Gerbillinae , Infecciones por Helicobacter/microbiología , Helicobacter pylori/crecimiento & desarrollo , Tasa de Mutación , FN-kappa B/metabolismo
6.
Sci Rep ; 10(1): 3251, 2020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-32094510

RESUMEN

Group A Streptococcus (GAS) secretes deoxyribonucleases and evades neutrophil extracellular killing by degrading neutrophil extracellular traps (NETs). However, limited information is currently available on the interaction between GAS and NETs in the pathogenicity of GAS pharyngitis. In this study, we modified a mouse model of GAS pharyngitis and revealed an essential role for DNase in this model. After intranasal infection, the nasal mucosa was markedly damaged near the nasal cavity, at which GAS was surrounded by neutrophils. When neutrophils were depleted from mice, GAS colonization and damage to the nasal mucosa were significantly decreased. Furthermore, mice infected with deoxyribonuclease knockout GAS mutants (∆spd, ∆endA, and ∆sdaD2) survived significantly better than those infected with wild-type GAS. In addition, the supernatants of digested NETs enhanced GAS-induced cell death in vitro. Collectively, these results indicate that NET degradation products may contribute to the establishment of pharyngeal infection caused by GAS.


Asunto(s)
ADN/química , Trampas Extracelulares , Faringitis/microbiología , Faringe/microbiología , Infecciones Estreptocócicas/patología , Animales , Apoptosis , Desoxirribonucleasas/metabolismo , Modelos Animales de Enfermedad , Humanos , Macrófagos/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Neutrófilos/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Streptococcus pyogenes
7.
Front Microbiol ; 10: 2406, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31708887

RESUMEN

Clostridium perfringens (C. perfringens) is Gram-positive anaerobic, spore-forming rod-shaped bacterial pathogen that is widely distributed in nature. This bacterium is known as the causative agent of a foodborne illness and of gas gangrene. While the major virulence factors are the α-toxin and perfringolysin O (PFO) produced by type A strains of C. perfringens, the precise mechanisms of how these toxins induce the development of gas gangrene are still not well understood. In this study, we analyzed the host responses to these toxins, including inflammasome activation, using mouse bone marrow-derived macrophages (BMDMs). Our results demonstrated, for the first time, that C. perfringens triggers the activation of caspase-1 and release of IL-1ß through PFO-mediated inflammasome activation via a receptor of the Nod-like receptor (NLR) family, pyrin-domain containing 3 protein (NLRP3). The PFO-mediated inflammasome activation was not induced in the cultured myocytes. We further analyzed the functional roles of the toxins in inducing myonecrosis in a mouse model of gas gangrene. Although the myonecrosis was found to be largely dependent on the α-toxin, PFO also induced myonecrosis to a lesser extent, again through the mediation of NLRP3. These results suggest that C. perfringens triggers inflammatory responses via PFO-mediated inflammasome activation via NLRP3, and that this axis contributes in part to the progression of gas gangrene. Our findings provide a novel insight into the molecular mechanisms underlying the pathogenesis of gas gangrene caused by C. perfringens.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...