Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Microbiol ; 9(3): 684-697, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38413834

RESUMEN

Although autophagy sequesters Mycobacterium tuberculosis (Mtb) in in vitro cultured macrophages, loss of autophagy in macrophages in vivo does not result in susceptibility to a standard low-dose Mtb infection until late during infection, leaving open questions regarding the protective role of autophagy during Mtb infection. Here we report that loss of autophagy in lung macrophages and dendritic cells results in acute susceptibility of mice to high-dose Mtb infection, a model mimicking active tuberculosis. Rather than observing a role for autophagy in controlling Mtb replication in macrophages, we find that autophagy suppresses macrophage responses to Mtb that otherwise result in accumulation of myeloid-derived suppressor cells and subsequent defects in T cell responses. Our finding that the pathogen-plus-susceptibility gene interaction is dependent on dose has important implications both for understanding how Mtb infections in humans lead to a spectrum of outcomes and for the potential use of autophagy modulators in clinical medicine.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Animales , Ratones , Linfocitos T , Macrófagos/microbiología , Mycobacterium tuberculosis/fisiología , Autofagia
2.
bioRxiv ; 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37873329

RESUMEN

Polymorphisms in the IRGM gene are associated with susceptibility to tuberculosis in humans. A murine ortholog of Irgm, Irgm1, is also essential for controlling Mycobacterium tuberculosis (Mtb) infection in mice. Multiple processes have been associated with IRGM1 activity that could impact the host response to Mtb infection, including roles in autophagy-mediated pathogen clearance and expansion of activated T cells. However, what IRGM1-mediated pathway is necessary to control Mtb infection in vivo and the mechanistic basis for this control remains unknown. We dissected the contribution of IRGM1 to immune control of Mtb pathogenesis in vivo and found that Irgm1 deletion leads to higher levels of IRGM3-dependent type I interferon signaling. The increased type I interferon signaling precludes T cell expansion during Mtb infection. The absence of Mtb-specific T cell expansion in Irgm1-/- mice results in uncontrolled Mtb infection in neutrophils and alveolar macrophages, which directly contributes to susceptibility to infection. Together, our studies reveal that IRGM1 is required to promote T cell-mediated control of Mtb infection in neutrophils, which is essential for the survival of Mtb-infected mice. These studies also uncover new ways type I interferon signaling can impact TH1 immune responses.

3.
PLoS Biol ; 21(6): e3002159, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37319285

RESUMEN

The immune response to Mycobacterium tuberculosis infection determines tuberculosis disease outcomes, yet we have an incomplete understanding of what immune factors contribute to a protective immune response. Neutrophilic inflammation has been associated with poor disease prognosis in humans and in animal models during M. tuberculosis infection and, therefore, must be tightly regulated. ATG5 is an essential autophagy protein that is required in innate immune cells to control neutrophil-dominated inflammation and promote survival during M. tuberculosis infection; however, the mechanistic basis for how ATG5 regulates neutrophil recruitment is unknown. To interrogate what innate immune cells require ATG5 to control neutrophil recruitment during M. tuberculosis infection, we used different mouse strains that conditionally delete Atg5 in specific cell types. We found that ATG5 is required in CD11c+ cells (lung macrophages and dendritic cells) to control the production of proinflammatory cytokines and chemokines during M. tuberculosis infection, which would otherwise promote neutrophil recruitment. This role for ATG5 is autophagy dependent, but independent of mitophagy, LC3-associated phagocytosis, and inflammasome activation, which are the most well-characterized ways that autophagy proteins regulate inflammation. In addition to the increased proinflammatory cytokine production from macrophages during M. tuberculosis infection, loss of ATG5 in innate immune cells also results in an early induction of TH17 responses. Despite prior published in vitro cell culture experiments supporting a role for autophagy in controlling M. tuberculosis replication in macrophages, the effects of autophagy on inflammatory responses occur without changes in M. tuberculosis burden in macrophages. These findings reveal new roles for autophagy proteins in lung resident macrophages and dendritic cells that are required to suppress inflammatory responses that are associated with poor control of M. tuberculosis infection.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Animales , Ratones , Humanos , Infiltración Neutrófila , Macrófagos/fisiología , Tuberculosis/microbiología , Autofagia , Mycobacterium tuberculosis/fisiología , Inflamación
4.
Annu Rev Pathol ; 16: 377-408, 2021 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-33497258

RESUMEN

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), remains a leading cause of death due to infection in humans. To more effectively combat this pandemic, many aspects of TB control must be developed, including better point of care diagnostics, shorter and safer drug regimens, and a protective vaccine. To address all these areas of need, better understanding of the pathogen, host responses, and clinical manifestations of the disease is required. Recently, the application of cutting-edge technologies to the study of Mtb pathogenesis has resulted in significant advances in basic biology, vaccine development, and antibiotic discovery. This leaves us in an exciting era of Mtb research in which our understanding of this deadly infection is improving at a faster rate than ever, and renews hope in our fight to end TB. In this review, we reflect on what is known regarding Mtb pathogenesis, highlighting recent breakthroughs that will provide leverage for the next leaps forward in the field.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Antituberculosos/uso terapéutico , Humanos , Mycobacterium tuberculosis/patogenicidad
5.
Immunity ; 53(3): 471-473, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32937145

RESUMEN

Although programmed cell death can control intracellular bacterial replication, the role of cell death during systemic Salmonella infection remained elusive. In this issue of Immunity, Doerflinger et al. discover a critical but overlapping role for cell death associated caspases during Salmonella infection.


Asunto(s)
Infecciones por Salmonella , Apoptosis , Caspasas , Muerte Celular , Humanos , Salmonella
6.
mSphere ; 4(5)2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31511370

RESUMEN

Antibiotic resistance is a global crisis that threatens our ability to treat bacterial infections, such as tuberculosis, caused by Mycobacterium tuberculosis Of the 10 million cases of tuberculosis in 2017, approximately 19% of new cases and 43% of previously treated cases were caused by strains of M. tuberculosis resistant to at least one frontline antibiotic. There is a clear need for new therapies that target these genetically resistant strains. Here, we report the discovery of a new series of antimycobacterial compounds, 4-amino-thieno[2,3-d]pyrimidines, that potently inhibit the growth of M. tuberculosis To elucidate the mechanism by which these compounds inhibit M. tuberculosis, we selected for mutants resistant to a representative 4-amino-thieno[2,3-d]pyrimidine and sequenced these strains to identify the mutations that confer resistance. We isolated a total of 12 resistant mutants, each of which harbored a nonsynonymous mutation in the gene qcrB, which encodes a subunit of the electron transport chain (ETC) enzyme cytochrome bc1 oxidoreductase, leading us to hypothesize that 4-amino-thieno[2,3-d]pyrimidines target this enzyme complex. We found that addition of 4-amino-thieno[2,3-d]pyrimidines to M. tuberculosis cultures resulted in a decrease in ATP levels, supporting our model that these compounds inhibit the M. tuberculosis ETC. Furthermore, 4-amino-thieno[2,3-d]pyrimidines had enhanced activity against a mutant of M. tuberculosis deficient in cytochrome bd oxidase, which is a hallmark of cytochrome bc1 inhibitors. Therefore, 4-amino-thieno[2,3-d]pyrimidines represent a novel series of QcrB inhibitors that build on the growing number of chemical scaffolds that are able to inhibit the mycobacterial cytochrome bc1 complex.IMPORTANCE The global tuberculosis (TB) epidemic has been exacerbated by the rise in drug-resistant TB cases worldwide. To tackle this crisis, it is necessary to identify new vulnerable drug targets in Mycobacterium tuberculosis, the causative agent of TB, and develop compounds that can inhibit the bacterium through novel mechanisms of action. The QcrB subunit of the electron transport chain enzyme cytochrome bc1 has recently been validated to be a potential drug target. In the current work, we report the discovery of a new class of QcrB inhibitors, 4-amino-thieno[2,3-d]pyrimidines, that potently inhibit M. tuberculosis growth in vitro These compounds are chemically distinct from previously reported QcrB inhibitors, and therefore, 4-amino-thieno[2,3-d]pyrimidines represent a new scaffold that can be exploited to inhibit this drug target.


Asunto(s)
Antibióticos Antituberculosos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Complejo III de Transporte de Electrones/antagonistas & inhibidores , Mycobacterium tuberculosis/efectos de los fármacos , Pirimidinas/farmacología , Antibióticos Antituberculosos/química , Proteínas Bacterianas/genética , Descubrimiento de Drogas , Complejo III de Transporte de Electrones/genética , Pruebas de Sensibilidad Microbiana , Mutación , Mycobacterium tuberculosis/genética , Pirimidinas/química
7.
J Biol Chem ; 294(36): 13344-13354, 2019 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-31320476

RESUMEN

Members of the Acinetobacter baumannii-calcoaceticus complex are nosocomial pathogens frequently causing multidrug-resistant infections that are increasing at alarming rates. A. baumannii has become the Gram-negative bacterium with the highest rate of multidrug resistance. As such, it is categorized by the World Health Organization as a critical priority for the research and development of new antimicrobial therapies. The zinc-dependent metalloendopeptidase CpaA is a predominant substrate of the type II secretion system (T2SS). CpaA is also a virulence factor of medically relevant Acinetobacter strains that specifically degrade the human glycoprotein coagulation factor XII and not its deglycosylated form, but the mechanism for this specificity is unknown. CpaB is a membrane-anchored T2SS chaperone that interacts with CpaA and is required for its stability and secretion. Here, we report the crystal structure of the CpaAB complex at 2.6-Å resolution, revealing four glycan-binding domains in CpaA that were not predicted from its primary sequence and may explain CpaA's glycoprotein-targeting activity. The structure of the complex identified a novel mode for chaperone-protease interactions in which the protease surrounds the chaperone. The CpaAB organization was akin to zymogen inactivation, with CpaB serving as a prodomain that inhibits catalytically active CpaA. CpaB contains a C-terminal tail that appears to block access to the CpaA catalytic site, and functional experiments with truncated variants indicated that this tail is dispensable for CpaA expression and secretion. Our results provide new insight into the mechanism of CpaA secretion and may inform the future development of therapeutic strategies for managing Acinetobacter infections.


Asunto(s)
Acinetobacter/enzimología , Proteínas Bacterianas/metabolismo , Metaloproteasas/metabolismo , Chaperonas Moleculares/metabolismo , Sistemas de Secreción Tipo II/metabolismo , Proteínas Bacterianas/química , Metaloproteasas/química , Modelos Moleculares , Chaperonas Moleculares/química , Conformación Proteica , Sistemas de Secreción Tipo II/química
8.
Proc Natl Acad Sci U S A ; 116(21): 10510-10517, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31061116

RESUMEN

Mycobacterium tuberculosis (Mtb) killed more people in 2017 than any other single infectious agent. This dangerous pathogen is able to withstand stresses imposed by the immune system and tolerate exposure to antibiotics, resulting in persistent infection. The global tuberculosis (TB) epidemic has been exacerbated by the emergence of mutant strains of Mtb that are resistant to frontline antibiotics. Thus, both phenotypic drug tolerance and genetic drug resistance are major obstacles to successful TB therapy. Using a chemical approach to identify compounds that block stress and drug tolerance, as opposed to traditional screens for compounds that kill Mtb, we identified a small molecule, C10, that blocks tolerance to oxidative stress, acid stress, and the frontline antibiotic isoniazid (INH). In addition, we found that C10 prevents the selection for INH-resistant mutants and restores INH sensitivity in otherwise INH-resistant Mtb strains harboring mutations in the katG gene, which encodes the enzyme that converts the prodrug INH to its active form. Through mechanistic studies, we discovered that C10 inhibits Mtb respiration, revealing a link between respiration homeostasis and INH sensitivity. Therefore, by using C10 to dissect Mtb persistence, we discovered that INH resistance is not absolute and can be reversed.


Asunto(s)
Antituberculosos/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Isoniazida , Mycobacterium tuberculosis/efectos de los fármacos , Evaluación Preclínica de Medicamentos
9.
Nat Commun ; 10(1): 891, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30792408

RESUMEN

Chemical synthesis of conjugate vaccines, consisting of a polysaccharide linked to a protein, can be technically challenging, and in vivo bacterial conjugations (bioconjugations) have emerged as manufacturing alternatives. Bioconjugation relies upon an oligosaccharyltransferase to attach polysaccharides to proteins, but currently employed enzymes are not suitable for the generation of conjugate vaccines when the polysaccharides contain glucose at the reducing end, which is the case for ~75% of Streptococcus pneumoniae capsules. Here, we use an O-linking oligosaccharyltransferase to generate a polyvalent pneumococcal bioconjugate vaccine with polysaccharides containing glucose at their reducing end. In addition, we show that different vaccine carrier proteins can be glycosylated using this system. Pneumococcal bioconjugates are immunogenic, protective and rapidly produced within E. coli using recombinant techniques. These proof-of-principle experiments establish a platform to overcome limitations of other conjugating enzymes enabling the development of bioconjugate vaccines for many important human and animal pathogens.


Asunto(s)
Escherichia coli/genética , Ingeniería Genética/métodos , Vacunas Neumococicas/genética , Animales , Cápsulas Bacterianas/genética , Cápsulas Bacterianas/inmunología , Escherichia coli/metabolismo , Glicoproteínas/genética , Glicoproteínas/inmunología , Glicoproteínas/aislamiento & purificación , Glicosilación , Humanos , Vacunas Neumococicas/aislamiento & purificación , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/inmunología , Vacunas Conjugadas/genética , Vacunas Conjugadas/aislamiento & purificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/aislamiento & purificación
10.
Vet Pathol ; 55(3): 366-373, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29433400

RESUMEN

There is a clear link between defects in autophagy and the development of autoimmune and chronic inflammatory diseases, raising interest in better understanding the roles of autophagy within the immune system. In addition, autophagy has been implicated in the immune response to infection by pathogenic microbes. As such, there are efforts currently underway to develop modulators of autophagy as a therapeutic strategy for the treatment of the autoimmune, inflammatory, and infectious diseases. In this review, we discuss the numerous roles for autophagy in immunity and how these activities are linked to disease. We highlight how autophagy affects pathogen clearance, phagocytosis, pattern recognition receptor signaling, inflammation, antigen presentation, cell death, and immune cell development and maintenance. With these diverse and extensive immune-related functions for autophagy in mind, we finish by considering the possible implications of targeting autophagy as a therapeutic strategy.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Regulación de la Expresión Génica/inmunología , Inmunidad Celular/fisiología , Animales , Apoptosis/fisiología , Proteínas Relacionadas con la Autofagia/genética , Transducción de Señal/inmunología
11.
J Biol Chem ; 292(48): 19628-19638, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28982978

RESUMEN

Acinetobacter baumannii, Acinetobacter nosocomialis, and Acinetobacter pittii are a frequent cause of multidrug-resistant, healthcare-associated infections. Our previous work demonstrated that A. nosocomialis M2 possesses a functional type II secretion system (T2SS) that is required for full virulence. Further, we identified the metallo-endopeptidase CpaA, which has been shown previously to cleave human Factor V and deregulate blood coagulation, as the most abundant type II secreted effector protein. We also demonstrated that its secretion is dependent on CpaB, a membrane-bound chaperone. In this study, we show that CpaA expression and secretion are conserved across several medically relevant Acinetobacter species. Additionally, we demonstrate that deletion of cpaA results in attenuation of A. nosocomialis M2 virulence in moth and mouse models. The virulence defects resulting from the deletion of cpaA were comparable with those observed upon abrogation of T2SS activity. The virulence defects resulting from the deletion of cpaA are comparable with those observed upon abrogation of T2SS activity. We also show that CpaA and CpaB strongly interact, forming a complex in a 1:1 ratio. Interestingly, deletion of the N-terminal transmembrane domain of CpaB results in robust secretion of CpaA and CpaB, indicating that the transmembrane domain is dispensable for CpaA secretion and likely functions to retain CpaB inside the cell. Limited proteolysis of spheroplasts revealed that the C-terminal domain of CpaB is exposed to the periplasm, suggesting that this is the site where CpaA and CpaB interact in vivo Last, we show that CpaB does not abolish the proteolytic activity of CpaA against human Factor V. We conclude that CpaA is, to the best of our knowledge, the first characterized, bona fide virulence factor secreted by Acinetobacter species.


Asunto(s)
Acinetobacter/patogenicidad , Chaperonas Moleculares/metabolismo , Péptido Hidrolasas/metabolismo , Acinetobacter/enzimología , Acinetobacter/metabolismo , Animales , Factor V/metabolismo , Larva/microbiología , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Proteolisis , Bazo/microbiología , Virulencia
12.
J Biol Chem ; 292(22): 9075-9087, 2017 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-28373284

RESUMEN

Pathogenic Acinetobacter species, including Acinetobacter baumannii and Acinetobacter nosocomialis, are opportunistic human pathogens of increasing relevance worldwide. Although their mechanisms of drug resistance are well studied, the virulence factors that govern Acinetobacter pathogenesis are incompletely characterized. Here we define the complete secretome of A. nosocomialis strain M2 in minimal medium and demonstrate that pathogenic Acinetobacter species produce both a functional type I secretion system (T1SS) and a contact-dependent inhibition (CDI) system. Using bioinformatics, quantitative proteomics, and mutational analyses, we show that Acinetobacter uses its T1SS for exporting two putative T1SS effectors, an Repeats-in-Toxin (RTX)-serralysin-like toxin, and the biofilm-associated protein (Bap). Moreover, we found that mutation of any component of the T1SS system abrogated type VI secretion activity under nutrient-limited conditions, indicating a previously unrecognized cross-talk between these two systems. We also demonstrate that the Acinetobacter T1SS is required for biofilm formation. Last, we show that both A. nosocomialis and A. baumannii produce functioning CDI systems that mediate growth inhibition of sister cells lacking the cognate immunity protein. The Acinetobacter CDI systems are widely distributed across pathogenic Acinetobacter species, with many A. baumannii isolates harboring two distinct CDI systems. Collectively, these data demonstrate the power of differential, quantitative proteomics approaches to study secreted proteins, define the role of previously uncharacterized protein export systems, and observe cross-talk between secretion systems in the pathobiology of medically relevant Acinetobacter species.


Asunto(s)
Acinetobacter baumannii/metabolismo , Acinetobacter baumannii/patogenicidad , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/metabolismo , Acinetobacter baumannii/genética , Proteínas Bacterianas/genética , Sistemas de Secreción Bacterianos/genética , Humanos
13.
Trends Microbiol ; 25(7): 532-545, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28216293

RESUMEN

Infections caused by the bacterial pathogen Acinetobacter baumannii are a mounting concern for healthcare practitioners as widespread antibiotic resistance continues to limit therapeutic treatment options. The biological processes used by A. baumannii to cause disease are not well defined, but recent research has indicated that secreted proteins may play a major role. A variety of mechanisms have now been shown to contribute to protein secretion by A. baumannii and other pathogenic species of Acinetobacter, including a type II secretion system (T2SS), a type VI secretion system (T6SS), autotransporter, and outer membrane vesicles (OMVs). In this review, we summarize the current knowledge of secretion systems in Acinetobacter species, and highlight their unique aspects that contribute to the pathogenicity and persistence of these emerging pathogens.


Asunto(s)
Acinetobacter baumannii/metabolismo , Sistemas de Secreción Tipo II , Sistemas de Secreción Tipo V , Sistemas de Secreción Tipo VI , Infecciones por Acinetobacter/microbiología , Infecciones por Acinetobacter/fisiopatología , Acinetobacter baumannii/patogenicidad , Proteínas de la Membrana Bacteriana Externa
14.
J Mol Biol ; 428(16): 3206-3220, 2016 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-27107636

RESUMEN

Protein glycosylation is a post-translational modification that occurs across the whole tree of life. In the recent years, multiple N- and O-glycosylation mechanisms have been identified and characterized in diverse bacterial species, including human pathogens. This review focuses on bacterial protein glycosylation and its impact in pathogenesis. Bacteria carry N- and O-glycosylation systems that are mediated by an oligosaccharyltransferase (OTase). In OTase-dependent glycosylation mechanisms, an oligosaccharide is synthesized on a lipid carrier and subsequently transferred to proteins en bloc by an OTase. Multiple proteins are glycosylated using this mechanism. OTase-independent glycosylation refers to the pathway in which Protein N- and O-glycosyltransferases (PGTases) sequentially add monosaccharides onto the target proteins. This pathway is employed for glycosylation of flagella and autotransporters. By exploiting glycosylation machineries, it is now possible to generate tailor-made glycoconjugates by attaching polysaccharides derived from lipopolysaccharide or capsule biosynthesis onto a protein of choice. These glycoproteins can be used in developing vaccines and diagnostics of bacterial infections. Furthermore, both N- and O-glycosylation systems are promising targets for antibiotic development. Recently, the discovery of GTase toxins produced by bacterial pathogens and secreted into the host cells has greatly expanded. These proteins are a key factor in host-pathogen interactions and are required by certain pathogenic bacteria to establish a successful infection. The exact functions of bacterial glycoproteins in pathogenesis are just starting to emerge. Understanding these roles is key for new opportunities in the prevention of bacterial infections, which is crucial in times when antibiotic resistance continues to increase.


Asunto(s)
Bacterias/metabolismo , Infecciones Bacterianas/metabolismo , Infecciones Bacterianas/microbiología , Proteínas Bacterianas/metabolismo , Glicoproteínas/metabolismo , Interacciones Huésped-Patógeno/fisiología , Polisacáridos/metabolismo , Animales , Glicosilación , Glicosiltransferasas/metabolismo , Humanos
15.
PLoS Pathog ; 12(1): e1005391, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26764912

RESUMEN

Acinetobacter baumannii, A. nosocomialis, and A. pittii have recently emerged as opportunistic human pathogens capable of causing severe human disease; however, the molecular mechanisms employed by Acinetobacter to cause disease remain poorly understood. Many pathogenic members of the genus Acinetobacter contain genes predicted to encode proteins required for the biogenesis of a type II secretion system (T2SS), which have been shown to mediate virulence in many Gram-negative organisms. Here we demonstrate that Acinetobacter nosocomialis strain M2 produces a functional T2SS, which is required for full virulence in both the Galleria mellonella and murine pulmonary infection models. Importantly, this is the first bona fide secretion system shown to be required for virulence in Acinetobacter. Using bioinformatics, proteomics, and mutational analyses, we show that Acinetobacter employs its T2SS to export multiple substrates, including the lipases LipA and LipH as well as the protease CpaA. Furthermore, the Acinetobacter T2SS, which is found scattered amongst five distinct loci, does not contain a dedicated pseudopilin peptidase, but instead relies on the type IV prepilin peptidase, reinforcing the common ancestry of these two systems. Lastly, two of the three secreted proteins characterized in this study require specific chaperones for secretion. These chaperones contain an N-terminal transmembrane domain, are encoded adjacently to their cognate effector, and their disruption abolishes type II secretion of their cognate effector. Bioinformatic analysis identified putative chaperones located adjacent to multiple previously known type II effectors from several Gram-negative bacteria, which suggests that T2SS chaperones constitute a separate class of membrane-associated chaperones mediating type II secretion.


Asunto(s)
Infecciones por Acinetobacter/metabolismo , Acinetobacter/patogenicidad , Chaperonas Moleculares/metabolismo , Sistemas de Secreción Tipo II/metabolismo , Animales , Electroforesis en Gel Bidimensional , Electroforesis en Gel de Poliacrilamida , Humanos , Ratones , Ratones Endogámicos C57BL , Virulencia
16.
Mol Microbiol ; 96(5): 1023-41, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25727908

RESUMEN

Multiple species within the Acinetobacter genus are nosocomial opportunistic pathogens of increasing relevance worldwide. Among the virulence factors utilized by these bacteria are the type IV pili and a protein O-glycosylation system. Glycosylation is mediated by O-oligosaccharyltransferases (O-OTases), enzymes that transfer the glycan from a lipid carrier to target proteins. O-oligosaccharyltransferases are difficult to identify due to similarities with the WaaL ligases that catalyze the last step in lipopolysaccharide synthesis. A bioinformatics analysis revealed the presence of two genes encoding putative O-OTases or WaaL ligases in most of the strains within the genus Acinetobacter. Employing A. nosocomialis M2 and A. baylyi ADP1 as model systems, we show that these genes encode two O-OTases, one devoted uniquely to type IV pilin, and the other one responsible for glycosylation of multiple proteins. With the exception of ADP1, the pilin-specific OTases in Acinetobacter resemble the TfpO/PilO O-OTase from Pseudomonas aeruginosa. In ADP1 instead, the two O-OTases are closely related to PglL, the general O-OTase first discovered in Neisseria. However, one of them is exclusively dedicated to the glycosylation of the pilin-like protein ComP. Our data reveal an intricate and remarkable evolutionary pathway for bacterial O-OTases and provide novel tools for glycoengineering.


Asunto(s)
Acinetobacter/enzimología , Acinetobacter/genética , Proteínas Bacterianas/metabolismo , Proteínas Fimbrias/metabolismo , Glicosiltransferasas/metabolismo , Hexosiltransferasas/metabolismo , Ligasas/metabolismo , Proteínas de la Membrana/metabolismo , Acinetobacter/patogenicidad , Proteínas Bacterianas/genética , Biología Computacional , Proteínas Fimbrias/genética , Glicopéptidos/química , Glicosilación , Glicosiltransferasas/genética , Hexosiltransferasas/genética , Proteínas de la Membrana/genética , Neisseria/metabolismo , Polisacáridos/metabolismo
17.
Expert Rev Proteomics ; 12(1): 1-3, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25496064

RESUMEN

The opportunistic human pathogen Acinetobacter baumannii persists in the healthcare setting because of its ability to survive exposure to various antimicrobial and sterilization agents. A. baumannii's ability to cause multiple infection types complicates diagnosis and treatment. Rapid detection of A. baumannii infections would likely improve treatment outcomes. Recently published Acinetobacter glycoproteomic data show the prevalence of O-linked glycoproteins, suggesting the possibility for an O-glycan-based detection technology. O-glycan biosynthesis is required for protein glycosylation and capsular polysaccharide production in A. baumannii. Recent publications demonstrate key roles for protein glycosylation and capsular polysaccharide in the pathogenicity of A. baumannii. Targeted antimicrobial development against O-glycan biosynthesis may produce new effective treatment options for A. baumannii infections. Here, we discuss how the data gathered through Acinetobacter glycoproteomics can be used to develop technologies for rapid diagnosis and reveal potential antimicrobial targets. In addition, we consider the efficacy of glycoconjugate vaccine development against A. baumannii.


Asunto(s)
Infecciones por Acinetobacter/tratamiento farmacológico , Acinetobacter baumannii/metabolismo , Glicoproteínas/metabolismo , Proteoma/metabolismo , Acinetobacter baumannii/patogenicidad , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Glicoproteínas/efectos de los fármacos , Humanos , Proteoma/efectos de los fármacos
18.
Mol Cell Proteomics ; 13(9): 2354-70, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24917611

RESUMEN

The opportunistic human pathogen Acinetobacter baumannii is a concern to health care systems worldwide because of its persistence in clinical settings and the growing frequency of multiple drug resistant infections. To combat this threat, it is necessary to understand factors associated with disease and environmental persistence of A. baumannii. Recently, it was shown that a single biosynthetic pathway was responsible for the generation of capsule polysaccharide and O-linked protein glycosylation. Because of the requirement of these carbohydrates for virulence and the non-template driven nature of glycan biogenesis we investigated the composition, diversity, and properties of the Acinetobacter glycoproteome. Utilizing global and targeted mass spectrometry methods, we examined 15 strains and found extensive glycan diversity in the O-linked glycoproteome of Acinetobacter. Comparison of the 26 glycoproteins identified revealed that different A. baumannii strains target similar protein substrates, both in characteristics of the sites of O-glycosylation and protein identity. Surprisingly, glycan micro-heterogeneity was also observed within nearly all isolates examined demonstrating glycan heterogeneity is a widespread phenomena in Acinetobacter O-linked glycosylation. By comparing the 11 main glycoforms and over 20 alternative glycoforms characterized within the 15 strains, trends within the glycan utilized for O-linked glycosylation could be observed. These trends reveal Acinetobacter O-linked glycosylation favors short (three to five residue) glycans with limited branching containing negatively charged sugars such as GlcNAc3NAcA4OAc or legionaminic/pseudaminic acid derivatives. These observations suggest that although highly diverse, the capsule/O-linked glycan biosynthetic pathways generate glycans with similar characteristics across all A. baumannii.


Asunto(s)
Acinetobacter/metabolismo , Proteínas Bacterianas/metabolismo , Polisacáridos/metabolismo , Cromatografía Liquida , Glicopéptidos/metabolismo , Glicosilación , Espectrometría de Masas en Tándem
19.
Mol Microbiol ; 89(1): 14-28, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23679002

RESUMEN

Protein glycosylation was once considered as an eccentricity of a few bacteria. However in the recent years multiple O-glycosylation mechanisms have been identified in bacterial species from the most diverse genera, including various important human pathogens. This review focuses on summarizing the structural diversity, the various pathways and the physiological roles of this post-translational protein modification. We propose a classification of O-glycosylation based on the requirement of an oligosaccharyltransferase (OTase). OTase-dependent glycosylation utilizes an oligosaccharide synthesized on a lipid carrier that is transferred to proteins en bloc by an OTase. Multiple proteins, including the pilins, are glycosylated using this mechanism. OTase-independent glycosylation refers to the pathway in which glycosyltransferases sequentially add monosaccharides onto the target proteins. This pathway is employed for glycosylation of flagella and autotransporters. Both systems play key roles in pathogenesis. Exploiting glycosylation machineries it is now possible to generate glycoconjugates made of different proteins attached to polysaccharides derived from LPS or capsule biosynthesis. These recombinant glycoproteins can be exploited for vaccines and diagnostics of bacterial infections. Furthermore, O-glycosylation systems are promising targets for antibiotic development. Technological advances in MS and NMR will facilitate the discovery of novel glycosylation systems. Likely, the O-glycosylation pathways we currently know constitute just the tip of the iceberg of a still largely uncharacterized bacterial glycosylation world.


Asunto(s)
Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Glicosilación , Bacterias/química , Hexosiltransferasas/metabolismo , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Proteínas de la Membrana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...